
Latency Hiding in Message-Passing Architectures

U. Bruening, W.K. Giloi, W. Schroeder-Preikschat

GMD Institute for Computer Architecture and Software Technology, Berlin, Germany
e-mail: w .giloi(a)computer.org

Abstract
The paper demonstrates the advantages of having two proces-
sors in the node of a distributed memory architecture, one for
computation and one for communication. The architecture of
such a dual-processor node is discussed. To exploit fully the
potential for parallel execution of computation threads and
communication threads, a novel, compiler-optimized IPC
mechanism allows for an unbuffered no-wait send and a
prefetched receive without the danger of semantics violation.
It is shown how an optimized parallel operating system can
be constructed such that the application processor's
involvement in communication is kept to a minimum while
the utilization of both processors is maximized. The MANNA
implementation results in an effective message start-up
latency of only 1...4 microseconds. It is also shown how the
dual-processor node is utilized to efficiently realize virtual
shared memory.

Keywords: Distributed memory message-passing architec-
ture, dual-processor node, latency hiding, unbuffered no-wait
send, parallel operating system, virtual shared memory

1. Introduction

The two dominant programming paradigms for parallel
computers are the shared memory model and the message
passing model. The shared memory model offers the
advantage of a global address space that supports pointer
types and allows parallel executing program segments to
communicate through shared variables. The message-
passing model, on the other hand, reflects the manner in
which the hardware of a distributed memory architecture
works. Thus, it can be more efficiently implemented, at
the prize of demanding from the programmer optimized
data distribution over the distributed memories and
programming in terms of message passing constructs.

The shared memory paradigm may be provided on a
distributed memory computer either by the distributed
shared memory architecture (DSMA) or the virtual shared
memory architecture (VSMA) built on top of a message-
passing hardware. Since the DSMA has only a limited
upward scalability m a 921, it is not a suitable architecture
for massively parallel computers. This makes the
message-passsing architecture still the prevailing parallel

computer architecture. The problem with message-passing
programming can be mitigated by appropriate tool sets
such as PVM [Bea 931 or MPI or altogether avoided by
parallelizing compilers [Hae 931. If one wants to support
pointer languages, one may switch to the VSMA mode.
Consequently, the task for the computer architect is to
make message passing as well as the support of VSMA as
efficient as possible. This is what this paper is about.

First we shall revisit a concept that we introduced some
years ago [Gas 891, viz. the notion of having two
processors in each node of a distributed memory architec-
ture: the application processor (AP) and the communi-
cation processor (CP). Presently, this concept is being
employed in a number of commercial parallel computers
(e.g., Intel Paragon, Meiko CS-2, Thinking Machine
CM-2). However, it is our impression that this concept
still is not generally understood. Therefore, we first
present the rationale for the dual-processor node (Section
2).

The remainder of the paper is structured as follows. In
Section 3, we discuss a realization of the dual-processor
concept, given in the form of the MANNA node.
MANNA (massivley-parallel architecture for numerical
and non-numerical wplications) is a virtual shared
memory machine developed at the GMD Research
Institute for Computer Architecture and Software
Technology (FIRST) [Gil 941. Performance figures
obtained with that node are given. In Section 5, we
introduce the semantics of latency-minimizing
communication constructs, the synchronized no-wait send
and theprefetched blocking receive. Section 6 deals with
the operating system issues. A parallel operating system
design is presented that takes maximum advantage of the
dual-processor node architecture. In Section 7 it is shown
how the MANNA node supports efficiently a virtual
shared memory mechanism.

2. The Concept of the Dual-Processor Node
The message start-up time depends strongly on the

functionality of the operating system kernel which, in

704
0-8186-5602-6/94 0 1994 IEEE

-~

http://giloi(a)computer.org

turn, is dictated by the mode of operation of the system.
The simplest case is the single-user, single-tasking opera-
tion with one thread of control or several concurrent, un-
scheduled threads. In this single address space model, the
entire node software-application as well as kernel funct-
ions-is running without protection in the same address
space. This simple mode provides a dedicated machine on
which communication is handled by runtime library
routines. With the high-speed PEACE operating system
[Sch 911 running on the 50-MIPS i86OXP superscalar
processor, we have a latency for a single messagepassing
transaction of 24 microseconds. As Table 1 demonstrates,
this currently amounts to the world record in speed.

MANNA'

MANNA **
PEACE 24
PEACE 4

1 processor node ** 2processor node

Table 1: Message-passing latency of parallel machines

Preemptive scheduling and the separation of task
environments must be added if a multi-tasking environ-
ment is to be supported. In a single-processor node, each
communication activity leads now to an operating system
kernel trap performing an environment switch. This
brings the start-up time for the PEACE operating system
on a single i86OXP up to 80 ... 100 microseconds. Over
one third of that time must be attributed to the kernel trap
that becomes part of each communication.

The effect of communication latency can be drastically
reduced by furnishing the node with a dedicated commmu-
nicution processor (CP) in addition to the CPU (AP) [Gas
891. In this symbiosis the task of the AF' is to uninter-
ruptedly produce megaflops, while the CP executes the
communication tasks of the operating system kernel. Both
processor work in parallel; consequently, the communi-
cation start-up time occurs in the CP but is hidden from
the AP. The AP sees only the latency of sending a com-
munication request to the CP.

3. Example: The Dual-Processor MANNA Node
The latency hiding scheme described above has been

implemented on the MANNA computer. Figure 1 depicts
the block diagram of the dual-processor MANNA node.

Both AP and CP are superscalar processors i86OXP.
Thus, both processors have the same memory manage-
ment and can snoop on each other's caches. The processors
communicate through the shared 32-Mbyte node memory.
The elaborate memory design features burst transfer
support from 4 interleaved memory banks, a three-staged,
pipelined memory control unit, and the page mode of
operation. Consequently, the memory access latency of 7
clock ticks is overlapped with the previous access cycle.

4 - h k burstaccess DRAM (400 MyterJsecond &a rate)

Figure 1 Block diagram of the 2-processor MANNA node

This latency hiding scheme results in an access time of
1 clock tick, provided the pipeline is filled and the
accesses are to the same page. This gives the DRAM node
memory almost the behavior of a secondary cache. A bi-
directional communication link with a data rate of 2x50
Mbytes/second connects the node with the interconnection
network, a hiemhy of crossbars [GaM 9 11.

One important design decision concerns the choice of
the caching strategy, write-through or copy-buck. Write-
through leads to a higher traffic on the bus while copy-
buck leads to more snooping (in this case the caches must
snoop not only on writes but also on reads). Figure 2
shows the relative performance of the MANNA node for
the matrix multiplication [Bru 921.

a = performance factor, related toone 186oXP
wlthdatr cseheswitchodoff

-2 CPUs, mpy back

2.4 1CPU,Copy bad 2a81G 20

1 CPU, write through 1.6

2 CPUs. write through 12
t

la 200 300 400 500 marixsize

Figure 2 Node performance for different cache strategies

705

The sustained performance of the matrix multiplication
is 68 MFLOPS (dp) for a matrix size 2100.

4. The Usual Message-Passing Constructs

sage-passing programming models:
remote procedure cull: remote activation of a thread;
rendezvous: blocking send - non-blocking reply -
blocking receive;

no-wait send : non blocking send - blocking receive.
The remote procedure call (RX) usually blocks the

calling thread until the called procedure has signalled
completion. There is no concurrency between the calling
thread and the called thread. In object-oriented program-
ming, the remote object invocufion (ROI) is used instead.

The rendezvous construct offers the advantage of a
synchronous protocol, viz. to work without buffers and
buffer management. Once the rendezvous has been estab-
lished, data objects are transferred directly from user space
to user space. There is no danger of data inconsistencies.
The end-to-end significance of the mechanism provides for
a communication that also synchronizes the two threads.
On the other hand, the construct sequentializes processing
and communication, thus sacrificing some parallel
processing potential.

The no-wait send construct corresponds with asynchro-
nous communication. This not only enhances the parallel
processing capabilities of the machine but also facilitates
programming in the message-passing paradigm, as the
programmers need to deal with only one synchronization
point. This seems to violate the common wisdom that the
no-wait send requires buffering of the sent objects in order
LO preserve the semantics of the program. The rule of
procedural programming that the use of a variable frees it
for the next definition applies also to the send construct.
In the no-wait send mode sending may not be completed
when a following statement redefines the sent object. In
this case, the semantics of the program is violated. This is
avoided if the send construct buffers the value of the
object. Buffering of large objects, however, is undesirable,
as it consumes additional memory space and-worse-
generates copying overhead.

Three kinds of send constructs may be used in mes-

5. Synchronized No-Wait Send,
Prefetched Blocking Receive

The synchronized no-wait send (S N W S) construct of
MANNA implements asynchronous communication while
ensuring the consistency of the sent objects without the
need for buffering. Furthermore, it maximizes the overlap
of computation and communication in the dual-processor
node architecture described above. This is accomplished by

the following mechanism.
(1) The send is non-blocking and non-copying. Exe-

cution of the send procedure proper is initiated in the
communication processor at the point where the construct
occurs. There exists a synchronization point as in a block-
ing send which, however, is separated from the communi-
cation and deferred until it is really needed.

(2) Synchronization is required when the sent object is
redefined. Hence, the compiler inserts a wait prior to the
first statement after the send in which the argument of the
send construct occurs again. At that point, execution is
blocked until the communication processor has signalled
completion. Figure 3 illustrates the S N W S mechanism.

(3) The compiler reschedules the instructions following
the send, to delay the statement with the synchronization
point as much as allowed by the data dependencies. Thus,
as much work as possible is created between the non-
blocking send and the synchronization point.

Nod3 i
AP CP

Node j

I'AP issues smd request to CP ' I
I' CPsencb dataobject'/ -
synchronization point

I'wai t fu send completion */

of dataobject *I

local node thread

annmuriaion request to CP 0 synchronization point

Figure 3 Synchronized No-Wait Send mechanism

The counterpart to the SNWS construct is the pre -
fetched blocking receive (PBR). As in S N W S the point of
communication and the point of synchronization-one and
the same in the usual blocking receive-are now
separated. Here, the synchronization point stays where the
receive construct occurs, while the compiler moves the
actual receive activity ahead in the instruction stream as
much as permitted by the data dependencies. Hence, the
receive activity is already started right after the last use of
the argument of the receive construct. This allows the
system to start the receive activity as much ahead in time
as possible before the wait, thus enhancing the chance that
there will be no blocking after all. Figure 4 illustrates the
PBR mechanism.

The receive message triggers the communication
thread, When that thread terminates, it queues a
completition signal into the inter processor communi-
cation queue. This signal may be used by the application

706

thread to poll for completion of the receive. The
separation of communication and synchronization in the
PBR creates a delay, to be filled with useful computation
by the user or-better-the compiler. The reader will
notice the similarity with a load instruction of a load-store
architecture where it is the task of the compiler to
schedule the load as early as possible in the instruction
stream to avoid wait times because of memory latency.

Node i Node j

E V I W S us3 c

' 1 . AP issues receive reauest to CP */

Pnew vdue received

synchronization pdnl
of blocking receive

.................................. . by CP ,.......... .

local nodethread

commurication request to CP 0 sync+mnizatim point

Figure 4 Prefetched Blocking Receive (PBR) mechanism

6. Operating System Optimization
The use of the dual-processor node can be optimized at

the operating system level so that application threads and
communication threads will maximally overlap. This is
demonstrated by the example of the parallel operating
system PEACE specifically developed for the dual-proces-
sor node.

6.1 Anatomy of the Parallel Operating System
PEACE has three intrinsic components: nucleus,

kemel, and parallel Grating system gxtensions (POSE).
The application may be viewed as a fourth component.

The nucleus implements system-wide inter-process
communication, as well as the runtime executive for the
processing of threads. It provides a minimal basis and is
part of the kernel domain. That is, the kernel is a multi-
threaded system component that encapsulates minimal
nucleus extensions for device abstractions, dynamic
process creation and destruction, association of process
objects with naming domains and address spaces, and pro-
pagation of exceptions (traps, interrupts). POSE performs
the application-oriented services such as naming, process
and memory management, file handling, I/O, load balanc-
ing, and host access.

Kernel services and POSE services are active jobs.
They are implemented by lightweight processes that may
be executed concurrently. In contrast, the nucleus is an

ensemble of passive objects that schedule active objects.

6.2 Microscopic View

for network-wide inter-process communication:
(1) find out where the active/passive objects are located,
(2) enable data transport between nodes, and, therefore,
(3) attach the nodes to the network interface.

The nucleus consist of the 3 problem-oriented protocol
layers shown in Figure 5 . The layers interact through
down-calls and upcalk. Queues are used where possible to
decouple the different flows of control. Calls in either
direction are asynchronous. Message transfer requests are
queued only when needed.

The nucleus performs the three major functions needed

I

Nucleus

queues upcalls

hardware went8 YS- Device

Figure 5 Nucleus architecture

Network-wide communication is carried out by NICE
betwork independent Communication gxecutive). NICE
implements the inter-nucleus protocol. State transitions of
processes and address spaces are initiated via end-to-end
message transfers without the need for intermediate
buffering. This makes NICE a management layer.

The underlying communication via the interconnect is
conducted by COSY (COSY: mmmunication System).
COSY is a protocol suite that can handle all possible
system configurations by logically providing a secured
data transport of arbitrarily sized messages. POD is the
actual network interface (POD: U r t driver). POD
encapsulates the network device and attaches the nucleus
to the network. POD makes COSY independent of the
actually used network device, regardless of whether the
device is physical or logical. This makes the COSY
protocols portable.

6.3 Latency Hiding
In the dual-processor node architecture the distinction

between application processor (AF') and communication
processor (CP) is a software issue. As was mentioned

707

before, the main purpose of the AP-CP symbiosis is to
reduce the effective message start-up time to a few micro-
seconds.

The main task of the CP is to perform the communi-
cation between threads that reside in different nodes, while
local inter-thread communication is handled by the AI'.
Consequently, the AP executes only NICE code
sequences, whereas the CP executes the complete NICE-
COSY-POD protocol suite (NCP suite). Figure 6
illustrates this configuration.

Figure 6 Nucleus-level coupling

The AP-NICE component establishes a message-
passing interface to the application threads. This interface
comprises primitives for inter-process communication and
inter-thread synchronization. All local communication
activities are handled by AP-NICE, while remote message-
passing requests are forwarded to CP-NICE. The coupling
of both NICE modules is implemented by an atomic
queue that stores the network-wide communication
requests. AP-NICE enqueues and CP-NICE dequeues the
requests.

CP-NICE removes the communication requests from
the queue and starts the NCP suite. This happens in
parallel to AP-NICE and the application task(s). Thus,
communication and computation overlap. The message
start-up time for AP threads is determined by the AP-
NICE execution path that queues the communication
request. On the MANNA node this takes under 4 micro-
seconds.

In addition to handling the send requests issued by the
AP, the CP receives incoming messages and delivers them
LO the threads without interrupting the AP. A thread that
is waiting on a message gets ready to run as soon as the
CP has received the message from the link. Note that in
this configuration the AP is never interrupted by

communication requests, only the CP.
The extremely low latency allows for the design of

fine-grain parallel applications. Specific compiler optimi-
zation may be employed: Similar to the pipeline operation
of a RISC processor, the compiler may try to keep the
"Ap-CP pipeline" running by application code restructur-
ing. The communication threads are automatically created
by the run-time system whenever instructed by the com-
piler-generated code. This approach integratres compiler,
run-time system, operating system kemel, and node archi-
tecture, thus ensuring extremely low latencies even in a
multi-tasking environment. What the user sees is a
"monolithic" abstract machine.

7. Support of Virtual Shared Memory
Virtual shared memory (VSM) tLi 861 is a software

layer on top of a message-passing system that provides
the global address space of a virtual memory. Thus, the
scalability of a distributed memory architecture is
combined with the easier-to-use shared memory
programming paradigm. Shared data objects-usually
pages-migrate to the nodes where they are referenced.
This is usually accomplished by a page fault mechanism
similar to the one employed in virtual memory L i 863.

The identity of the owner of an object is found in the
page tables of the node's virtual memory management.
Moreover, the owner of an object (the writer) must know
which other nodes have a copy of it. In the MANNA
architecture, the owner of an object is therefore furnished
with a compiler-generated access list containing the identi-
fiers of all the nodes that share the object. In addition, a
tag indicates the current access capability of the node. The
access list is maintained by a PEACE service called con-
sistency manager. There may be consistency managers for
single shared objects or for groups of objects [CHS 921.
In lieu of owner identifiers, the page tables in the nodes
contain the consistency manager addresses of the pages.
Normally, the consistency manager never changes its
location. Consequently, the page tables need not be
updated after a change of ownership. Furthermore, since
the consistency manager has a copy of the object, it can
directly satisfy requests for copies, without having first to
go to the owner. This saves a significant amount of
message traffic, and it allows the system to destroy
obsolete processes without destroying the shared objects
they own. The executor of this mechanism is the CP.

The existence of multiple copies of memory objects in
the system creates a potential consistency problem when-
ever a copy is modified by a write. This problem can be
handled by an invalidation mechanism similar to the one
applied for cache coherence. If one wants the VSM to
behave exactly like a shared memory, the system must

708

ensure sequential consistency of the VSM accesses.
Sequential consistency can be obtained by the MRSW
mode of operation (MRSW: multiple Eeader - single
writer), i.e., on a write all other copies of the written
object are invalidated. This simple approach, however,
may lead to a significant performance loss.

A more efficient solution is the use of the MRMW
semantics in phases where this does not affect the
correctness of program execution (MRMW: multiple
Eeaders - multiple xriters). Consider, for example, the
lock-step mode of operation where computation phases
and communication phases alternate (this is typical for
data parallel applications). During computation, the nodes
may unresmctedly write into their local copies of a s h a d
object. Before the communication phase is entered, the
diverging copies are then unified into one consistent
object. This may be automatically performed by the
system [Gea 911.

Such a mode of operation can be implemented, e.g., by
the following adaptive consistency model [Gea 911. By
executing a define-local system function a thread receives
the unconditioned write capability for its local copy. The
write access to the copy is confined to the node, i.e., does
not affect the copies of the same object in other nodes.
Thus, threads in different nodes may write into the same
page, each one into its local copy. The only restriction is
that the threads are not allowed to write into the same
location in the page, i.e., the write addresses must be
mutually exclusive. For example, in array processing each
writer may contribute a row or a column to a result
matrix. At the end of the write phase, one of the writers
executes a define-global function. This has two effects:
(1) the system will automatically unify the local copies
into a single global object whose content is the union of
the local changes, while all local copies are invalidated and
(2) the thread that executes the define-global function
becomes the new owner of the unified copy. Unification
can be performed by the hardware. The order in which the
copies are merged is arbitrary. The merging procedure can
be pipelined or be executed in parallel, e.g., by a logtree
merge algorithm. This mechanism is provided by
operating system functions executed on the CP.
Consequently, its overhead is hidden from the AP.

8. Conclusion and Future Work
The latency hiding gain obtained by the dual-processor

node architecture is enormous: the single-message start-up
time may be reduced by up to two orders of magnitude!
However, as Section 6 demonstrates, this requires a
specific, highly optimized design of a parallel operating
system. Existing operating systems-from UNIX to
MACH-are not built according to the rules of optimal

parallel operating system design [SCH 941. This explains
why the commercial systems mentioned above that
adopted the dual-processor concept do not achieve the high
latency hiding gain obtained in MANNA.

Section 5 shows how the degree of parallelism bet-
ween computation and communication can be enhanced. In
addition to the dual-processor node, this requires specific
optimizations in the operating system and the compiler.
Virtual shared memory with adaptive consistency becomes
a special operating system service provided on demand.

References
[Bea 931 Beguelin A., Dongerra J.. Geist A., Manchek R.,
Sunderam V.: A User's Guide to PVM - Parallel Virtual
Machine, available from <netlib(a)ornl.gov> by the message
<send pvm-shar from p v m
[Bru 921 Bruening U.: MANNA Arbiter and CPU Kem. GMD
FIRST Tech. Report 1992
[CHS 921 Cordsen J.. Heuer J., Schrbder-Preikschat W.:
Problem-Oriented Virtual Shared Memory in an Object-
Oriented Parallel Operating System, GMD FIRST Tech.
Report (Sept. 1992)
[GaM 911 Giloi. W.K., Montenegro S.: Choosing the Inter-
connect of Distributed Memory Systems by Cost and Block-
ing Behavior, Proc. 5th Internat. Parallel Processing Sym-
posium, IEEE Catalog no. 91TH0363-02 (1991). 438444
[Gas 891 Giloi W.K.. Schroeder W.: Very High-speed
Communication in Large MIMD Supercomputers, Proc. ICs
'89, ACM Order No. 415891, 313-321
[Gea 911 Giloi W.K.. Hastedt C., Schoen F., Schroeder-
Preikschat W.: A Distributed Implementation of Shared
Virtual Memory with Strong and Weak Coherence, in Bode
A.(ed.): Distributed Memory Computing, Proc. EDMCC2,
LNCS 487, Springer-Verlag 1991. 23-31
[Gil 941 Giloi W.K.: MANNA - Prototype of a Next
Generation Parallel Computer, to appear in Proc. I994
Mannheim Supercomputer Seminar, Springer 1994
[Hae 931 Haenisch R.: SNAP! Prototyping a Sequential and
Numerical Application Palallelizer, Proc. Internat. Workshop
on Automatic Distributed Memory Parallelization. Automatic
Data Distribution, and Automatic Parallel Performance
Prediction (March 1993), Springer LNCS
[Lea 921 Lenoski D., Laudon K., Gharachorloo K., Weber W.-
D., Gupta A., Hennessy J., Horowitz M., Lam M.: The
Stanford Dash Multiprocessor, COMPUTER 3.92. 63-79
[Li 861 Li K.: Shared Virtual Memory on Loosely Coupled
Multiprocessors, PhD thesis, Yale University 1986
[Sch 911 Schroeder-Preikschat W.: Overcoming the Startup
Time Problem in Distributed Memory Architectures. in
Milutiniovic V.. Shiver B.(eds.): Proc. 24th Hawaii InterMt.
Conf. on System Sciences, vol.1. IEEE Society Press 1991.
IEEE order no. 91TH0350-9, 551-559
[Sch 941 Schroeder-Preikschat W.: Optimal Parallel Operating
System Design, Prentice-Hall, Englewood Cliffs NJ 1994

709

