
On the Coexistence of Shared-Memory andMessage-Passing in the Programming of ParallelApplicationsJ. Cordsen1 and W. Schr�oder-Preikschat21 GMD FIRST, Rudower Chaussee 5, D-12489 Berlin, Germany2 University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam, GermanyAbstract. Interoperability in non-sequential applications requires com-munication to exchange information using either the shared-memory ormessage-passing paradigm. In the past, the communication paradigm inuse was determined through the architecture of the underlying comput-ing platform. Shared-memory computing systems were programmed touse shared-memory communication, whereas distributed-memory archi-tectures were running applications communicating via message-passing.Current trends in the architecture of parallel machines are based onshared-memory and distributed-memory. For scalable parallel applica-tions, in order to maintain transparency and e�ciency, both communi-cation paradigms have to coexist. Users should not be obliged to knowwhen to use which of the two paradigms. On the other hand, the usershould be able to exploit either of the paradigms directly in order toachieve the best possible solution.The paper presents the VOTE communication support system. VOTEprovides coexistent implementations of shared-memory and message-passing communication. Applications can change the communicationparadigm dynamically at runtime, thus are able to employ the under-lying computing system in the most convenient and application-orientedway. The presented case study and detailed performance analysis un-derpins the applicability of the VOTE concepts for high-performanceparallel computing.1 IntroductionFuture parallel machines will exhibit a hybrid architecture, based on shared-memory and distributed-memory. This line is already followed with all state-of-the-art special purpose parallel computers. Similar holds for parallel machinesbased on workstation clusters: actual high-performance workstations are shared-memory multiprocessor systems.Beside the di�culty developing scalable and e�cient parallel programs atall, the problem of an application programmer is exploiting the various com-puter architectures in the most e�cient way. Due to false sharing, relying onthe shared-memory paradigm, as introduced by a virtual shared-memory (VSM)system, results in a decrease of end user performance while running in a dis-tributed environment. Vice versa, relying on a distributed-memory paradigm,



i.e. message-passing, results in a decrease of end user performance while runningin a shared-memory environment. Thus, in the attempt of developing scalableand portable parallel application software, programmers are concerned with atradeo�.The purpose of the VOTE system is to support application programmersconfronted with the tradeo� between shared-memory and message-passing com-munication [4]. Shared-memory communication is physically limited to operatelocally only. Therefore, to implement a global shared-memory communication fa-cility, VOTE supports a highly e�cient core system. The core system implementsa global address space by means of VSM. At default, a multiple reader/singlewriter invalidation-based sequential consistency maintenance is provided. A ex-ible set of functions is available allowing many powerful optimizations to pro-grams running under control of sequential consistency [11]. As a step beyond,VOTE supports message-passing communication (MPI standard [7]) through afunctional enrichment of its VSM system. Thus, VOTE provides to the applica-tion programmer architectural transparency by means of sequential consistencyand a message-passing communication system.The rest of this paper is organized as follows. Section 2 deals with the prin-ciple problem of supporting both communication paradigms. Afterwards, Sec-tion 3 covers an application case study by demonstrating the implementation ofsuccessive overrelaxation dynamically changing between the two communicationparadigms. Section 4 discusses the achieved runtime results. Related works arepresented in Section 5, and Section 6 concludes the paper.2 Communication ParadigmsTodays trend in the design of scalable high-performance computing systems isbased on a cooperation between software and hardware to support both ane�cient shared-memory and message-passing abstraction [10]. The main problemof this cooperation is due to the incompatibility of the two views of consistencysemantics as given by the two communication paradigms.Message-passing is an explicit communication style, lacking any measuresof (implicit) consistency maintenance. Global e�ects, in the sense of makingchanges to some logically shared but physically distributed state, are achievedonly when the respective (parallel) application program explicitly calls commu-nication functions. In contrast, changing portions of the logically shared butphysically local state works implicit by simply reading/writing the memory cells(i.e. program variables).The shared-memory communication paradigm is a single reader/single writer(SRSW) scheme, occasionally extended by cache-based shared-memory machinesto a multiple reader/single writer scheme. Every modifying memory access worksimplicit. However, since for performance reasons data replication usually takesplace, this paradigm requires either invalidating or updating the data copies heldin the caches or the memories. These measures of consistency maintenance im-plicity inuence the operation of all processes and generally impact the runtime



behavior of a shared-memory parallel program.A paradigm shift from shared-memory to message-passing communication isalmost straightforward. It makes public (i.e. global) shared data private (i.e. lo-cal) and, thus, non-shared. The process shifting to the message-passing paradigmwill be deleted from the directory information maintained by the VSM sys-tem to keep track of potential data copy holders. Due to the paradigm shift,programming complexity increases signi�cantly. Running under control of theshared-memory paradigm, consistency was ensured by the VSM system. In themessage-passing case, the programmer becomes responsible maintaining a glob-ally consistent view of the common data sets.A paradigm shift from message-passing to shared-memory is not thatstraightforward. The main problem is the uni�cation of the local data copiesinto a single data image. In other words, private data copies are made public orinvalidated and the directory information is updated. In most cases, this taskcannot be performed automatically because of the lack of information about theorder of modi�cations done by the individual processes. In the current imple-mentation of VOTE, it is therefore up to the application program to announcethe locality of consistent data.3 Case Study { Successive OverrelaxationThis section presents two implementations of a successive overrelaxation algo-rithm based on the red&black technique [1]. This kind of application is a typicalrepresentative for parallel numerical algorithms operating on dense data struc-tures. The amount of data being shared is little and increases only with the num-ber of computing nodes. Data sharing is performed only by a pair of processes,that is each process communicates with two other processes, the predecessorand successor. Merely the �rst and last process communicate only with a singleprocess.The following subsections present two implementations of a SPMD-based(single program/multiple data) successive overrelaxation program. The �rst codecommunicates via shared-memory and uses a global barrier synchronization. Thesecond code takes full advantage of the communication support system VOTE,that is it changes the communication paradigm from shared-memory to message-passing and vice versa.3.1 Shared-Memory CommunicationThe code example in Fig. 1 uses shared-memory communication and is a verycompact implementation of a successive overrelaxation. The red&black tech-nique is used to avoid overwriting the old value of a matrix element before it isused for the computation of the new values of the respective neighbor. Therefore,computation is done only on every other row per iteration (line 8+16). Thisapproach requires two instead of one global barrier synchronization (lines 12



01: void sor (float r[M][N], float b[M][N], int f, int t) {02: int i, j, k;03:04: while (!converged (r,b,f,t)) {05: for (j = f; j <= t; j++) {06: for (k = 0; k < N-1; k++)07: b[j][k] = (r[j-1][k]+r[j+1][k]+r[j][k]+r[j][k+1])*.25;08: if ((j += 1) > t) break;09: for (k = 1; k < N; k++)10: b[j][k] = (r[j-1][k]+r[j+1][k]+r[j][k-1]+r[j][k])*.25;11: }12: vote_barrier();13: for (j = f; j <= t; j++) {14: for (k = 1; k < N; k++)15: r[j][k] = (b[j-1][k]+b[j+1][k]+b[j][k-1]+b[j][k])*.25;16: if ((j += 1) > t) break;17: for (k = 0; k < N-1; k++)18: r[j][k] = (b[j-1][k]+b[j+1][k]+b[j][k]+b[j][k+1])*.25;19: }20: vote_barrier();21: }22: } Fig. 1. Shared-memory versionand 20). The algorithm continues executing the outer loop (line 4{21) until thecheck of convergence evaluates to true (line 4).Variables f and t (line 1) implement a block distribution of matrix r and b.These variables are calculated on a per-process basis and are a function of thesize of a matrix, the total number of processes and the logical identi�cation of aprocess. The computation steps in lines 5{11 and lines 13{19 produce data usedas input for the processes with adjacent values of the variables f and t. Whenthe barrier synchronization falls, that data is consumed by the communicationpartner.3.2 Message-Passing CommunicationThe second implementation in Fig. 2 comprises three parts. The �rst part(lines 4{10) implements a switch from shared-memory to message-passing com-munication. This requires a barrier synchronization making sure that all pro-cesses are ready for leaving consistency maintenance of VOTE. Line 5{7 computethe working set of a process using the logical identi�cation (MPI Comm rank())and the total number of computing processes (MPI Comm size()). Callingvote access() is to ensure that the processes get access to memory regionswith read/write permission. Note that overlapping memory regions are dupli-cated into di�erent address spaces, with each of the duplicated regions beinggiven a read/write permission. As a side e�ect, VOTE becomes unable to guar-antee VSM consistency maintenance. Finally, a barrier synchronization guaran-tees that all processes will have received private copies of the former VSM databefore the computation (i.e. second) phase is entered.The second phase is a computation loop performing according to the suc-cessive overrelaxation scheme (lines 11{34). Computation is identical to theshared-memory version, excepted the global barrier synchronizations are re-placed by sequences of MPI calls for communication. In particular, MPI Isend()



01: void sor (float r[M][N], float b[M][N], int f, int t) {02: int i, j, k, Id, Procs; MPI_Request r; MPI_Status s;03:04: vote_barrier ();05: MPI_Comm_Rank (MPI_COMM_WORLD, &Id); MPI_Comm_Size (MPI_COMM_WORLD, &Procs);06: if (Id == 1) i = f; else i = f-1;07: if (Id == Procs) j = t; else j = t+1;08: vote_access (&b[i][0], &b[j][N], ReadWrite);09: vote_access (&r[i][0], &r[j][N], ReadWrite);10: vote_barrier ();11: while (!converged (r,b,f,t)) {12: for (j = f; j <= t; j++) {13: for (k = 0; k < N-1; k++)14: b[j][k] = (r[j-1][k]+r[j+1][k]+r[j][k]+r[j][k+1])*.25;15: if ((j += 1) > t) break;16: for (k = 1; k < N; k++)17: b[j][k] = (r[j-1][k]+r[j+1][k]+r[j][k-1]+r[j][k])*.25;18: }19: if (Id > 1) MPI_Isend (&b[f][0],N,MPI_FLOAT,Id+1,Id,MPI_COMM_WORLD,&r);20: if (Id < Procs) MPI_Recv (&b[t+1][0],N,MPI_FLOAT,Id+1,Id+1,MPI_COMM_WORLD,&s);21: if (Id < Procs) MPI_Isend (&b[t][0],N,MPI_FLOAT,Id-1,Id,MPI_COMM_WORLD,&r);22: if (Id > 1) MPI_Recv (&b[f-1][0],N,MPI_FLOAT,Id-1,Id-1,MPI_COMM_WORLD,&s);23: for (j = f; j <= t; j++) {24: for (k = 1; k < N; k++)25: r[j][k] = (b[j-1][k]+b[j+1][k]+b[j][k-1]+b[j][k])*.25;26: if ((j += 1) > t) break;27: for (k = 0; k < N-1; k++)28: r[j][k] = (b[j-1][k]+b[j+1][k]+b[j][k]+b[j][k+1])*.25;29: }30: if (Id > 1) MPI_Isend (&r[f][0],N,MPI_FLOAT,Id+1,Id,MPI_COMM_WORLD,&r);31: if (Id < Procs) MPI_Recv (&r[t+1][0],N,MPI_FLOAT,Id-1,Id-1,MPI_COMM_WORLD,&s);32: if (Id < Procs) MPI_Isend (&r[t][0],N,MPI_FLOAT,Id-1,Id,MPI_COMM_WORLD,&r);33: if (Id > 1) MPI_Recv (&r[f-1][0],N,MPI_FLOAT,Id+1,Id+1,MPI_COMM_WORLD,&s);34: }35: if (Id > 1) vote_inform (&b[f-1][0], &b[f-1][N], NoAccess);36: if (Id > 1) vote_inform (&r[f-1][0], &r[f-1][N], NoAccess);37: if (Id < Procs) vote_inform (&b[t+1][0], &b[t+1][N], NoAccess);38: if (Id < Procs) vote_inform (&r[t+1][0], &r[t+1][N], NoAccess);39: vote_barrier ();40: } Fig. 2. Message-passing version including switchesand MPI Recv() are used to exchange the relevant data between the commu-nicating processes. Sending of data using MPI Isend() is non-blocking, whileMPI Recv blocks the caller until the data has been received. This procedure,the pair of a non-blocking send and blocking receive, guarantees synchroniza-tion proper for ensuring a pairwise ordering of memory operations of the pro-cesses producing and consuming the same data regions. Because, compared tothe shared-memory solution, explicit global (barrier) synchronization is no longerrequired, the message-passing solution shows up with increased concurrency.The �nal phase switches back to sequential consistency maintenance providedby the VSM system. The block distribution of the shared data is re-established.This is done by removing the overlapping memory regions (line 35{39). Thesecalls instruct VOTE to update its directory information, establishing a consis-tent mapping of the ownerships of memory regions. Since shared-memory pro-cessing is allowed to start only when the directory information has been updatedentirely, global synchronization becomes necessary. Therefore, the �nal barriersynchronization is placed in line 39.



4 Performance ResultsThe discussion of the results obtained is somewhat di�cult, since the perfor-mance of the program based on the shared-memory communication of VOTEcould not be compared directly with the results of other VSM systems. Only veryfew VSM systems are available and their performance results are not competitiveto VOTE, because they all run on top of fairly heavyweight microkernel-basedoperating systems. In contrast, VOTE is implemented as part of the parallelPeace operating system family [14] and runs on the parallel MANNA comput-ing system [2].System Platform CPU Network Time (ms)Mether SunOS4.0 25 MHz MC68020 1.2 MB/s 70-100Munin V 25 MHz MC68020 1.2 MB/s 13-31Myoan OSF/1 50 MHz i860XP 200 MB/s 4.068VOTE Peace 50 MHz i860XP 47.68 MB/s 0.667Table 1. Comparison of access fault handling timesTable 1 summarizes the performance of handling a read access fault in vari-ous systems. Mether and Munin run on rather old hardware but a comparisonof Myoan [3] and VOTE is fair because of the same type of CPU used in bothsystems. Myoan runs on the Intel Paragon machine with a network throughputwhich is more than four times better than the throughput of the Manna com-munication network. Yet the performance of VOTE is more than six times betterthan handling a read access fault in Myoan, although communication and datatransfer are responsible for about 80% of the total costs.In the following, VOTE is compared with the performance of typical message-passing systems that run on the MANNA computing system. The overheads be-ing present in the successive overrelaxation algorithm are presented. Afterwards,the results achieved with VOTE are compared to both a synchronous and anasynchronous implementation on top of the Parix message-passing system.4.1 VOTE, PVM and MPIOn the MANNA computing system, the quality in performance of the PVM andMPI programming systems di�er quite a lot. The PVM system [13] is designedand implemented explicitly to run on top of the Peace operating system. Incontrast, the MPI package is a port of the abstract device implementation ofMPI [6]. This package was easily ported, but it shows up with pure runtimeresults.Fig. 3 shows the communication overheads when the successive overrelax-ation runs one hundred cycles of the outer loop. The overheads are due to the



200

300

400

500

600

700

800

2 4 6 8 10 12 14 16

M
i
l
l
i
s
e
c
o
n
d
s

Processes

MPI
PVM

VOTE

Fig. 3. Overheads in VOTE, PVM and MPInecessary communication with all three systems using an asynchronous functionto send data and a blocking function to receive data. Each loop iteration requiresto both send and receive data four times. Only the two processes with the lowestand highest logical identi�cation do half the communication.At a �rst glance, it gets clear that the performance achieved through MPI isout of discussion 3. The curves of PVM and VOTE have the same shape, withVOTE performing about one hundred milliseconds better (about 25 % percentless overhead). The explanation is quite simple. VOTE avoids the creation ofcopies of the data being transferred to a remote process.Avoiding data copying becomes possible because VOTE controls both themessage-passing functions and the management of memory resources.When dataarrives, the status of the addressed process is checked. If the process is readyto receive, data is written directly into the provided address space. Otherwise,a copy is made and the data is intermediately bu�ered. In contrast, the PVMsystem always copies the data on both the sending and receiving site.4.2 VOTE vs. ParixA comparison with a PowerXplorer running the Parix operating system [12] hasbeen chosen because Parix is a communication and thread library like Peace.This avoids comparing apples with oranges in the case of a heavyweight micro-kernel approach on one hand and a high-speed and lightweight runtime executiveon the other hand.The computing systems that were used to run VOTE and Parix have di�er-ent hardware and, thus, di�erent performance capabilities. VOTE runs on the3 Mainly, this is because the transmission of data always involves two communicationsacross the network. In a �rst message, a header is send. The second message transfersthe data.



0

20

40

60

80

100

120

2 4 6 8 10 12 14 16

S
e
c
o
n
d
s

Number of processes

Vote, shared-memory communication
Vote, nessage-passing communication

Parix, synchronous communication
Parix, asynchronous communication

Fig. 4. Comparison of VOTE and Parix resultsi860XP-based parallel MANNA machine and Parix uses the PowerXplorer basedon a PowerPC-601. The performance capabilities of the computing systems showsome signi�cant di�erences. In the context of Parix, end-to-end communicationbetween partners will be at a much smaller rate than in the VOTE environment.On the other hand, computation is faster compared to the results achievable ontop of VOTE. Having both a faster processor 4 and a slower communication net-work 5 results in bad speedup results. Therefore, Fig. 4 shows runtime resultsand not speedup result.Fig. 4 presents four curves, which may be grouped into two pairs. The �rstpair is the curve of a sequential consistent execution on top of VOTE and theruntime of the Parix implementation using a synchronous implementation of thesend function. Observing the course of these two curves, the lack of scalabilityis already visible for very small numbers of processes. The second pair is giventhrough the implementations that use asynchronous send functions. These curvesshow up with a better scalability and promise further runtime improvements forhigher number of computing processes.5 Related WorkIn the sector of hardware supported distributed shared-memory (DSM) systems,Alewife [9] and Flash [10] multiprocessors are designed to support in hardwareboth a shared-address space and a general message-passing interface. The twocommunication paradigms are implemented through a controller using the same4 Computation with a PowerPC-601 is nearly twice as fast as with a i860XP processor.This is due to a higher clock speed and a better compiler.5 Communication with a message size of 4 KB data is about 1 ms on top of VOTEand 2.5 ms on top of Parix.



FIFO pipelines to pass messages as well as memory operations. This imple-ments a global ordering of events and guarantees the same memory consistencysemantic for both communication paradigms. The communication interface ofAlewife provides sequential consistency, and that of Flash provides release con-sistency [5].The CarlOS system [8] implements in software a message-driven release con-sistent global address space. As in Alewife and Flash, the two communicationparadigms are operated through a single integrated solution. Like Flash, CarlOSimplements the release consistency model. Therefore, the user interface requiresthat shared-memory accesses as well as calls to message-passing functions are at-tributed with the information about the type and scope of consistency required.VOTE takes a di�erent approach. Coexistence of communication paradigmsmeans not to integrate both approaches into a single one. Rather, VOTE sup-ports interfaces to the two approaches and allow to use whichever is likelyto be most e�cient for the communication in question. However, the point isthat VOTE provides independent implementations of the two communicationparadigms and, thus, is able to support their natural operation models withvarying memory consistency models.6 ConclusionThe future parallel computer architecture interconnects shared-memory multi-processor systems on a networking (i.e. message-passing) basis. This architecturecalls for two programming paradigms: shared-memory and message-passing. Forscalable parallel applications, in order to maintain transparency and e�ciency,both paradigms have to coexist. Users should not be obliged to know when touse which of the two paradigms. On the other hand, the user should not beprevented from exploiting either of the paradigms directly in order to achievethe best possible solution to his problems.The VOTE system allows employment of both a shared and distributed mem-ory environment in a convenient way. VOTE o�ers a sequential consistent VSMsystem with a highly e�cient access fault handling scheme. A set of additionalperformance enhancement techniques implements many powerful optimizationsto parallel applications being based on a sequential consistent shared-memorycommunication. Beside of the global address space and its (implicit) consistencymaintenance scheme, message-passing communication functions are supported aswell. A programmer is able to choose the communication paradigm best suitedto match the speci�c application demands and to use the underlying computingsystem in the most convenient way.The performance numbers presented in this paper prove a high quality stan-dard of both the shared-memory and message-passing communication perfor-mance of VOTE. VSM systems running on comparable hardware platforms areclearly outperformed (by a factor of six) and the e�ciency of message-passingpackages running on the same platform run at least 25% slower. These resultsindicate that the VOTE symbiosis of a transparent and e�cient communication



support system is a viable way to meet the programming challenges of the hy-brid memory architecture of future parallel hardware platforms, i.e., networksof shared-memory multiprocessor systems.References1. L.M. Adams, H.F. Jordan, \Is SOR Color Blind?" In SIAM Sci. Stat. Computation,Vol. 7, No. 2, pp. 490{506, 1986.2. U. Br�uning, W.K. Giloi, W. Schr�oder-Preikschat, \Latency Hiding in MessagePassing Architectures", In Proceedings of the International Parallel ProcessingSymposium, IPPS-8, pp. 704{709, Cancun, Mexico, Apr., 1994.3. G. Cabillic, T. Priol, I. Puaut, \Myoan: An Implementation of the Koan SharedVirtual Memory on the Intel Paragon", Technical Report, 812, Irisa, Rennes,France, Apr., 1994.4. J. Cordsen (ed.), \The SODA Project", Studien der GMD, Nr. 301, ISBN 3-88457-301-2, October, 1996.5. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennessy,\Memory Consistency and Event Ordering in Scalable Shared-Memory Multipro-cessors", In Proceedings of the 17th International Symposium on Computer Archi-tecture, pp. 15{26, 28{31th May, 1990.6. W. Gropp, E. Lusk, \An Abstract Device De�nition to Support the Implementa-tion of a High{Level Point{to{Point Message{Passing Interface", Technical ReportMCS-P342-1193, Argonne National Laboratory, Argonne, IL 60439, 1993.7. W. Gropp, E. Lusk, A. Skjellum, \UsingMpi: Portable Parallel Programming withthe Message{Passing Interface", MIT Press, ISBN 0-262-57104-8, Oct., 1994.8. P.T. Koch, R.J. Fowler, E. Jul, \Message-Driven Relaxed Consistency in a SoftwareDistributed Shared Memory", In Proceedings of the First USENIX Symposium onOperating Systems Designs and Implementation, pp. 75{85, Nov., 1994.9. D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, B.-H. Lim, \IntegratingMessage-Passing and Shared-Memory: Early Experience", In Proceedings of the4th Symposium on Principles and Practice of Parallel Programming, pp. 54{63,May, 1993.10. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J.Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, J. Hen-nessy, \The Stanford FLASH Multiprocessor", In Proceedings of the 21st AnnualInternational Symposium on Computer Architecture, pp. 302{313, Apr., 1994.11. L. Lamport, \How to make a Multiprocessor Computer that Correctly ExecutesMultiprocessor Programs", In IEEE Transactions on Computers, Vol. C-28, No. 9,pp. 241{248, Sep., 1979.12. Parsytec, \Parix Programmer's Manual", Parsytec Computer GmbH, Aachen, Ger-many, 1991.13. A. Geist, A. Beguelin, J.J. Dongorra, W. Jiang, R. Manchek, V.S. Sunderam, \Pvm3 User's Guide and Reference Manual", Technical Report Ornl/Tm{12187, OakRidge National Laboratory, Oak Ridge, USA, May, 1993.14. W. Schr�oder-Preikschat, \The Logical Design of Parallel Operating Systems",Prentice-Hall, ISBN 0-13-183369-3.This article was processed using the LATEX macro package with LLNCS style


