Dual Objects — An Object Model for Distributed
System Programming

Jorg Nolte, Wolfgang Schrider-Preikschat'

GMD FIRST TUniversity of Magdeburg
Rudower Chaussee 5 Universitatsplatz 2
D-12489 Berlin, Germany D-39106 Magdeburg, Germany
jon@first.gmd.de wosch@cs.uni-magdeburg.de

July 14, 1998

1 Introduction

When parallel processing became popular at the end of the eighties, it became evi-
dent that common operating systems were not able to deliver the pure performance
of parallel hardware to parallel applications. Much processing power was wasted
with complex system call mechanisms and sometimes vast resource consumptions
of the operating system itself. Even micro-kernel based systems were often too
slow, because these also relied on computing power consuming concepts like ad-
dress space separation or virtual memory systems. Nevertheless, some applications
required exactly those functionalities that others denied for performance reasons.
Since this contradiction can hardly be solved within a single operating system, the
PEACE operating system family[10] was developed at GMD-FIRST. The most sim-
ple family members were represented as highly efficient runtime libraries while the
most complex members can be regarded as full fledged micro-kernel based operating
systems.

Family based systems can be implemented conveniently by means of object ori-
ented programming paradigms. Thus the PEACE operating system family has en-
tirely been implemented in C++. Operating system services are implemented as
classes and users can extend and specialize these system classes by means of inher-
itance mechanisms. In theory this scenario is sound and straight forward but in
practice the conceptual advantages of object orientation are extremely hard to ex-
ploit without suitable object models and language-level support for object-oriented
implementation techniques in distributed contexts.

When users extend and specialize PEACE classes by means of inheritance mecha-
nisms, class hierarchies need to be extended across address spaces as well as network
boundaries and objects can be fragmented across address spaces. This in turn can
lead to serious performance bugs caused by frequent remote invocations, when ap-
plication classes closely interact with their system-level base classes. On the other
hand it is obvious that client classes cannot have full access to system-level state
information to avoid forgery and ease resource sharing amongst many clients. Im-
plementing system services as fragmented objects[7] like in the SOS system [12]
would have supported independence as well as encapsulation of object fragments
allocated in different address spaces. Nevertheless we considered that model already
too complex for those very lightweight system structures we were aiming at, because

the fragmented object model partially relied on group communication mechanisms
and did not support inheritance-based fragmentation.

Having such problems in mind we designed a general object model for system
programming, that transposes the classical coarse grained user/supervisor memory
model of monolythic systems to very small objects of language-level granularity.
So-called dual objects [9] implement system services and encapsulate both user-level
and system-level state information in a single object context. Clients are allowed
to control the user-level part of a dual object directly and efficiently within their
address spaces, whereas system servers have transparent access to both parts during
service invocations. Thus much closer interactions between user and system classes
are possible as in conventional object models and the model remains simple enough
to be implemented efficiently.

2 Dual Classes and Dual Objects

Dual objects are described by annotated C++ classes that specify user-level and
system-level class members. To retain a strong backward compatibility to original
C++, all public and protected members are considered to be user-level, whereas
all private members belong to the system-level. Thus the weak language-level
protection of private class members in C++ is enforced by strong encapsulation
of private data in the (remote) address-space of the server. If private members
shall be part of the user-level state, they need to be specifically annotated as
/*!local!*/private.

class Adviser : ... {

private: // system-level
Actor**x actors;
Actor* my_actor;
int num_actors;

protected: // user-level
Ticket cap;
AccMode mode;
VSMProt protocol;
Addr low;
Addr high;

public:

void setProt (VSMProt prot) /#!local!*/ { this->protocol = prot; }
void setCap (Ticket cap) /*!1locall*/ { this->cap = cap; }

int handle (int page, Addr addr, AccFault type);
}/*!duali*);

Figure 1: A Dual Class

Fig. 1 shows a much simplified example of the dual Adviser class that controls
consistency protocols in the virtually shared memory system of PEACE[3]. Dual
classes are identified using a /#*!dual!*/ annotation following the closing bracket
of the class declaration. These classes are fed to a dual object generator (DOG) to
transform them into functionally enriched C++ classes capable of dealing with the
distribution aspects of dual objects. Dual classes can be composed by (even remote)
inheritance mechanisms and important C++ features like multiple inheritance are
retained.

The private member slots of a dual class belong to the system-level whereas all
protected members are user-level data members. Thus the methods setProt()
and setCap() can be executed directly within the client’s address space as indi-
cated by the /*!local!*/ annotation whereas methods like handle () are executed
remotely under the control of the server using remote object invocation techniques.
During invocations the user-level members are made available for the server. Thus

the handle () method has transparent access to the actual cap, mode, protocol,
high and low members. The implementation of this concept causes a little addi-
tional overhead, because we need to transfer the user-level data to the server in
order to grant efficient access to these members. Since this overhead is comparable
to implicit parameter passing it can be neglected if the transfer costs of user-level
state information is small compared to the execution time of the method.

3 Resource Sharing and Individual Customization

A process can grant access to its resources by creating clones of its dual object
instances and transferring these clones to other processes. Whenever a dual object
is cloned, only the user-level part is copied, whereas the system-level part is (transi-
tively) shared amongst all clones. Thus in the Adviser example (fig. 1) the private
system-level members are shared amongst all instances transitively cloned from the
same origin. In contrast all protected user-level members are independent copies
that will be manipulated independently from each other. Thus the user-level part of
a dual object becomes a client-specific context that is implicitly provided to servers
during service invocations. Consequently the cap, mode, protocol, high and low
members (fig. 2) will always refer to the user-level part of the client actually calling
a specific Adviser instance.

individual
user-level state

client 3

client 2 119054

cap:

cap: 234857
que: READ | oo

actors: 4c00
my_actor: 5c04
num_actors: 64

.......... shared
system-level state

Figure 2: Resource Sharing with Dual Objects

As a result servers are not enforced to maintain client-specific data themselves
and clients are able to customize specific aspects of system-services dynamically at
runtime. Robustness of services is therefore enhanced and system-level data can be
shared conveniently and economically amongst many clients. In fact, these resource
sharing facilities are comparable to delegation based models [6] with the major
difference that the sharing facilities of dual objects are statically defined through
dual classes whereas common delegation schemes allow dynamic sharing.

4 Runtime Model and Implementation Issues

Dual objects have two representations at runtime, one for clients and one for servers.
We call instances of the client’s representations likenesses and instances of the
server’s representation prototypes. A likeness reflects the public interface of a dual

class and consists of public and protected members only, whereas the prototype
consists of all members. Furthermore, the likeness holds a (remote) reference to its
prototype. Thus a likeness is both an object that can be manipulated locally as
well as a proxy[11] for a remote prototype.

Prototypes are passive C++ objects that are kept in so-called domains[8]. Do-
mains are a concept for local object spaces that are managed by active server objects
we call clerks. These clerks are able to instantiate new prototypes upon request and
control access to all objects within their domains. Many domains may share an ad-
dress space or may have separate address spaces either on the same machine or
somewhere in a network to constitute a global distributed object space (fig. 3).
Furthermore, a domain may either be sequential or concurrent. Sequential do-

node A |

> prototypes

\
|
|
|
|
|
|
|
|
I

Figure 3: Domains

mains are monitors and allow exactly one object in the domain to be manipulated
at a time. Concurrent domains manage a dynamic thread pool and implement
read/write monitors on single object instances.

When a dual object is created, an instantiation request is sent to the clerk of the
domain selected to host the new prototype. Domains are selected either by name
contacting a name service or by a unique identifier denoting the communication
address of the clerk controlling the domain. The clerk in turn creates the prototype
and executes its constructor.

After initialization all user-level parts of the prototype are extracted and sent
back to the requesting client. Here a likeness is initialized with the user-level data
and the remote reference to the newly created prototype. In fact, any time a client
declares a new likeness instance which is not a clone of an existing likeness, the
instantiation procedure described above is transparently executed.

Methods that access user-level data only are executed locally on the likeness
leaving the prototype untouched. All methods that are executed on the likeness
that involve system-level data will in fact be remote object invocations on a remote
prototype. Since the user-level part may have been changed by previous local calls,
it is transmitted along with the arguments of the call (fig.4).

The receiving clerk then will update the prototype by means of the actual user-
level data before the method is executed!. When the method returns the user-level
part is extracted and sent back to the client along with the results of the method.

IThis is necessary because we use standard C++ compilers as back-end. Otherwise user-level
members could be referenced differently from system-level members.

The likeness in turn is updated with the actual data. This protocol causes some

Figure 4: Remote Invocation

additional overhead for those methods which access both user-level and system-
level data simultaneously. Since that overhead is comparable to implicit parameter
passing it can be neglected if the transfer costs of user-level state information is
small compared to the execution time of the method. Other methods are either not
affected or even executed locally at the client site if no system-level data is accessed

at all.

5 Performance

All performance measurements have been performed on a 16 node Manna computer.
The Manna is a scalable architecture based on a 50MHz i860 processor and is
interconnected via a hierarchical crossbar network with 50Mbytes/s links. Up to
16 nodes can communicate directly over a single crossbar switch. Therefore the
communication latency between any two nodes is the same in the single cluster we
used. Table 1 shows the basic timings for elementary communication costs as well
as remote object invocation (ROI) times.

| Operation | Time (usec) |
Inter Process Communication (IPC) | 157
Async. IPC 18
bulk data transfer (fetch) 122
bulk data transfer (store) 28

ROI with argument size not exceed- | 165-168
ing an IPC packet

async. ROI ca. 26
ROI with implicit bulk data transfer | 308
remote object creation 266

Table 1: Performance of basic operations

The PEACE nucleus provides synchronous and asynchronous packet-based mech-

anisms (64 bytes) for inter process communication (IPC) as well as primitives for
end-to-end bulk data transfer (fetch(), store()). The ROI mechanisms are built
upon these mechanisms. When the argument size (including the user-level part of a
dual object) exceeds an IPC-packet, bulk data transfer primitives are automatically
applied to transmit bigger messages.

The typical ROI overhead (compared to the basic commmunication mechanisms)
is in the vicinity of 8usec and drops to less than 5usec in case of local communication
that implies a better cache utilization?. Notably we cannot measure significant
differences with varying parameter sizes up to the size of a packet. The Doa
generates statically typed message formats for most methods and thus marshaling
costs for simple data types and aggregate types are extremely low. Only array data
types and aggregate data types that contain arrays imply some copying overhead
(as compared to direct bulk data transfers) caused by copying loops in the stubs.

The overhead caused by the bidirectional update protocol needed to keep the
user-level state consistent (refer to section 4) is basically the same as the overhead
of passing value-result parameters of the same size. If user-level state and the argu-
ments of a method fit into a single packet the update protocol is a pure piggyback
protocol that only adds very small copying overhead to the basic ROI protocols.

6 Related Work

Other high-level approaches from the distributed systems area such as CORBA [4]
tend to “eat up” the performance of lower layers for the sake of convenient hetero-
geneous computing and interoperability issues. In the high performance systems
area more recent parallel C++ versions such as CC++[1], ICC++[2], C++//[13]
and MPC++[5] seem to be promising. Nevertheless, system programming still
needs significantly more control over runtime issues than languages designed for
application level programming usually provide. MPC++ and C++// provide pow-
erful meta-level programming facilities that could have beneficial impact on system
programming in the near future.

7 Conclusion

Family based operating system services are hard to implement without suitable
high-level paradigms and language-level support. Design and implementation of
PEACE was strongly influenced by the concept of dual objects. This object model
transposes the classical coarse grained user /supervisor memory model of monolythic
systems to very small objects of language-level granularity. Therefore dual objects
encapsulate both user-level and system-level state information in a single object
context to encourage much closer interactions between user and system classes as
in conventional object models. Servers are not enforced to maintain client-specific
data themselves. Robustness of services is therefore enhanced and system-level data
can be shared conveniently and economically amongst many clients.

In the future we are going to extend our research in two major directions.
First, in the high performance area we’ll exploit the impact and costs of mod-
ern meta-object protocols to system design. Secondly, we are aiming at developing
a portable and universal runtime executive (PURE) for deeply embedded (par-
allel/distributed) systems. The goal is bringing object-oriented operating system
technology into a car. Today, a typical automotive environment consists of a fairly
large number (e.g. 63) of 8 or 16 bit u-controllers interconnected by some network

2The generated code as well as the code in the ROI runtime system is the same in both the
local and the remote case.

system (e.g. CAN-bus) and equipped with a comparably very small amount of mem-
ory (e.g. 1-2MB) for the entire system. This calls for extremely downward-scalable
system solutions—and dual objects provide for the appropriate foundation.

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

K. M. Chandy and C. Kesselman. CC++: A Declarative Concurrent Object-
Oriented Programming Notation. In Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

A. Chien, U.S. Reddy, J.Plevyak, and J. Dolby. ICC++ — A C++ Dialect
for High Performance Parallel Computing. In Proceedings of the 2nd JSSST
International Symposium on Object Technologies for Advanced Software, ISO-
TAS’96, Kanazawa, Japan, March 1996. Springer.

J. Cordsen, Th. Garnatz, A. Gerischer, M. D. Gubitoso, U. Haack, M. Sander,
and Schréder-Preikschat. VOTE for PEACE — Implementation and Performance
of a Parallel Operating System. IEEE Concurrency, 5(2):16-27, 1997.

Object Management Group Document. The Common Object Request Broker:
Architecture and Specification 2.0. Technical report, OMG.

Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, J6rg Nolte,
Hiroshi Tezuka, Hiroki Konaka, Munenori Maeda, and Kazuto Kubota. Design
and Implementation of Metalevel Architecture in C++ — MPC++ Approach
—. In Reflection ’96, 1996.

H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object—Oriented Systems. In Special Issue of SIGPLAN notices, volume 21,
pages 214-223. ACM, November 1986.

Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc
Shapiro. Structuring Distributed Applications as Fragmented Objects. Rap-
port, de recherche 1404, Institut National de la Recherche en Informatique et
Automatique, Rocquencourt (France), January 1991.

O. M. Nierstrasz. Active Objects in Hybrid. In Special Issue of SIGPLAN
notices, volume 22, pages 243-253. ACM, December 1987.

J. Nolte and W. Schriéder-Preikschat. An Object-Oriented Computing Surface
for Distributed Memory Architectures. In Proceedings of the Twenty-Sizth
Annual Hawaii International Conference on System Sciences, volume 2, pages
134-143, Maui, Hawaii, January 5-8, 1993. IEEE Computer Society Press.

W. Schréder-Preikschat. The Logical Design of Parallel Operating Systems.
Prentice Hall International, 1994. ISBN 0-13-183369-3.

M. Shapiro. Structure and Encapsulation in Distributed Systems: the Proxy
Principle. In Proceedings of the 6th International Conference on Distributed
Computing Systems, pages 198-204, Cambridge, MA, 1986.

Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruf-
fin, and Céline Valot. SOS: An object—oriented operating system — assessment
and perspectives. Computing Systems, 2(4):287-338, December 1989.

The Europa WG. EUROPA Parallel C++ Specification. Technical report,
http://www.dcs.kcl.ac.uk/EUROPA, 1997.

