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Abstract 

Parallel computation environments exploiting conventional 
processors offer the potential to achieve high efficiency at a 
low cost. In the future, even heterogeneous clusters of sym- 
metric multiprocessors (SMPs) will supersede special pur- 
pose computers. Due to this trend, the availability of special 
hardware support for global communication will be more un- 
usual For such an environment, software-implemented mul- 
ticasts and broadcasts are highly demanded to support a 
global dissemination of information over networks of pro- 
cessors. 

This article introduces the theory and presents an al- 
gorithm for the implementation of an one-source/many- 
destination distribution of a message (multicast communica- 
tion) based on a send-and-forget semantic, i.e. the event of 
sending a message performs asynchronously with respect to 
the blocking receive event. The performance of a multicast 
communication is sensitive to the underlying communication 
system. In order to achieve optimal results, the algorithm 
must consider the latencies at the sending and receiving 
sites. It is shown that computing systems with a low prob- 
ability for contentions in the communication network offer 
optimal performance results when they consider generalized 
Fibonacci sequences. Experiments on a parallel computing 
system and comparisons with related work demonstrate the 
relevance of the proposed work. 

1 introduction 

The efficiency of communication is important to the over- 
all system performance. Especially, this is true in large-scale 
computing systems consisting of distributed memory com- 
puting resources. Many message-passing communication li- 
braries (e.g. PVM or MPI) are available and allow for a 
portable programming of parallel applications. 

Message-passing communication services can be grouped 
into two classes: point-to-point and collective operations. 
Point-to-point communications involves two communication 
partners in the form of various modes of send and receive 
operations, e.g. blocking or non-blocking semantics. A col- 
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lective communication involves a group of processes and im- 
plements frequently used communication patterns in parallel 
programs, e.g. broadcast or reduction communications. 

In the area of high-performance computing, the success 
of a message-passing system is a measure of the performance 
capabilities of the communication subsystem. It is vital to 
provide both a low latency and a high data throughput rate 
for point-to-point communication (unicast) and, even more 
important, for collective communication (multicast). In or- 
der to accomplish these goals, it is important to minimize 
the interactions with the memory subsystem, i.e. avoiding 
intermediate buffering in message delivery, and to optimally 
match an application’s communication pattern to the capa- 
bilities of the underlying communication subsystem. 

A barrier synchronization includes both a many-to-one 
and a one-to-many communication. The former is neces- 
sary to implement a reduction phase, whereas the latter is 
used in the distribution phase to inform the processes to 
proceed execution. Due to load imbalance that may affect 
the processes participating in a barrier synchronization, it 
is rather impossible to propose a theory providing optimal 
performance results for the implementation of the reduction 
phase. Therefore, this paper only discusses performance as- 
pects of software-implemented multicasts used in the distri- 
bution phase of a barrier synchronization. 

The runtime behavior of a multicast communication 
can be optimized by organizing the communicating pro- 
cesses into a tree-structured (i.e., hierarchical) communi- 
cation topology (multicast tree). In a multicast tree, each 
process uses the point-to-point communication service to 
forward a message to each of its children in turn. This lets 
communication proceed in parallel if non-blocking primitives 
are used to send messages to the childrens. 

The rest of this article is organized as follows. Section 2 
presents an overview of multicast trees proposed in the iit- 
erature and being used in various barrier implementations. 
Thereby, the disadvantages of their designs are discussed. 
Afterwards, section 3 analyzes the impact of sending and re- 
ceiving latencies and provides a theory on the performance 
results of a multicast communication. In section 4, the de- 
sign aspects and an algorithm for the construction of an op- 
timal multicast tree is presented. Section 5 shows runtime re- 
sults of multicast communications using different multicast 
trees on a parallel computing system. Finally, conclusions 
are drawn and some directions for further investigations are 
discussed. 
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6-level binary tree 

Figure 1: Examples of different nulticast trees for 64 processes 

2 Multicasts in Barrier Synchronizations 

Barriers were introduced in 19’78 by H. Jordan as the funda- 
mental synchronization mechanism for the Finite Element 
Machine at NASA Langley [13]. A barrier synchronization 
is a point in the control flow of an algorithm at which all 
processes must arrive before any of the processes are allowed 
to proceed. The time in which a barrier service function re- 
ceives arrival messages is the reduction phase of a barrier 
synchronization. When all arrival messages are received, the 
barrier service will initiate a distribution phase to let the 
processes continue their work. A programmer may use a bar- 
rier synchronization to ensure that all processes executing 
a particular parallel loop have finished the loop before con- 
tinuing other program execution. The dissemination of the 
message to continue program execution requires a multicast 
communication, thus making a barrier synchronization de- 
pendent on the performance of the communication system. 

In medium-range massively parallel processing systems, 
hardware implementations can provide excellent perfor- 
mance results. The special communication hardware used 
to implement the synchronization requires significant de- 
sign and engineering effort but can be obtained at resson- 
able costs. The scalable parallel processing system T3D from 
Cray Research, Inc. [S] uses a synchronization network to re- 
alize a hardware-assisted barrier synchronization. Measure- 
ments on a 64-node T3D system [2] indicate that barrier 
synchronization is never slower then four microseconds. 

However, today’s trend of building massively paral- 
lel supercomputers using clusters of conventional work- 
stations make the availability of hardware assisted global 
communication more unusual. The problem of a software- 
implemented barrier synchronization lies not in the commu- 
nication of data (i.e. it depends not on the bandwidth re- 
sults). Rather, the process of sending, routing, and receiving 
data (i.e. the communication latency) is vital to the perfor- 
mance results. Compared to other system software activi- 
ties, sending and receiving of data must require execution of 
only a very few instructions. Moreover, routing of messages 
through the communication network must be as efficient as 
possible. 

6-level binomial tree 

2.1 Software Implementations - Some Examples 

Parallel programming environments provide support for bar- 
rier synchronization. For example, the message-passing com- 
munication libraries PVM [16] and MPI [ll] comprise func- 
tions implementing barrier synchronization. Whenever pos- 
sible, these communication libraries will use the fast hard- 
ware provided by the vendor. If such dedicated support is 
not available, there is a range of different approaches imple- 
menting the multicast communication. 

The simplest implementation is a centralized approach. 
In this approach, only the barrier server sends distribution 
messages. Individual processes have no duties other than 
to receive a notification and to continue work. For small 
numbers of processes, the centralized approach may perform 
quite well, but in systems with larger numbers of processes, 
the barrier server will act as a bottleneck and, thus, cause 
unnecessary delays for the worker processes. 

A more promising approach minimizes communication 
latency through the use of a multicast tree which is con- 
structed atop the unicast communication service. In the dis- 
tribution phase, a barrier server sends notification messages 
to a subset of the worker processes. When these processes re- 
ceive their notifications, they start to distribute the message 
to a different subset of worker processes. 

An optimal distribution phase then requires that every 
worker process which receives a notification helps to dis- 
tribute it to other processes until all processes have received 
the notification. The duration of a distribution phase is 
the distribution latency. This phase begins when the bar- 
rier server initiates the first notification and ends when the 
last worker process has received the message. 

Of course, in order to obtain optimal runtime results, 
it is necessary to account for architectural properties of the 
system. The topology of the communication network is most 
significant to the runtime results and, thus, should be con- 
sidered in the construction scheme of the multicast tree. 
Various types of multicast trees have been proposed. Fig- 
ure 1 presents three different types that are used in several 
implementations. 

Frequently, a binary tree is used to implement a parallel 
distribution of messages. In case of MPI implementations, 
at least Convex [9] and IBM SP2 [lo] use a binary tree to 
implement the barrier synchronization. The binary multi- 
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cast tree in figure 1 shows an example constructed for the 
64 processor MIT Alewife machine [14]. Using a binary mul- 
tic& tree for this machine requires a 6-level binary tree, 
that is, the longest communication distance from the root to 
a leaf involves six point-to-point communications. The sin- 
gle processor at level 6 indicates that the 6-level64-processor 
binary multicast tree is incomplete. In contrast, a 5-level 63- 
processor binary multicast tree would be complete. 

A special feature of the Alewife machine is that interpro- 
cessor communication can be effected either through shared- 
memory or message-passing. While the barrier implementa- 
tion for shared-memory communication used a binary mul- 
ticast tree, the alternative message-passing implementation 
was based on the 2-level eight-ary tree [14]. Both multi- 
cast tree structures are implemented in software only. Their 
execution results significantly gain through the hardware 
assisted dedicated communication support. A barrier syn- 
chronization with 64 processes executes in 50 /JS through 
shared-memory communication and in 20 ps by way of a 
message-passing communication. 

In absence of any special hardware communication sup- 
port, the execution times grow by more than a factor of 
ten (81. For example, in case of a four-ary multicast tree 
used in a KSR-machine with 10 processes, a barrier syn- 
chronization executes in 223 ps, that is (10,223). For larger 
configurations, the performance results are (16,338) and 
(32,635) [S]. The difference to the Alewife results is signifi- 
cant, but, on the other hand, the numbers for a centralized 
KSR implementation are even slower and reported to be 
(10,254), (16,451) and (32,920). 

Figure 2: Recursive Doubling in a Binomial Multicast Tree 

Binomial trees or spanning trees are related to the the- 
oretical work on priority queues [3]. Since then, various im- 
plementations and analysis work, as in [8, 121, have demon- 
strated that binomial trees gain from an optimal scheduling 
of notified processes. During the first communication step, 
the barrier server is able to distribute the message to only 
one destination. In each subsequent communication step, 
each processor holding a copy can send it to exactly one new 
processor. At most, the number of processors is doubled in 
each communication step. Therefore, this technique is known 
as the recursive doubling procedure. Beside of the complete 
6-level 64-processor binomial multicast tree in figure 1, fig- 
ure 2 shows another way to view the recursive doubling in 
a binomial multicast tree. 

2.2 Analysis 

Performance measurements have demonstrated that the 
scheduling times in multicast trees significantly deviate from 

theoretical considerations [18]. Recently, work has been car- 
ried out to mode1 communication loads [7] and to construct 
optimal multicast trees accounting the communication la- 
tencies of a target system [I, 151. In [15], dynamic program- 
ming is used to compute the optima1 multicast tree for given 
communication latencies and the number of processes. In [l], 
the postal model introduces generalized Fibonacci sequences 
for the construction of optimal multicast trees. Their com- 
munication model bears similarities to the mode1 of our work 
but has the drawback that it only allows to compute bound- 
aries on the performance results of multicast communication 
being based on an optimal multicast tree. 

Section 2.2.1 introduces our communication cost mode1 
based on a sending and a receiving communication latency. 
Afterwards, section 2.2.2 uses this model to analyze the mul- 
ticast trees of figure 1 in respect to their suitability in com- 
puting systems with different communication latencies. 

2.2.1 A Communication Model 

The communication model presented here can be applied 
to communications between a process using a non-blocking 
function to send a message and a process using a blocking 
function to receive the message. It is assumed that the re- 
ceiver has called the receive function in advance. 

Sender 

3 

Time 

Communication model 

Activation times 

Figure 3: Communication Mode1 and Activation Times 

Figure 3 illustrates the activities performed within a 
communication. At time t, a sender sends a message to an- 
other process (the receiver) which is located on a different 
processor. The latter is blocked and waits on the receipt of 
that message. In the time interval [t, t + s + c], the processor 
hosting the sender is busy transfering the message to the 
communication partner. At the receiving site, the processor 
is busy in the time interval [t + s,t + s + c + r]. 

Time a is significant to the sender only and depends on 
the local message startup time. On the other hand, time 
r is relevant only to the receiving site and depends on the 
activation time of a receiving process when the message has 
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arrived. Finally, time c is the time in which both processes 
we busy transfering data from the sender to the receiver. 
For communication with large amount of data, e.g. several 
MBs, the time c will dominate the costs of a communication 
and time s as well as time r can be ignored. This is not 
the case in a distribution phase of a barrier. Rather, the 
opposite is true. Sending a notification requires only a very 
small message and minimizes c to an extent that it can be 
ignored in comparison to the communication latencies of s 
and r. 

The simplified communication model (without parame- 
ter c) is depicted in figure 3. It shows the effects of paral- 
lel communication during a multicast communication. Pro- 
cess S sends three messages at time t,t + s, and t + 2s. 
Processes Ri, RZ and R3 will be activated at time t + s + 
r, t + 2s + r, t + 3s + r respectively. Process RI is activated at 
time t + s + T and immediately sends a copy of the message 
to another process & which receives the message at time 
t + 2s + 2r. The example shows that, when moving from left 
to right, an increase in time of unit s is accounted, whereas 
moving towards the leaves of the tree adds an additional 
time 8 + r. 

2.2.2 Suitability 

Based on the communication model introduced in the previ- 
ous section, it is possible to compute the distribution latency 
of a barrier distribution phase as a function of the send and 
receive latencies (s and r). In a binary tree, the right sub- 
tree is notified through the second message and the depth 
of the tree is logz(p) with p being the number of processes. 
Adding the receive latencies, a complete binary tree with 
p = 2t - 1 (t 2 1) processes has a distribution latency of 
(2*s+r)*(log,@+l)-1). In general, a complete I-level n-ary 

tree comprises p = * processes and has a distribution 
latency of 

(n*s+r)*(log,((n-l)*p+l)-1) (1) 

communication steps. A complete S-level eight-ary tree 
comprises 73 processes and has a distribution latency of 
(8*s+r)*(logs((8-1)*73+1)-l). Finally,duetotherecur- 
sive doubling in each communication step, a binomial tree 
has a distribution latency of (s + P) + log, (p) communication 
steps. 

Figure 4 shows the distribution latencies of the different 
tree types. The execution time is computed as a function 
of the number of processes and the ratio of the receive and 
send latencies (5). Unit s is fixed to 20 ps and the four 
triple sets of measurements are made for ratios $ = +, $, 3 
and f. The leftmost set of measurements are made with 
values of s = 20~s and r = 4ps, the rightmost with values of 
s = 20~s and r = 100~s. In the first case, the binomial tree 
performs best, while the eight-ary tree provides the worst 
results. Due to the dominance of the send latency costs in 
the distribution latency of the eight-ary tree, this result is 
what one would expect. 

For increasing values of r, the performance results of an 
eight-ary tree increasingly get better in comparison to the 
results of binary and binomial trees. This observation is of 
great importance because computing systems normally have 
a receive latency which is higher than the send latency. In 
other words, due to the concrete values of r and s, the con- 
struction scheme of a multicast tree must be adapted. For 
example, if r > s, the tree structures must be broader and 
less deep. 

3 Impact of Communication Latencies 

The previous section demonstrated that an optimal mul- 
ticast tree used to implement the distribution phase in a 
barrier synchronization depends on the send and receive la- 
tencies. In this section, we consider the impact of commu- 
nication latencies on the progress of distributing a message 
in a multicast tree. Section 3.1 introduces a function f(t) 
which expresses the number of processes in a Fibo-tree that 
have received the message at time t. Afterwards, section 3.2 
shows some examples of f(t) for different values of s and r. 

3.1 Speed of Message Distribution 

At a given time t, t > 0, the number of processes holding a 
copy of the message% at least one, because the root of the 
multicast tree (i.e., the process implementing the barrier 
service) holds a copy. Therefore, the initial definition can be 
written as: 

f(t) = 0 for t < 0 and f(0) = f(1) = . = f(s+r - 1) = 1. 

A duration of s + r, i.e. a complete communication, is re- 
quired to get a copy of the message to a second process. In 
general, for values oft > 0, f(t) is defined as: 

f(t) = 1 + f(t - 8 -r) + f(t - 28 - r) + f(t - 38 - r) + . 

or OD 
f(t) = 1 + C f(t - i * 8 - r). 

i=l 

The formulation of a recursive definition for f(t) requires 
to determine two terms. First, it is relevant how many pro- 
cesses were active at a past time and, second, how many 
processes were activated since then. Function f(t) can be 
expressed as f(t) = f(t - s) + f(t) - f(t - 8). The determi- 
nation of f(t - 8) for t - 8 > 0 is: 

f(t-8) = l+Cf(t-s-irs-r) = l+Cf(t-i*s-r). 
i=l id 

This equation can be used to compute the term f(t)-f(t-s) 
with the result: 

f(t)-f(t-8) = l+ef(t-i*s-r)- 
i=l 

(1 + 2 f(t - i + 8 - r)) 
i=2 

= f(t -s-r) 

In total, this defines f(t) as a simple recursive definition: 

i 

0 : fort<0 
f(t) = 

f(t - 8) + f(t - 8 - ri 
: forO<t<s+r 
: fortzs+r 

(2) 
The result is a generalized Fibonacci sequence, similar to 
the definition in [l]. The classical and simplest Fibonacci 
sequence is defined as f(t) = f (t - 1) + f (t - 2) and is used 
to predict population growth. 
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Figure 4: Execution results for different ratios of s and r 

3.2 A few Examples 4 Fibo-trees 

The original Fibonacci sequence of f(t) = f(t - 1) + f(t - 2) 
requires s = 1 and r = 1. Then, the sequence of numbers 
is 1, 1,2,3,5,8,13,21,. . It is unlikely that a computing 
system offers both a send and receive latency in the order 
of a microsecond. On the other hand, choosing a time unit 
of s, all computing systems with 5 z 1 approximate the 
sequence of numbers presented above. However, for reasons 
of clarity, the following examples always are normalized to 
s = 1. 

The basic idea of a binomial tree is to double the number 
of notified processes in each communication step. With s = 
1, the goal is defined as f(t + s) = 2 1; f(t). To solve this, 
it is required that T is zero (r = 0) and leads to f(t) = 
f(t - 1) + f(t - 1) with the solution f(t) = 2t. Note, that the 
speed of message distribution in a binomial multicast trees 
is simply defined by a single generalized Fibonacci sequence. 

The previous section introduced generalized Fibonacci se- 
quences describing the speed of message distribution in a 
multicast tree. Section 4.1 presents a construction scheme 
for a multicast tree, namely the Fibo-tree, which allows to 
execute a multicast communication at the speed described 
by the generalized Fibonacci sequences for the given com- 
munication latencies. Section 4.2 presents an outline of a 
proof of the optimal performance results achieved by Fibo- 
trees. Finally, section 4.3 presents an algorithm that uses 
generalized Fibonacci sequences to construct a Fibo-tree. 

4.1 Construction Scheme of Fibo-trees 

However, it is rather impossible to develop a message- 
passing environment that exploits zero execution time to de- 
liver and to schedule a message to the receiving process. The 
choice of a binomial tree as the communication structure in 
a multicast communication therefore cannot effect optimal 
execution results. Nevertheless, as shown in section 2.2.2, 
the binomial tree can produce execution results superior to 
the results of a binary tree. Moreover, when all leaf processes 
can start the computation simultaneously, the binomial tree 
structure provides optimal support for many-to-one commu- 
nications (e.g. in the reduction phase of a barrier synchro- 
nization). 

A Fibo-tree F(t) for values of t < 0 is empty, for t 2 0 it 
consists of a root node with successors F(t - s - r), F(t - 
2s - T), _. The correspondence to the recursive definition 
scheme of f(t) = l+f(t-s-r)+f(t-2s-r)+. is obvious. 
Figure 5 illustrates the recursive construction scheme for the 
Fibo-tree F(5) for s = 1 and r = 1. 

The final pair of values (s = 1, T = 3) approximate 
the latencies of the execution platform used for the perfor- 
mance measurements in section 5. This leads to the defini- 
tion f(t) = f(t - 1) + f(t - 4) and produces a sequence with 
the numbers l,l, 1, 1,2,3,4,5,7,10,14,19,25,36,50,69,. . 

Figure 5: Construction Scheme of a Fibo-tree 
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4.2 The Speed of Message Distribution 

The speed of the message distribution in a Fibo-tree can 
be determined. For sake of simplicity, the greatest common 
divisor of s and r is assumed to be 1. It can be shown that 
for the only real positive solution A of the characteristic 
polynomial z’++ = zr + 1 it holds that f(t) is proportional 
to Xt or more precisely 

for a real positive value a. 
An outline of the proof comprises three parts, but is left 

out due to space limitations. First, there are no multiple 
(complex) solutions of the characteristic polynomial. There- 
fore, f(t) can be represented as a linear combination of the 
Xi with every Xi being a solution of the characteristic poly- 
nomial. Then, it remains to show that the only real positive 
solution X has the greatest absolute value and, finally, that 
the coefficient of Xt in the linear combination for f is greater 
than zero. 

Figure 6: Determination of X through an in- 
tersection of x3 and x2 + 1 

Figure 6 shows an example with values of s = 1 and 
T = 2. The intersection of the lines x3 and x2 + 1 defines the 
value of X. In this case, X is about 1.47. If the receive latency 
is a factor of two of the send latency, due to equation 3, a 
distribution of a message requires approximately log,,,,(p) 
communication steps to notify p processes. This is a signifi- 
cant deviation of an ideal multicast tree with its theoretical 
result of logs(p) time steps. 

The impact of a growing receive latency is shown in fig- 
ure 7. Again, the greatest common divisor of s and r is 
assumed to be 1. Starting with the theoretical optimum, i.e. 
no receive latency at all, the curve shows that a ratio of 
r = 3 already forces down the base of the logarithm func- 
t”on to less than 1.4. At a ratio of 8, the base is less than 1.2 
and the performance wins in comparison to a sequential im- 
plementation will only be possible in large scale computing 
systems, i.e. for high numbers of p. 

In comparison, the authors of the postal model [l] give 
exponential lower and upper bounds to characterize the 
speed of message distribution. While their upper bound is 
approximately the square of the lower bound, we are able to 
give the exact base of the exponential function approximat- 
ing the speed of growth. In the case of the original Fibonacci 
sequence, their bounds are: 

1.31607t 5 f(t) 5 1.73205’ 

compared to the exact value of X = 1.61803. 

Figure 7: Base to the logarithm in the cost 
function for various r and s = 1 

4.3 The Algorithm 

The implementation of a Fibo-tree is straightforward (Fig- 
ure 8). This section presents an almost complete implemen- 
tation. The algorithm is implemented in the programming 
language C and creates a Fibo-tree for the arguments s, T 
and p, describing the send latency, receive latency and the 
number of processes respectively. Function f ibo is equipped 
with two additional arguments pool and id. The former is an 
array of references to the processes which have to be sorted 
into the Fibo-tree, while the latter is a logical identification 
number of the running process. 

01: void fibo (int s. int r. int P. PWJCS wolC1, ID id) ( 
02: 
03: 
04: 
OS: 
06: 
07: 
08: 
09: 
10: 
11: 
12: 
13: 
14: 
1.5: 
16: 
17: 
la: 
19: 
20: 
21: 
22: 
23: 
24: 
26: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
36: 

int i, j, k.. steps, rim, mdr; - 
int pop[lO241; int children[l024]; 
/* initialization l / 

for (i = 0; i < r+s; i++) popCi1 = 1; 
for (i - a+r; i < 1024; i+*) t 
poplil = popti-81 + popci-a-r]; 
if (popci] > 102401024) break; 

1 
for (stepa = 0; popCSt*pSl < p; steps*+); 
=*I = pop[at.pal - p; 

i+ computation ./ 
i = 0; 
vhile (1) t 
k - stepm - (i+l)+a - r; 
if (k < 0) break; 
if (k > 0) mx = popckl - pop[k-11; elm mx = 1; 
if (ram c- mad i 
chil&*n[il = popCk1 - r.m; r.n - 0; 

) el** i 
childrenCi3 = popD1 - max; r.. -= .u; 

) 
i++; 

1 

j-o; - 
while (i-- > 0) ( 
poolCj].vho = id; 
mu = chil&.nCil - 1; 
if (mu > 0) i 
fibo (a. r. mu+l, tpoolCj*ll, poolCjl.id); 
j += 11x; 

1 
j*+; 

) 
36: ) 

Figure 8: Creating a Fibo-tree for given a, r and p 

In figure 8, lines 2-3 declare a couple of variables. Array 
pop is used to compute the population growth of a Fibo-tree 
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Figure 9: Fibo-tree for 8 = 1, r = 3, p = 64 

for given values of s and T. The second array children is 
necessary to determine the sizes of the subtrees which the 
process executing function f ibo will refer to. The computa- 
tion of the population growth is implemented in lines 5-9. A 
termination check in line 8 prevents an overflow condition. 
Variable steps (line 10) determines the number of commu- 
nication steps which a distribution phase needs to notify p 
processes. In most cases, the value of p will not match any 
of the values in array pop. Therefore, variable rem is initial- 
ized with the difference between the element being higher or 
equal to p and p itself. 

The computation phase in lines 13-24 determines the val- 
ues for the array children. An entry of children defines the 
size, i.e. the number of processes, of all the subtrees which 
are notified by this process. In this calculation, it must be 
considered that the number of processes in the subtrees must 
be reduced by rem processes. The strategy of removal is to 
remove only those processes that would receive the noti- 
fication in the last communication step. In comparison to 
the removal of one or several subtrees, this maximizes the 
number of processes which are notified early in the distribu- 
tion phase. This offers the opportunity to compensate some 
deviations that might occur in the execution times of the 
communications and, thus, makes the execution results of 
t,he Fibo-tree more stable. 

In line 17, the number of processes in a subtree which 
are going to be activated in the final communication step 
is computed. If there are processes to remove, this number 
is subtracted from the maximum size of that subtree. Fi- 
nally, the array children is used to create references to the 
subtrees. The element who in the array pool indicate the re- 
sponsibility of notification, i.e. the process identification of 
the process that sends the message. Therefore, the process 
assigns its identification into the element for that subtree 
(line 28). If that subtree holds references to other processes, 
a recursive call to function f ibo is performed. 

Figure 9 shows the Fibo-tree which is constructed for 
the arguments s = 1, r = 3 and p = 64. In the circles, the 
number denotes the communication step in which a process 
receives a copy of the message. The final process is activated 
in step 15, whereas a complete g-level binary tree requires 
(2 * 1 + 3) * (logz((2 - 1) * 127 + 1) - 1) = 25 steps. For 
64 processes, a binomial tree implements the distribution in 
(1 + 3) * logz(64) = 24 steps and a complete 2-level eight-ary 
tree requires (8 * 1 + 3) * (log,( (8 - 1) + 73 + 1) - 1) = 22 
communication steps. 

5 Runtime Measurements 

The execution platform used for validation is the commu- 
nication support system VOTE [5]. VOTE is part of the 
PEACE operating system family (171 and runs on the paral- 
lel distributed memory system MANNA [4] which is based 
on hierarchies of crossbar communication networks. The 
VOTE system implements the idea of a coexistence of com- 
munication paradigms, i.e. VOTE provides runtime support 
for both message-passing and shared-memory communica- 
tion A global address space is provided by means of a virtual 
shared memory (VSM). Communication is possible via calls 
to message-passing functions or, alternatively, performed au- 
tomatically through the on-demand data movement of mem- 
ory pages to processes that request data causing a memory 
access fault 

Program execution on top of VOTE is not limited to a 
SPMD (single program/multiple data) programming style, 
but most shared-memory based parallel applications run in 
that mode and coordinate the execution of parallel loops 
through the use of a barrier synchronization. 

600 _ 

.50 - 

Figure 10: Distribution latency of different Fibo-trees in a 
s = 1,r = 3 system 

To support parallel program execution with the less pos- 
sible communication and synchronization overheao, VOTE 
uses a Fib&tree to implement the distribution phase of a 
barrier synchronization. Figure 10 show the distribution la- 
tency of a barrier synchronization for various pairs of s and 
r values on the MANNA parallel computing system. 
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The dotted line presents the runtime of a centralized ap- 
proach where the barrier server distributes the messages to 
all processes. The time until the first process receives a no- 
tification is about 115ps, whereas the second process is a~- 
tivated after 142~s. With these two equations s + r = 115 
and 2s + T = 142 follows that s = 27 and r = 88. 

Reasonably, these two numbers are represented by s = 1 
and r = 3. The graph for these values show the best perfor- 
mance results, although, at least for the small scale parallel 
machine available for testing, the graph for s = l,r = 1 
approximates the optimal results reasonably. In contrast, a 
binomial tree (s = 1, r = 0) produces runtime results which 
are far from optimal. For process numbers less than ten, the 
sequential approach outperforms the binomial tree. For 19 
processes, the time to receive notifications was measured to 
be 569 ps in a sequential implementation and 451 /JS in a bi- 
nomial tree. The runtime could be dropped to 318 ,us using 
a Fibo-tree with parameters s = 1 and T = 3. 

6 Conclusion 

This article presented a new multicast tree (named Fibo- 
tree) for a one-to-many communication based on a multi- 
cast tree. The Fibo-tree provides optimal performance re- 
sults if the underlying communication network supports uni- 
form communication latencies. The strength of the model is 
the distinction of both a send and a receive latency. This is 
in contrast to other approaches which are based on the no- 
tion of a communication latency only, and, thus ignore the 
specific latencies at the sending and the receiving sites. 

It was demonstrated that the distribution latency of a 
barrier is significantly improved when the multicast tree con- 
siders both a send and receive latency. An algorithm was pre- 
sented which implements the mathematical mode1 of Fibo- 
trees. Moreover, the example is parameterizable and allows a 
customization to any execution platform simply through the 
specification of the communication setup time (s latency) 
and the further costs of receiving a tied sized and small 
message (T latency). 

In the experimental part, the significance of Fibo-trees 
was shown through runtime measurements of the distribu- 
tion latency of a barrier synchronization. Compared to a cen- 
tralized approach applied to a parallel application of 19 pro- 
cesses, the performance improvement was about 44.1%. In 
case of a binomial multicast tree, the performance improve- 
ment still was about 29.5 %. That is, the binomial multicast 
tree, in theory implementing the maximal speed of message 
distribution (i.e. doubling the number of processes holding a 
copy of the message in each communication step), will never 
perform optimal in the presence of a system with non-zero 
receive latency. 

These results were obtained by (1) determining the send 
and receive latencies of the target system (i.e. the hardware 
and software communication overheads) and (2) construct- 
ing an optimal multicast tree for this particular target sys- 
tem using the Fibo-tree algorithm provided with the latency 
parameters as input. In the near future, the model of Fibo- 
trees will be extended to cover additional aspects of com- 
munication. At first, the model will support hierarchies of 
communication networks with different send and receive la- 
tencies. Moreover, the impact of contentions on the commu- 
nication network will be addressed, thus covering a broader 
range of communication networks. In total, this will make 
the optimal performance results of Fib+trees applicable to 
most state-of-the-art computing systems. 
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