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Abstract 
The paper demonstrates the advantages of having two proces- 
sors in the node of a distributed memory architecture, one for 
computation and one for communication. The architecture of 
such a dual-processor node is discussed. To exploit fully the 
potential for parallel execution of computation threads and 
communication threads, a novel, compiler-optimized IPC 
mechanism allows for an unbuffered no-wait send and a 
prefetched receive without the danger of semantics violation. 
It is shown how an optimized parallel operating system can 
be constructed such that the application processor's 
involvement in communication is kept to a minimum while 
the utilization of both processors is maximized. The MANNA 
implementation results in an effective message start-up 
latency of only 1...4 microseconds. It is also shown how the 
dual-processor node is utilized to efficiently realize virtual 
shared memory. 

Keywords: Distributed memory message-passing architec- 
ture, dual-processor node, latency hiding, unbuffered no-wait 
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1. Introduction 

The two dominant programming paradigms for parallel 
computers are the shared memory model and the message 
passing model. The shared memory model offers the 
advantage of a global address space that supports pointer 
types and allows parallel executing program segments to 
communicate through shared variables. The message- 
passing model, on the other hand, reflects the manner in 
which the hardware of a distributed memory architecture 
works. Thus, it can be more efficiently implemented, at 
the prize of demanding from the programmer optimized 
data distribution over the distributed memories and 
programming in terms of message passing constructs. 

The shared memory paradigm may be provided on a 
distributed memory computer either by the distributed 
shared memory architecture (DSMA) or the virtual shared 
memory architecture (VSMA) built on top of a message- 
passing hardware. Since the DSMA has only a limited 
upward scalability m a  921, it is not a suitable architecture 
for massively parallel computers. This makes the 
message-passsing architecture still the prevailing parallel 

computer architecture. The problem with message-passing 
programming can be mitigated by appropriate tool sets 
such as PVM [Bea 931 or MPI or altogether avoided by 
parallelizing compilers [Hae 931. If one wants to support 
pointer languages, one may switch to the VSMA mode. 
Consequently, the task for the computer architect is to 
make message passing as well as the support of VSMA as 
efficient as possible. This is what this paper is about. 

First we shall revisit a concept that we introduced some 
years ago [Gas 891, viz. the notion of having two 
processors in each node of a distributed memory architec- 
ture: the application processor (AP) and the communi- 
cation processor (CP). Presently, this concept is being 
employed in a number of commercial parallel computers 
(e.g., Intel Paragon, Meiko CS-2, Thinking Machine 
CM-2). However, it is our impression that this concept 
still is not generally understood. Therefore, we first 
present the rationale for the dual-processor node (Section 
2). 

The remainder of the paper is structured as follows. In 
Section 3, we discuss a realization of the dual-processor 
concept, given in the form of the MANNA node. 
MANNA (massivley-parallel architecture for numerical 
and non-numerical wplications) is a virtual shared 
memory machine developed at the GMD Research 
Institute for Computer Architecture and Software 
Technology (FIRST) [Gil 941. Performance figures 
obtained with that node are given. In Section 5,  we 
introduce the semantics of latency-minimizing 
communication constructs, the synchronized no-wait send 
and theprefetched blocking receive. Section 6 deals with 
the operating system issues. A parallel operating system 
design is presented that takes maximum advantage of the 
dual-processor node architecture. In Section 7 it is shown 
how the MANNA node supports efficiently a virtual 
shared memory mechanism. 

2. The Concept of the Dual-Processor Node 
The message start-up time depends strongly on the 

functionality of the operating system kernel which, in 
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turn, is dictated by the mode of operation of the system. 
The simplest case is the single-user, single-tasking opera- 
tion with one thread of control or several concurrent, un- 
scheduled threads. In this single address space model, the 
entire node software-application as well as kernel funct- 
ions-is running without protection in the same address 
space. This simple mode provides a dedicated machine on 
which communication is handled by runtime library 
routines. With the high-speed PEACE operating system 
[Sch 911 running on the 50-MIPS i86OXP superscalar 
processor, we have a latency for a single messagepassing 
transaction of 24 microseconds. As Table 1 demonstrates, 
this currently amounts to the world record in speed. 

MANNA' 

MANNA ** 
PEACE 24 
PEACE 4 

1 processor node ** 2processor node 

Table 1: Message-passing latency of parallel machines 

Preemptive scheduling and the separation of task 
environments must be added if a multi-tasking environ- 
ment is to be supported. In a single-processor node, each 
communication activity leads now to an operating system 
kernel trap performing an environment switch. This 
brings the start-up time for the PEACE operating system 
on a single i86OXP up to 80 ... 100 microseconds. Over 
one third of that time must be attributed to the kernel trap 
that becomes part of each communication. 

The effect of communication latency can be drastically 
reduced by furnishing the node with a dedicated commmu- 
nicution processor (CP) in addition to the CPU (AP) [Gas 
891. In this symbiosis the task of the AF' is to uninter- 
ruptedly produce megaflops, while the CP executes the 
communication tasks of the operating system kernel. Both 
processor work in parallel; consequently, the communi- 
cation start-up time occurs in the CP but is hidden from 
the AP. The AP sees only the latency of sending a com- 
munication request to the CP. 

3. Example: The Dual-Processor MANNA Node 
The latency hiding scheme described above has been 

implemented on the MANNA computer. Figure 1 depicts 
the block diagram of the dual-processor MANNA node. 

Both AP and CP are superscalar processors i86OXP. 
Thus, both processors have the same memory manage- 
ment and can snoop on each other's caches. The processors 
communicate through the shared 32-Mbyte node memory. 
The elaborate memory design features burst transfer 
support from 4 interleaved memory banks, a three-staged, 
pipelined memory control unit, and the page mode of 
operation. Consequently, the memory access latency of 7 
clock ticks is overlapped with the previous access cycle. 

4 - h k  burstaccess DRAM (400 MyterJsecond &a rate) 

Figure 1 Block diagram of the 2-processor MANNA node 

This latency hiding scheme results in an access time of 
1 clock tick, provided the pipeline is filled and the 
accesses are to the same page. This gives the DRAM node 
memory almost the behavior of a secondary cache. A bi- 
directional communication link with a data rate of 2x50 
Mbytes/second connects the node with the interconnection 
network, a hiemhy of crossbars [GaM 9 11. 

One important design decision concerns the choice of 
the caching strategy, write-through or copy-buck. Write- 
through leads to a higher traffic on the bus while copy- 
buck leads to more snooping (in this case the caches must 
snoop not only on writes but also on reads). Figure 2 
shows the relative performance of the MANNA node for 
the matrix multiplication [Bru 921. 

a = performance factor, related toone 186oXP 
wlthdatr cseheswitchodoff 

-2 CPUs, mpy back 

2.4 1CPU,Copy bad 2a81G 20 

1 CPU, write through 1.6 

2 CPUs. write through 12 
t 

la 200 300 400 500 marixsize 

Figure 2 Node performance for different cache strategies 
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The sustained performance of the matrix multiplication 
is 68 MFLOPS (dp) for a matrix size 2100. 

4. The Usual Message-Passing Constructs 

sage-passing programming models: 
remote procedure cull: remote activation of a thread; 
rendezvous: blocking send - non-blocking reply - 
blocking receive; 

no-wait send : non blocking send - blocking receive. 
The remote procedure call (RX) usually blocks the 

calling thread until the called procedure has signalled 
completion. There is no concurrency between the calling 
thread and the called thread. In object-oriented program- 
ming, the remote object invocufion (ROI) is used instead. 

The rendezvous construct offers the advantage of a 
synchronous protocol, viz. to work without buffers and 
buffer management. Once the rendezvous has been estab- 
lished, data objects are transferred directly from user space 
to user space. There is no danger of data inconsistencies. 
The end-to-end significance of the mechanism provides for 
a communication that also synchronizes the two threads. 
On the other hand, the construct sequentializes processing 
and communication, thus sacrificing some parallel 
processing potential. 

The no-wait send construct corresponds with asynchro- 
nous communication. This not only enhances the parallel 
processing capabilities of the machine but also facilitates 
programming in the message-passing paradigm, as the 
programmers need to deal with only one synchronization 
point. This seems to violate the common wisdom that the 
no-wait send requires buffering of the sent objects in order 
LO preserve the semantics of the program. The rule of 
procedural programming that the use of a variable frees it 
for the next definition applies also to the send construct. 
In the no-wait send mode sending may not be completed 
when a following statement redefines the sent object. In 
this case, the semantics of the program is violated. This is 
avoided if the send construct buffers the value of the 
object. Buffering of large objects, however, is undesirable, 
as it consumes additional memory space and-worse- 
generates copying overhead. 

Three kinds of send constructs may be used in mes- 

5. Synchronized No-Wait Send, 
Prefetched Blocking Receive 

The synchronized no-wait send ( S N W S )  construct of 
MANNA implements asynchronous communication while 
ensuring the consistency of the sent objects without the 
need for buffering. Furthermore, it maximizes the overlap 
of computation and communication in the dual-processor 
node architecture described above. This is accomplished by 

the following mechanism. 
(1) The send is non-blocking and non-copying. Exe- 

cution of the send procedure proper is initiated in the 
communication processor at the point where the construct 
occurs. There exists a synchronization point as in a block- 
ing send which, however, is separated from the communi- 
cation and deferred until it is really needed. 

(2) Synchronization is required when the sent object is 
redefined. Hence, the compiler inserts a wait prior to the 
first statement after the send in which the argument of the 
send construct occurs again. At that point, execution is 
blocked until the communication processor has signalled 
completion. Figure 3 illustrates the S N W S  mechanism. 

(3) The compiler reschedules the instructions following 
the send, to delay the statement with the synchronization 
point as much as allowed by the data dependencies. Thus, 
as much work as possible is created between the non- 
blocking send and the synchronization point. 

Nod3 i 
AP CP 

Node j 

I'AP issues smd request to CP ' I  
I' CPsencb dataobject'/ ................................ ....... . .......... - 
synchronization point 

I'wai t fu send completion */ 

of dataobject *I 

local node thread 

annmuriaion request to CP 0 synchronization point 

Figure 3 Synchronized No-Wait Send mechanism 

The counterpart to the SNWS construct is the pre -  
fetched blocking receive (PBR). As in S N W S  the point of 
communication and the point of synchronization-one and 
the same in the usual blocking receive-are now 
separated. Here, the synchronization point stays where the 
receive construct occurs, while the compiler moves the 
actual receive activity ahead in the instruction stream as 
much as permitted by the data dependencies. Hence, the 
receive activity is already started right after the last use of 
the argument of the receive construct. This allows the 
system to start the receive activity as much ahead in time 
as possible before the wait, thus enhancing the chance that 
there will be no blocking after all. Figure 4 illustrates the 
PBR mechanism. 

The receive message triggers the communication 
thread, When that thread terminates, it queues a 
completition signal into the inter processor communi- 
cation queue. This signal may be used by the application 
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thread to poll for completion of the receive. The 
separation of communication and synchronization in the 
PBR creates a delay, to be filled with useful computation 
by the user or-better-the compiler. The reader will 
notice the similarity with a load instruction of a load-store 
architecture where it is the task of the compiler to 
schedule the load as early as possible in the instruction 
stream to avoid wait times because of memory latency. 

Node i Node j 

E V I W S  us3 c 

' 1 .  AP issues receive reauest to CP */ 

Pnew vdue received 

synchronization pdnl 
of blocking receive 

.................................. . by CP ,.......... . 

local nodethread 

commurication request to CP 0 sync+mnizatim point 

Figure 4 Prefetched Blocking Receive (PBR) mechanism 

6. Operating System Optimization 
The use of the dual-processor node can be optimized at 

the operating system level so that application threads and 
communication threads will maximally overlap. This is 
demonstrated by the example of the parallel operating 
system PEACE specifically developed for the dual-proces- 
sor node. 

6.1 Anatomy of the Parallel Operating System 
PEACE has three intrinsic components: nucleus, 

kemel, and parallel Grating system gxtensions (POSE). 
The application may be viewed as a fourth component. 

The nucleus implements system-wide inter-process 
communication, as well as the runtime executive for the 
processing of threads. It provides a minimal basis and is 
part of the kernel domain. That is, the kernel is a multi- 
threaded system component that encapsulates minimal 
nucleus extensions for device abstractions, dynamic 
process creation and destruction, association of process 
objects with naming domains and address spaces, and pro- 
pagation of exceptions (traps, interrupts). POSE performs 
the application-oriented services such as naming, process 
and memory management, file handling, I/O, load balanc- 
ing, and host access. 

Kernel services and POSE services are active jobs. 
They are implemented by lightweight processes that may 
be executed concurrently. In contrast, the nucleus is an 

ensemble of passive objects that schedule active objects. 

6.2 Microscopic View 

for network-wide inter-process communication: 
(1) find out where the active/passive objects are located, 
(2) enable data transport between nodes, and, therefore, 
(3) attach the nodes to the network interface. 

The nucleus consist of the 3 problem-oriented protocol 
layers shown in Figure 5 .  The layers interact through 
down-calls and upcalk. Queues are used where possible to 
decouple the different flows of control. Calls in either 
direction are asynchronous. Message transfer requests are 
queued only when needed. 

The nucleus performs the three major functions needed 

I 

Nucleus 

queues upcalls 

hardware went8 YS- Device 

Figure 5 Nucleus architecture 

Network-wide communication is carried out by NICE 
betwork independent Communication gxecutive). NICE 
implements the inter-nucleus protocol. State transitions of 
processes and address spaces are initiated via end-to-end 
message transfers without the need for intermediate 
buffering. This makes NICE a management layer. 

The underlying communication via the interconnect is 
conducted by COSY (COSY: mmmunication System). 
COSY is a protocol suite that can handle all possible 
system configurations by logically providing a secured 
data transport of arbitrarily sized messages. POD is the 
actual network interface (POD: U r t  driver). POD 
encapsulates the network device and attaches the nucleus 
to the network. POD makes COSY independent of the 
actually used network device, regardless of whether the 
device is physical or logical. This makes the COSY 
protocols portable. 

6.3 Latency Hiding 
In the dual-processor node architecture the distinction 

between application processor (AF') and communication 
processor (CP) is a software issue. As was mentioned 

707 



before, the main purpose of the AP-CP symbiosis is to 
reduce the effective message start-up time to a few micro- 
seconds. 

The main task of the CP is to perform the communi- 
cation between threads that reside in different nodes, while 
local inter-thread communication is handled by the AI'. 
Consequently, the AP executes only NICE code 
sequences, whereas the CP executes the complete NICE- 
COSY-POD protocol suite (NCP suite). Figure 6 
illustrates this configuration. 

Figure 6 Nucleus-level coupling 

The AP-NICE component establishes a message- 
passing interface to the application threads. This interface 
comprises primitives for inter-process communication and 
inter-thread synchronization. All local communication 
activities are handled by AP-NICE, while remote message- 
passing requests are forwarded to CP-NICE. The coupling 
of both NICE modules is implemented by an atomic 
queue that stores the network-wide communication 
requests. AP-NICE enqueues and CP-NICE dequeues the 
requests. 

CP-NICE removes the communication requests from 
the queue and starts the NCP suite. This happens in 
parallel to AP-NICE and the application task(s). Thus, 
communication and computation overlap. The message 
start-up time for AP threads is determined by the AP- 
NICE execution path that queues the communication 
request. On the MANNA node this takes under 4 micro- 
seconds. 

In addition to handling the send requests issued by the 
AP, the CP receives incoming messages and delivers them 
LO the threads without interrupting the AP. A thread that 
is waiting on a message gets ready to run as soon as the 
CP has received the message from the link. Note that in 
this configuration the AP is never interrupted by 

communication requests, only the CP. 
The extremely low latency allows for the design of 

fine-grain parallel applications. Specific compiler optimi- 
zation may be employed: Similar to the pipeline operation 
of a RISC processor, the compiler may try to keep the 
"Ap-CP pipeline" running by application code restructur- 
ing. The communication threads are automatically created 
by the run-time system whenever instructed by the com- 
piler-generated code. This approach integratres compiler, 
run-time system, operating system kemel, and node archi- 
tecture, thus ensuring extremely low latencies even in a 
multi-tasking environment. What the user sees is a 
"monolithic" abstract machine. 

7. Support of Virtual Shared Memory 
Virtual shared memory (VSM) tLi 861 is a software 

layer on top of a message-passing system that provides 
the global address space of a virtual memory. Thus, the 
scalability of a distributed memory architecture is 
combined with the easier-to-use shared memory 
programming paradigm. Shared data objects-usually 
pages-migrate to the nodes where they are referenced. 
This is usually accomplished by a page fault mechanism 
similar to the one employed in virtual memory L i  863. 

The identity of the owner of an object is found in the 
page tables of the node's virtual memory management. 
Moreover, the owner of an object (the writer) must know 
which other nodes have a copy of it. In the MANNA 
architecture, the owner of an object is therefore furnished 
with a compiler-generated access list containing the identi- 
fiers of all the nodes that share the object. In addition, a 
tag indicates the current access capability of the node. The 
access list is maintained by a PEACE service called con- 
sistency manager. There may be consistency managers for 
single shared objects or for groups of objects [CHS 921. 
In lieu of owner identifiers, the page tables in the nodes 
contain the consistency manager addresses of the pages. 
Normally, the consistency manager never changes its 
location. Consequently, the page tables need not be 
updated after a change of ownership. Furthermore, since 
the consistency manager has a copy of the object, it can 
directly satisfy requests for copies, without having first to 
go to the owner. This saves a significant amount of 
message traffic, and it allows the system to destroy 
obsolete processes without destroying the shared objects 
they own. The executor of this mechanism is the CP. 

The existence of multiple copies of memory objects in 
the system creates a potential consistency problem when- 
ever a copy is modified by a write. This problem can be 
handled by an invalidation mechanism similar to the one 
applied for cache coherence. If one wants the VSM to 
behave exactly like a shared memory, the system must 
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ensure sequential consistency of the VSM accesses. 
Sequential consistency can be obtained by the MRSW 
mode of operation (MRSW: multiple Eeader - single 
writer), i.e., on a write all other copies of the written 
object are invalidated. This simple approach, however, 
may lead to a significant performance loss. 

A more efficient solution is the use of the MRMW 
semantics in phases where this does not affect the 
correctness of program execution (MRMW: multiple 
Eeaders - multiple xriters). Consider, for example, the 
lock-step mode of operation where computation phases 
and communication phases alternate (this is typical for 
data parallel applications). During computation, the nodes 
may unresmctedly write into their local copies of a s h a d  
object. Before the communication phase is entered, the 
diverging copies are then unified into one consistent 
object. This may be automatically performed by the 
system [Gea 911. 

Such a mode of operation can be implemented, e.g., by 
the following adaptive consistency model [Gea 911. By 
executing a define-local system function a thread receives 
the unconditioned write capability for its local copy. The 
write access to the copy is confined to the node, i.e., does 
not affect the copies of the same object in other nodes. 
Thus, threads in different nodes may write into the same 
page, each one into its local copy. The only restriction is 
that the threads are not allowed to write into the same 
location in the page, i.e., the write addresses must be 
mutually exclusive. For example, in array processing each 
writer may contribute a row or a column to a result 
matrix. At the end of the write phase, one of the writers 
executes a define-global function. This has two effects: 
(1) the system will automatically unify the local copies 
into a single global object whose content is the union of 
the local changes, while all local copies are invalidated and 
(2) the thread that executes the define-global function 
becomes the new owner of the unified copy. Unification 
can be performed by the hardware. The order in which the 
copies are merged is arbitrary. The merging procedure can 
be pipelined or be executed in parallel, e.g., by a logtree 
merge algorithm. This mechanism is provided by 
operating system functions executed on the CP. 
Consequently, its overhead is hidden from the AP. 

8. Conclusion and Future Work 
The latency hiding gain obtained by the dual-processor 

node architecture is enormous: the single-message start-up 
time may be reduced by up to two orders of magnitude! 
However, as Section 6 demonstrates, this requires a 
specific, highly optimized design of a parallel operating 
system. Existing operating systems-from UNIX to 
MACH-are not built according to the rules of optimal 

parallel operating system design [SCH 941. This explains 
why the commercial systems mentioned above that 
adopted the dual-processor concept do not achieve the high 
latency hiding gain obtained in MANNA. 

Section 5 shows how the degree of parallelism bet- 
ween computation and communication can be enhanced. In 
addition to the dual-processor node, this requires specific 
optimizations in the operating system and the compiler. 
Virtual shared memory with adaptive consistency becomes 
a special operating system service provided on demand. 

References 
[Bea 931 Beguelin A., Dongerra J.. Geist A., Manchek R., 
Sunderam V.: A User's Guide to PVM - Parallel Virtual 
Machine, available from <netlib(a)ornl.gov> by the message 
<send pvm-shar from p v m  
[Bru 921 Bruening U.: MANNA Arbiter and CPU Kem. GMD 
FIRST Tech. Report 1992 
[CHS 921 Cordsen J.. Heuer J., Schrbder-Preikschat W.: 
Problem-Oriented Virtual Shared Memory in an Object- 
Oriented Parallel Operating System, GMD FIRST Tech. 
Report (Sept. 1992) 
[GaM 911 Giloi. W.K., Montenegro S.: Choosing the Inter- 
connect of Distributed Memory Systems by Cost and Block- 
ing Behavior, Proc. 5th Internat. Parallel Processing Sym- 
posium, IEEE Catalog no. 91TH0363-02 (1991). 438444 
[Gas 891 Giloi W.K.. Schroeder W.: Very High-speed 
Communication in Large MIMD Supercomputers, Proc. ICs 
'89, ACM Order No. 415891, 313-321 
[Gea 911 Giloi W.K.. Hastedt C., Schoen F., Schroeder- 
Preikschat W.: A Distributed Implementation of Shared 
Virtual Memory with Strong and Weak Coherence, in Bode 
A.(ed.): Distributed Memory Computing, Proc. EDMCC2, 
LNCS 487, Springer-Verlag 1991. 23-31 
[Gil 941 Giloi W.K.: MANNA - Prototype of a Next 
Generation Parallel Computer, to appear in Proc. I994 
Mannheim Supercomputer Seminar, Springer 1994 
[Hae 931 Haenisch R.: SNAP! Prototyping a Sequential and 
Numerical Application Palallelizer, Proc. Internat. Workshop 
on Automatic Distributed Memory Parallelization. Automatic 
Data Distribution, and Automatic Parallel Performance 
Prediction (March 1993), Springer LNCS 
[Lea 921 Lenoski D., Laudon K., Gharachorloo K., Weber W.- 
D., Gupta A., Hennessy J., Horowitz M., Lam M.: The 
Stanford Dash Multiprocessor, COMPUTER 3.92. 63-79 
[Li 861 Li K.: Shared Virtual Memory on Loosely Coupled 
Multiprocessors, PhD thesis, Yale University 1986 
[Sch 911 Schroeder-Preikschat W.: Overcoming the Startup 
Time Problem in Distributed Memory Architectures. in 
Milutiniovic V.. Shiver B.(eds.): Proc. 24th Hawaii InterMt. 
Conf. on System Sciences, vol.1. IEEE Society Press 1991. 
IEEE order no. 91TH0350-9, 551-559 
[ Sch 941 Schroeder-Preikschat W.: Optimal Parallel Operating 
System Design, Prentice-Hall, Englewood Cliffs NJ 1994 

709 


