MANNA: Prototype of a Distributed Memory Architecture

With Maximized Sustained Performance

by

W.K. Giloi*, U. Bruening**, W. Schroeder-Preikschat##*

* GMD Research Institute for Computer Architecture and Software Technology
Rudower Chaussee 5, 12489 Berlin, Germany, e-mail: giloi(a)first.gmd.de

** University of Kiel, Germany **#% University of Potsdam, Germany

e-mail: ulrich@first.gmd.de e-mail: wosch@first.gmd.de

Abstract

The sustained performance of superscalar microprocessors amounts to only a fraction of their peak performance
rating. In parallel computers realized with them the discrepancy between the measurable performance and the
theoretical peak performance is even more dramatic. Reaching a satisfactory sustained performance for the single
processor is primarily a compiler problem. The sustained performance of message-passing machines depends
also on other components of the architecture such as the interconnect and the operating system. It is shown in
the paper how through a combination of innovative architectural solutions the sustained performance of a
distributed memory parallel computer is maximized. The key to effective latency hiding through overlapping
communication and computation is the operating system architecture. It is shown that the programmability of
such architectures can be enhanced by providing the programmer with parallelizing compilers and/or a global
address space provided by a virtual shared memory mechanism. Prototypes of a parallel computer in which all
these measures have be incorporated were built and are used in practice; benchmark performance figures are
reported in the paper.

The MANNA development began in 1990. At that
time, the Intel i860—the first superscalar processor—
had just been introduced into the marketplace. Because
of its power the i860 was predestined for its use as

The standard architecture of parallel computers is node processor of parallel supercomputers. Novel
the distributed memory, message-passing machine features were
realized with stock processors. Although a custom- °
designed node hardware might allow for a more
unconventional node architecture, it will hardly lead
to a competitive product. The reason is that the cost
of design and continuing upgrading of a complex
superscalar processor of the highest performance are
so exorbitant that they cannot be amortized only by

1. RATIONALE FOR MANNA

1.1 Use of Stock Processors

an envisioned peak performance of 50 MIPS and
50 MFLOPS d.p., respectively, for the 50 MHz
version;

e fast, on-chip snooping logic for the data cache;
* pipelined memory access in burst mode.

Consequently, the MANNA design was based on

their use in parallel computers. Rather, processor
lines such as the Pentium and its successors or the
powerPC must reach a production volume of millions
of processors a year to be profitable, a volume that
comes only from PCs, workstations, and embedded
systems. Thus, stock processors not only are much
less expensive but offer the additional advantage of a
design that is automatically on the future upgrade
path of that device.

the i860XP. The design was begun already a year
before the first silicon became available. This was
possible because a simulation model of the processor
was purchased from Logic Modelling and integrated
into the Cadence/Verilog design environment. Based
on that model, the complete 2-processor node of
MANNA was simulated and verified during the
waiting time for the first samples.

1.2 Programming Models Supported

The natural programming paradigm for distributed
memory architectures is the message-passing model.
However, this model is perceived by most users as
difficult, since it requires an application to be
partitioned into a number of communicating parallel
processes, programming inter process communication
in the form of explicit calls of sends and receives. In
this effort the programmer must take the data
dependencies among the processes into account.
Moreover, he or she is burdened with the task of
providing a favorable initial data distribution. This all
raises demands the average user may find hard to cope
with.

In contrast, the shared-memory programming
model avoids—at least in principle—the difficulties
of the message-passing paradigm. Since data are
globally accessible, no specific data distribution is
mandated, and since communication happens through
shared variables, no message-passing constructs are
needed. However, only distributed memory architec-
tures are scalable.

One can try to obtain the best of both worlds by
realizing a global address space on a distributed
memory machine. There exist two approaches, viz.:

e the virtual shared memory (VSM) or of
e the distributed (physically) shared memory (DSM).

VSM does not raise the hardware cost; however, it
induces software overhead. In contrast, the DSM
requires in each node a sufficiently large secondary
cache and a directory to maintain cache coherence,
thereby driving up the hardware cost. Hence, in both
cases must cost-effectiveness be traded for the con-
venience of the shared memory programming model.
Therefore, we ruled out the DSM approach but decided
to rather build a pure message-passing machine with
the highest possible performance and cost-effective-
ness and find better ways of simplifying parallel
programming.

For numerical, i.e. data parallel, applications
programming of message-passing machines has been
significantly facilitated by such tools as Parmacs
[LST 92], PVM [Bea 93], or MPI [MPI 93], which
allow the user to program in a machine-independent
fashion. Moreover, for standard applications the
explicitly programming of communication is avoided
by making it a library function.

The ultimate solution to the parallel programming
problem may be the parallelizing compiler that
allows the user to formulate his applications at a high
level of abstraction, without having to be concerned
with specific parallel computing aspects such as
program decomposition, data distribution, data access
synchronization, and inter process communication and

coordination. The task of an automatically parallel-
izing compiler is significantly supported by high-
level programming models such as High Performance
Fortran [HPF 92] or the more flexible and generally
applicable PROMOTER model specifically developed
for machines like MANNA [Ga$ 93]. In cases where
the data type pointer is needed, e.g., in non-numerical
applications programmed in Al languages like Lisp,
the programmer may in addition be provided with a
global address space created through the virtual shared
memory mechanism.

1.3 Sustained vs. Peak Performance

The performance of parallel computers is usually
rated as peak performance which, in turn, is computed
as the peak performance of the node processor times
the number of nodes. For the user, peak performance
is a useless figure which not even allows for a
relative comparison between different parallel machi-
nes. This has two reasons. (i) The peak performance
rating of the makers of microprocessors is often
inflated, i.e., could not even theoretically be reached.
(i1) Even with the best compilers the benchmark
performance usually reaches only a fraction of the
peak. In the peak performance rating, different parallel
computers using the same node processor are rated the
same, yet they may differ significantly in terms of
sustained performence. The purpose of the MANNA
design was maximization of sustained performance,
by carefully analyzing the reasons for a poor
sustained-to-peak performance ratio and devising
measures for avoiding performance degradation as
much as possible.

1.4 The Week Points of Distributed
Memory Architectures

Potential drawbacks of distributed memory archi-
tectures are:
* poor utilization of the superscalar node processor
by the compiler
* communication latencies
* inadequate interconnection topologies

¢ inefficient implementation of the VSM mecha-
nism (if needed).

The utilization of the superscalar node processor
by the compiler depends on the degree of optimization
the compiler can do in order to keep the instruction
execution pipeline(s) of the processor filled with
useful operations rather than bubbles. At the present
state-of-the art, the degree of optimization still leaves
much to desire.

Communication latency usually is the largest
performance-limiting factor in message-passing
machines. The latency T| of a message transfer such
as send or receive is given by two factors,

Ty [us] = Ts [us] + L [bytes] / Rg [Mbytes/sec.]

with Tg being the message start-up time, Rg being
the transmission rate through the interconnect, and L
being the block length of the message. If message
passing is performed by the operating system kernel
(the normal case), Ty is a parameter of the operating
System.

Communication latency often is (falsely) seen
purely as a function of the interconnect transmission
rate. This is not the case if any software (e.g., the
operating system kernel) is involved in the
communication. In that case, the start-up time Tg is
typically in the range of some 10 to some 100
microseconds, and the fastest interconnect of the
world cannot solve the communication latency
problem. On the other hand, if the entire inter process
communication is handled strictly by hardware, one
can get T down to a range of some 100 nanoseconds
to some microseconds, so that the message trans-
mission time becomes the dominating factor. How-
ever, a machine without any operating system
support would be hard to program.

To minimize the communication latency, one can
take either of the following approaches (or a combin-
ation of both):

e latency minimization—making the node hardware,
the operating system, and the interconnect as fast
as possible;

* latency hiding—avoiding idle times caused by
waiting for communication.

The remainder of this paper deals with the
measures taken in MANNA to maximize the sus-
tained performance of the system by minimizing
communication latency by an appropriate operating
system (Chapters 2 and 3) and node architecture
(Chapter 4), and by devising an innovative
interconnection topology with minimal cost and
maximum performance (Chapter 5). Chapter 6 gives
performance figures. Chapter 7 discusses the mecha-
nisms for an efficient implementation of virtual
shared memory. Chapter 8 deals with programming
environments provided on MANNA, and Chapter 9
gives a brief overview about the uses of the system.

2 LATENCY MINIMIZATION IN
THE OPERATING SYSTEM

2.1 Functionality and Start-up Time

To be universally applicable and programmable, a
parallel computer must provide the appropriate operat-
ing system (OS) services. As this includes inter

process communication, the message start-up latency
depends strongly on the functionality of the OS
kernel.

The simplest case is the single-user, single-task-
Ing operation with one thread of control or several
concurrent, unscheduled threads (lightweight proces-
ses). Here the single address space mode is appro-
priate, in which the entire node software—application
as well as OS functions—runs without protection in
one address space. This simple approach of minimal
software overhead is called a dedicated machine.
Communication is usually provided not by an OS
process but by runtime library routines.

Yet there may be cases where the operating system
should provide a multi-processing environment by
adding pre-emptive scheduling and process environ-
ment separation. In a single-processor node, each
communication activity leads now to an OS kernel
trap and, consequently, an environment switch. Even
when the user needs only a dedicated machine, the
overhead for the potential multi-processing operation
must be paid. The highest overhead is encountered
when the system is designed for multi-user operation,
in which case user task isolation are added. Figure 1
shows how the set of requirements for the OS kernel
grows with increasing functionality.

single-tasking I multi-tasking
|

single thread _ | concurrency Concurrency
communication threading scheduling
kernel protection— — —— -~ — I _________
isolation
memory protection — — — — = e - =
protection
user task protection— — — — = 1 __________
security

Figure 1 Increasing functionality of kernel services

2.2 The PEACE Family of Kernels

The MANNA operating system PEACE is based
on the novel concept of the OS kernels family [Sch
91] which allows any desired OS functionality to be
provided with minimal overhead by applying the
following construction principles [Sch 94].

® The variety of kernels tuned to optimally support
specific user demands and operating modes [Sch
91] is obtained by a common communication
nucleus augmented for the specific use by minimal
function extensions as indicated in Figure 2. The
nucleus runs in supervisor mode, while all
functional extensions are lightweight processes
running in user mode.

* Since the family members typically differ only in
a few components that concern the user interface
or the run time behavior, object-orientation is the
natural approach toward implementing the kernel
family. That is, new family members are derived
from existing ones through inheritance, and type
and function polymorphism is used to tailor OS
abstractions to specific user demands.

User mode

~ Distributed -
application programs

Distributed
system

services

Supervisor mode

\\
|

Figure 2 Architecture of PEACE

2.3 Performance Figures

Table 1 lists the latency for a single
communication activity (send or receive) of a number
of commercial computers including MANNA [BGS
94]. OSF/l1 (Mach 3.0) is a UNIX look-alike.
PUMA, NX, and CMOST are typical microkernel
operating systems. "Active Messages" is an experi-
mental OS based on the active message concept [Eea
92]. Compared to the microkernel OSs and by virtue
of the family concept, PEACE is approximately a
factor of 2 faster (23 microseconds on the 50-MIPS
i860XP superscalar processor). This stems from the
fact that the overhead of any member of the PEACE
family of kernels is only what is absolutely needed
for the functionality provided, so that the user newer
pays for something (s)he doesn't need nor want.

Machine Operating System | Latency [Us]
Paragon XP/S | OSF/1 240
nCUBE/2 PUMA 110
iPSC/860 NX 100
CM-5 CMOST 65
Paragon PUMA 50
nCUBE/2 Active Messages 32
MANNA PEACE * 23

* single-processor operation

Table 1: Message-passing latency of parallel com-
puters in the dedicated machine mode

If the multiprocessing kernel of PEACE is in-
voked on MANNA, the start-up time becomes about
80 microseconds. Over one third of that time must be
attributed to the kernel trap that becomes part of each
communication.

2.3 Additional Kernel Functionality

As discussed below, there are other optional
functionalities of the MANNA architecture that
require specific OS support. Therefore, specific kernel
family members are provided for:

® AP-AP Operation :
the use of both processors in the MANNA node as
Application Processor (AP);

o AP-CP Operation :
the use of one of the node processors as dedicated
Communication Processor (CP);

o VSM Operation :

a variant of the AP-CP operation that provides a
global address space through virtual shared
memory (VSM).

3. LATENCY HIDING IN MANNA

3.1 Latency Hiding by Overlapping
Communication With Computation

The effect of communication latency can be
drastically reduced by equipping the node with a
dedicated communication processor (CP) in addition
to the application processor (AP) [GaS 89]. In this
symbiosis the task of the AP is to uninterruptedly
produce megaflops, while the CP executes the
communication tasks of the OS kernel. Both
processor work in parallel; consequently, the
communication start-up time occurs in the CP but is
hidden from the AP. The AP sees only the latency of
sending a communication request to the CP.

The concept of overlapping communication with
computation is about 15 years old. The first system
ever built with a dedicated communication processor
was UPPER [GaB 81], [Gil 84], an early distributed
memory parallel architecture completed in 1981. The
UPPER node consisted of two MC68000 processors.
One was working as the node CPU proper (AP),
while the other one took care of inter process
communication (CP). The result was disappointing:
the gain in communication speed was only marginal,
for the communication latency between AP and CP of
I...2 millisecond used up most of what we had hoped
to gain.

3.2 Efficient Latency Hiding

The prerequisite for efficient latency hiding in
message-passing machines through the use of two
processor, CP and AP, is an appropriate OS archi-
tecture. In that respect, all commercial parallel com-
puters that have also a 2-processor node fail to utilize
it to its full potential because of the communication
overhead of their microkernel operating systems.

The kernel family concept on which PEACE is
based leads not only to extremely lightweight OS
kernels but also to their modularization—in contrast
to the monolithic microkernel. Figure 3 shows the
hierarchical decomposition of the PEACE kernel into
three modules [Sch 94]: NICE (network independent

communication gnvironment), COSY (communi-
cation system), and POD (port drivers).

Process |

software] events

Nucleus

queues L &YJ

upcalls

r
I POD E
hardware | events

] Device H

Figure 3 Modularization of the PEACE kernel

NICE takes care of the inter-thread communication
policies, COSY handles the communication proto-
cols, and POD is the glue between the OS nucleus
and the communication hardware (the network).

The modularization of the PEACE kernel allows
for an optimal distribution of OS functions over the
two processors of the MANNA node. Figure 4 shows

an example [BGS 94] (depending on the application,
there may be variations of this). The application
processor (AP) executes solely NICE functions, while
the complete NICE-COSY-POD suite is executed
only on the communication processor (CP). On the
CP this may take 23 microseconds, yet the AP "sees"
only the couple of microseconds needed to put a
communication request to the CP. The dramatic
improvement in the effectiveness of the latency
hiding scheme of overlapping communication with
computation is evidenced by Table 2. With the
latency hiding mechanisms provided by the MANNA
two-processor node architecture (2 Intel 1860XP) and

PEACE, the effective latency is at most 4
microseconds.
TmEE e e =
3 application !
e AP
5 v p interrupt
y RES il Do gl s YL
5 [NicE :
Lot Al g E
AP E g mat | !
% POD i
natwork [9% :
B / nnnnnnnnnnnnnnnn
link
interrupt CP

Figure 4 Distribution of kernel functions
over AP and CP

Properties Intel Paragon MANNA
Operating system OSFA PEACE
Size of kernel 7 Mbytes 0.2 Mbytes
Communication latency 240 ps 23 us
Effective start-up time 20 us 4us

Table 2 Comparison between OSF/1 and PEACE.
Both nodes have 2 processors i860XP.

The overall advantages of the innovative concepts

of the PEACE operating system are:

* an order of magnitude lesser code for the kernel
implementation

e an order of magnitude lesser communication
latency

e extremely efficient latency hiding—the effective
start-up time is in the same order of magnitude as

if there were only naked hardware, i.e., no OS at
all!

4. THE 2-PROCESSOR NODE

Figure 5 depicts the block diagram of the 2-
processor MANNA node. Both AP and CP are
superscalar processors 1860XP; thus, they both have
the same memory management and can snoop on each
other's caches. The processors communicate through
the shared 32-Mbyte DRAM node memory. The
elaborate memory design features burst transfer
support from 4 interleaved memory banks in page
mode via a three-stage pipeline; that is, the memory
access latency of 7 clock ticks is overlapped with the
previous access cycle. This gives the memory a 7-1-
1-1 cycle access pattern and a resulting access band-
width of 400 Mbytes per second once the pipeline is
filled and the accesses are to the same page. Hence,
the DRAM node memory has almost the behavior of
a secondary cache.

A bi-directional communication link with a data
rate of 2x50 Mbytes/second connects the node with
the interconnection network, a hierarchy of crossbars
(see Chapter 5).

The two-processor MANNA node is completely
symmetric; thus, it does not matter which of the two
processors is AP and which is CP. For applications
that have a relatively low message traffic, the
dedicated CP may not be sufficiently utilized. In this
case, it is a better approach to use both processors
may as APs. PEACE provides kernels for both
operations.

. CP

AP

i860XP i860XP

arbiter &
dispatcher

10 bus
(sCSI)

link to inter-
connect

communi-
cation
interface

4-fold interleaved memory (DRAM)
(400 Mbytes per sec. access bandwidth)

Figure 5 Block diagram of the MANNA node

5. MANNA INTERCONNECTION
NETWORKS

The desired general applicability of MANNA
would be in conflict with an interconnect that places a

strong penalty on non-local communication. This

ruled out topologies that work satisfactorily only for

strongly local access patterns, e.g., the 2D or 3D

mesh. Another MANNA invention, the hierarchy of

crossbar interconnect [Mon 89], provides "the best of

all worlds” by satisfying the requirements of

¢ high global connectivity (no penalty for non-
locality)

¢ Jow blocking probability

¢ minimal hardware cost,

The basic building block of this unique, scalable
network topology is a byte-wide, bi-directional
16x16-crossbar switch realized as a single-chip ASIC.
The transmission rate is the same as that of the INI,
i.e., the bus clock of the processor. Groups of 10
nodes are interconnected via the 16x16 crossbar, to
form clusters, each cluster thus having 32 processors.
This leaves 6 uncommitted links of the cluster
crossbar for interconnecting the cluster with other
clusters. Up to 4 clusters, i.e., 40 nodes, can be
directly interconnected through a single back plane
with 4 crossbar chips on it. Larger systems require an
additional central crossbar switching facility, to
interconnect the clusters. Figures 6 depicts a 40 node
configuration. Systems with more than 16 clusters,
practically of any arbitrary size, could be built by
applying the hierarchical crossbar topology recursive-
ly, i.e., have clusters of clusters of clusters, and so on

[Mon 91].
N} [N
ar Ty =

16x16
Crossbar

Crossbar
e B s
K

16x16 16x16
Crossbar Cmssbar

L

Figure 6 MANNA computer with 40 nodes

F

HL

J-E

Simulations proved that the hierarchy of crossbar
topology of MANNA has the same low blocking
probability as the hypercube [GaM 91]. However,
whereas the hypercube requires for each node (log N)
links into the interconnect and, thus, is not affordable
in massively parallel systems, the MANNA topology

requires only one link per node. Hence, the hierarchy
of crossbars combines excellent connectivity (low
blocking probability, minimum number of hops)
with utmost economy. In fact, it is significantly less
expensive than the 2D-mesh (which has a bad
blocking behavior). Figure 7 shows the blocking
probability for three types of 1024x1024 inter-
connects as function of the number of simultaneous
connection requests. As the figure demonstrates, the
blocking behavior of the crossbar hierarchy is almost
as good as that of the hypercube, and both behave
much better than the 2D-mesh. The crossbar is a
dynamic topology with a high switching complexity
of O(nz). However, that costs only silicon (the byte-
wide 16X16 crossbar is a single compacted gate array)
and not cables and connectors.

Probability for a connection to

1

block
2D mesh
succeed
0
| I | I el 1 |
0 B0 120 180 240 30D 360 420 480 540

number of simultaneous connection requests -

Probability for a connection

succeed

hypercube
block /
a ml' I S i i 1 S] I i
0 60 120 180 240 300 360 420 480 540

number of simultaneocus connection requests =

Probability for a connection to

succeed

crossbar hierarchy

@ Iock

“ 1 : I I I « 1 1
0 60 120 180 240 300 360 420 480 540

number of simultaneous connection requests —=

Figure 7 Blocking behavior of mesh, hypercube,
and crossbar hierarchy

6. PERFORMANCE FIGURES

It should be expected that the high memory
bandwidth of MANNA and the high connectivity and
transmission bandwidth of its interconnect results in

an excellent numerical processing performance. The
1000x1000 Linpack performance of the 1-processor
MANNA node, obtained with the Portland Group
Fortran compiler and PVM, is 18 MFLOPS.
However, this tells only something about the
processor and the compiler. A better indicator for the
performance of the overall architecture is is the speed-
up with the number of processors. This measurement
is shown in Table 3 in comparison to the Intel
iPSC860 and the Meiko CS-2.

of Nodes MANNA iPSC860 CSs-2
2 196 1.68 1.88

4 3.70 242 3.20

8 6.72 Sieh 4.79

16 1135 422 6.12

Table 3 Linpack speed-up (1000x1000 elements)

For the inner product of two matrices with
100x100 elements the sustained performance of the 2-
processor node is 68 MFLOPS d.p., at a theoretical
peak performance of 100 MFLOPS, respectively. The
2-processor node performance in ray tracing amounts
to 600 000 polygons per second.

7. VIRTUAL SHARED MEMORY

7.1 Adaptive Consistency

Another major goal of the project concerned the
development of a highly efficient virtual shared
memory (VSM) realization. The goal was to achieve
acceptable performance by appropriate hardware and
OS support, to make VSM practically viable.
MANNA VSM implements the usual mechanism
where pages of a virtual memory migrate to those
nodes where they are needed [Li 86].

The following concepts enhance the efficiency of

VSM on MANNA:

* the adaptive consistency model [Gea 91], allowing
for multiple writes during the computation phases
of data parallel algorithms without the danger of
semantics violations;

¢ the support of the VSM mechanism by a specific
VSM kernel of PEACE;

» the strong support of the VSM-related OS
functions by the 2-processor node architecture.

Adaptive consistency is a variant of realease
consistency [Gea 90] which works particularly well in
connection with the common SPMD (single
program—multiple data) mode of execution. During

the computation phases, the nodes work without
observing states of objects in other nodes. Therefore,
the system may work in the MRMW (multiple
readers—multiple writers) mode, as long the system
merges the diverging copies into one consistent
object before entering a communication phase.
During a communication phase the system works in
the MRSW (multiple reader—single writer) mode.

The programmer can make the following use of
the adaptive consistency mechanism. By executing a
define_local system function a thread receives the
unconditioned write capability for its local copy. The
write access to the copy is confined to the node, i.e.,
does not affect the copies of the same object in other
nodes. Thus, threads in different nodes may write
into the same page, each one into its local copy. The
only restriction is that the threads are not allowed to
write into the same location in the page, i.e., the
write addresses must be mutually exclusive. For
example, in array processing each writer may
contribute a row or a column to a result matrix. This
mechanism avoids the page thrashing problem [Li
86].

At the end of the write phase, one of the writers—
it does not matter which one—executes the function
define_global. This has two effects: (1) the system
will automaticaly unify the local copies into a single
global object whose content is the union of the local
changes, while all local copies are invalidated and (2)
the thread that executes the define_global function
becomes the new owner of the unified copy. The
unification is performed by a fast hardware algorithm
[Gea 91]. The order in which the copies are merged is
arbitrary. The merging procedure can be pipelined or
executed in parallel. This mechanism is provided by
OS functions executed on the CP [Cor 93].
Consequently, its overhead is hidden from the
application.

7.2 Consistency Manager

In VSM the nodes must know the owners of the
shared objects; and the owner of an object (the writer)
must know who else has a copy of it. This
information is furnished by a compiler-generated
access list containing the identifiers of all the sharers.
In the VSM kernel of PEACE, access lists are
maintained by a service called consistency manager
[Cor 93]. Under normal conditions a consistency
manager never changes its location; therefore, the
page tables need not be updated after a change of
ownership. Since the consistency manager has a copy
of the object, it can directly satisfy requests for
copies, without having first to go to the owner. This
saves a significant amount of message traffic, and it
allows the system to destroy obsolete processes
without destroying the shared objects they own.

8. PROGRAMMING MANNA

8.1 Conventional Programming
Environment

A programming enviroment for application
software production is provided on MANNA by the
Portland Group Compilers for C and Fortran,
enhanced by parallelization tools such as PVM and
MPI. The elaborate environmental control simulation
systems running on MANNA were programmed in
that environment. In addition, there exist several
research-grade programming systems for automatic or
interactive parallelization by compiler. These are:

* SNAP: an experimental, automatically parallel-
izing Fortran compiler:
® parLisp: an interactive commonLisp parallelizer;

e PROMOTER: compiler and runtime system for
the PROMMOTER programming model.

8.2 The SNAP Compiler

The automatically parallelizing Fortran compiler
SNAP has been developed to test the feasibility of
such a tool [Hae 93]. SNAP has front ends for
Fortran77 and Fortran90. Hence, it allows the user to
write sequential programs that are automatically
translated into an optimized parallel version. Program
partitioning, data distribution over the nodes, and
communication between the parallel executing
program units all is optimally performed by the com-
piler. SNAP works for data parallel applications,
reducing the optimization problem to finding a data
distribution that minimizes the cost of communi-
cation. Optimization is performed by genetic
algorithms.

8.3 ParLisp

parLisp [Sod 95] is an interactive parallelizer for
programming in commonLisp symbolic applications,
€.g., computer algebra, expert systems, theorem
provers. Symbolic applications typically do not
exhibit much data parallelism; however, there may be
program parallelism (e.g., in tree searches) that are
worth exploiting. In such applications there exist
typically a number of problem solving paths with
varying depth. Path creation may depend on the actual
data, i.e., occur at run time; thus, the compiler cannot
create them. Another difference to numerical problems
1s that the underlying data structures usually are
pointer lists that are created also at run time. Despite
these problems, it is possible to recognize and exploit
parallelism interactively. Any number of parallel
processing paths can be created, and the results of

their execution can be reported at any time. parLisp
utilizes MANNA s VSM architecture which enables
it to securely handle pointer structures. In all cases
where the uniqueness of the data objects is of no
concern, explicit copies may be exchanged for which
unrestricted read and write capabilities are granted.

The probably biggest challenge in symbolic paral-
lelization is to find solution steps that are large
enough to balance the cost of communication of the
distributed memory architecture. To this end, parLisp
provides rules and tools for granularity control. The
user is assisted in program partitioning by profiling
tools by which time estimates are obtained for the
individual steps, as well as information about the
number of loop iterations or the depth of recursion,
respectively.

8.4 PROMOTER

PROMOTER (programming model to enable real-
world computing) [GKS 95] allows the programmer
to explicitly express his or her knowledge about the
logical spatial structures of parallel applications. This
enables the compiler and runtime system to auto-
matically perform mappings and aggregations, thus
sparing the user this tedious and error-prone task.
Application universality is achieved through graph
structures as interface between application and
implementation. Graphs constitute a flexible and
convenient, architecture-independent framework for
parallel applications. Consequently, domains may be
arbitrarily defined; hey may be regular or irregular,
static or dynamic. Graphs in PROMOTER also
furnishing explicitly the information needed for
optimized mapping.

9. CONCLUSION

Through a host of innovative architectural con-
cepts, the scalable distributed memory MANNA
architecture excels other, comparable machines
significantly in performance. Easiness of program-
ming is not paid for with sacrifices in cost-
effectiveness and/or performance but provided through
appropriate parallel programming tools and parallel-
izing compilers. An exception is the global address
space programming paradigm provided through VSM
which, of course, carries some (minimized) perform-
ance penalty.

A number of MANNA computers with a total of
160 nodes were built. MANNA has become the main
"work horse" at GMD FIRST for "grand challenge"
applications such as the simulation of summer smog
or other air pollution control tasks. MANNA is also
the development platform for the high-level PRO-

MOTER programming system, a project of the Real
World Computer Program. Last but not least, a
couple of MANNA computers have been installed at
the site of major cooperation partners of FIRST, e.g.,
at the Fraunhofer Institute for Graphical Information
Processing at Darmstadt, Germany (where it has
become their most powerful tool for virtual reality
applications). Another MANNA computer has been
installed at McGill University at Montreal, Canada
(where it is used as the development platform for
multi-threaded architecture concepts and software).

A major step towards the further improvement of
the MANNA is the development of powerMANNA
currently conducted at FIRST. The powerMANNA
architecture is the one described in this paper, with
the Intel processor i860 being replaced by the
Motorola/IBM powerPC 620. The bandwidth of the
node memory and the interconnect has been adequately
increased.

REFERENCES

[Bea 93] Beguelin A., Dongerra J., Geist A., Manchek
R., Sunderam V.: A User's Guide to PVM —
Parallel Virtual Machine, available from
netlib@ornl.gov by the message: send

pvm_shar from pvm

[BGS94] Bruening U., Giloi W.K., Schroeder-
Preikschat W.: Latency Hiding in Message-
Passing Architectures, Proc. IPPS '94, IEEE-

CS Press 1994

Cordsen J.: Basing Virtually Shared Memory
on a Family of Consistency Models, Proc.
Ist Internat. Workshop on Scalable Shared
Memory Systems, 1994

von Eicken T., Culler D.E., Goldstein S.C.,
Schuster K.E.: Active Messages : A Mecha-
nism for Integrated Communication and
Computation, Tech. Report UCB/CSD 92/
675, University of California at Berkeley
1992

Giloi W K., Behr P.; An IPC Protocol and Its
Hardware Realization For High-Speed
Distributed Multi-computer System, Proc.
8th Internat. Sympos. on Computer Archi-
tecture, IEEE Catalog No. 81CH1593-3,
481-494

Giloi. W.K., Montenegro S.: Choosing the
Interconnect of Distributed Memory Systems
by Cost and Blocking Behavior, Proc. 5th
Internat. Parallel Processing Symposium,
IEEE Catalog no. 91TH0363-02 (1991),
438-444

Giloi W.K., Schroeder W.: Very High-Speed
Communication in Large MIMD Super-
computers, Proc. ICS ‘89, ACM Order No.
415891, 313-321

Gilot W.K., Schramm A.: PROMOTER — An
Application-oriented Programming Model
for Massive Parallelism, in Giloi W.K.,

[Cor 94]

[Eea 92]

[GaB 81]

[GaM 91]

[GaS 89]

[GaS 93]

[Gea 90]

[Gea 91]

[Gil 84]

[GKS 95]

[Hae 93]

[HPF 92]

[Li 86]

[LST 92]

[Mon 89]

[MPI 93]

[Sch 91]

Jaehnichen S., Shriver B.(eds.): Massively
Parallel Programming Models, Proc.
Internat. MPPM Conference 1993, IEEE-CS
Press 1993, order no. 4900-02, 198-205

Gharachorloo K., Lenoski D., Laudon J.,
Gibbons P., Gupta A., Hennessey I.:
Memory Consistency and Event Ordering in
Scalable Shared-Memory Mulriprocessors,
Proc. I7th Annual Sympos. on Computer
Architecture, IEEE catalog no. CH2887-90,
15-26

Giloi W.K., Hastedt C., Schoen F.,
Schroeder-Preikschat W.: A Distributed
Implementation of Shared Virtual Memory
with Strong and Weak Coherence, in Bode
A.(ed.): Distributed Memory Computing,
Proc. EDMCC2, LNCS 487, Springer-Verlag
1991, 23-31

Giloi W.K.: Obtaining a Secure, Fault-
Tolerant, Distributed System With Maxim-
ized Performance, in Reijns G.(ed.):
Hardware Supported Implementation of
Concurrent Languages in Distributed
Systems, North Holland, Amsterdam 1984

Giloi W.K., Kessler M., Schramm A.:
PROMOTER: A Programming System for
High-Level Massively Parallel Programming
With Arbitrary Appliccation Topologies,
Proc. RWC Symposium 1995, RWC Partner-
ship, Tokyo, June 1995

Haenisch R.: SNAP! Prototyping a
Sequential and Numerical Application
Parallelizer, Proc. Internat. Workshop on
Automatic Distributed Memory Paralleli-
zation, Automatic Data Distribution, and
Auwtomatic Parallel Performance Prediction
(March 1993), Springer WICS

High Performance Fortran Forum: High
Performance Fortran — Language Specifi-
cation (DRAFT), Version 0.4, November
1992

Li K.: Shared Virtual Memory on Loosely
Coupled Multiprocessors, PhD thesis, Yale
University 1986

Linden J., Schiiller A., Trottenberg U.:
Methodological Aspects of High Perform-
ance Scientific Computing, in Sydow
A.(ed.): Computational Systems Analysis
1992, ELSEVIER, Amsterdam 1992, 1-10

Montenegro S.: Kommunikationsstrukturen
fir verteilte Rechnersysteme, PhD thesis,
Technical University of Berlin 1989

Message Passing Interface Forum: Document
for a Standard Messdsage-Passing Interface
(DRAFT) (Sept. 1993)

Schroeder-Preikschat W.: Overcoming the
Startup Time Problem in Distributed Memory
Architectures, in Milutiniovic V., Shriver
B.(eds.): Proc. 24th Hawaii Internat. Conf
on System Sciences, vol [, IEEE Society
Press 1991, IEEE catalog no. 91 THO0350-9,
551-559

[Sch 94]

[Sod 95]

Schroeder-Preikschat W.: Logic Design of
Parallel Operating Systems , Prentice-Hall,
Englewood Cliffs NJ 1994

Sodan A.: Mapping Symbolic Problems with
Dynamic Tree Structures to Parallel
Machines, Ph.D. thesis, Technical
University of Berlin 1995

