
INTERNATIONAL COMPUTER SCIENCE INSTITUTE I1947 Center Street � Suite 600 � Berkeley, California 94704 � 1-510-642-4274 � FAX 1-510-643-7684Design Principles ofParallel Operating Systems|A Peace Case Study| �Wolfgang Schr�oder-Preikschat yTR-93-020April 1993AbstractForthcoming massively parallel systems are distributed memory architectures. Theyconsist of several hundreds to thousands of autonomous processing nodes intercon-nected by a high-speed network. A major challenge in operating system design formassively parallel architectures is to design a structure that reduces system bootstraptime, avoids bottlenecks in serving system calls, promotes fault tolerance, is dynam-ically alterable, and application-oriented. In addition to that, system-wide messagepassing is demanded to be of very low latency and very high e�ciency. State of the artparallel operating systems design must obey the maxim not to punish an applicationby unneeded system functions. This requires to design a parallel operating system asa family of program modules, with parallel applications being an integral part of thatfamily, and motivates object orientation to achieve an e�cient implementation.�This report is a condensed version of the author's habilitation and will also appear in the proceedings ofthe \International Summer Institut on Parallel Architectures, Languages, and Algorithms", Prague, CzechRepublic, July 5{10, 1993 (Lecture Notes in Computer Science, Springer-Verlag).yOn leave from the German National Research Center for Computer Science, GMD FIRST, RudowerChaussee 5, D-1199 Berlin, Germany, wosch@�rst.gmd.de

ii

1 IntroductionCompared to the classical operating systems area the design and development of paralleloperating systems is a quite new discipline. At the end of the eighties, this discipline becameimportant with the breakthrough of parallel computer systems based on distributed memoryarchitectures. In the nineties, it will be even more important in the realm of massivelyparallel systems. Massively parallel systems consist of hundreds or thousands of processingnodes. Recent studies [8] already present the vision of millions of cooperating nodes. Thepreferred paradigm to construct parallel machines of that scale relies on distributed memory.At the hardware level, the view of a common global memory is sacri�ced. This view will bere-introduced, if at all, by software virtualizing the physically distributed memory space. Avery high-speed message passing network then serves as the \backbone" to interconnect thenodes. Every node operates more or less autonomously. A Multiple-Instruction/Multiple-Data (Mimd) operation principle is established. In the following, the focus is on the logicaldesign of parallel operating systems for these Mimd computer architectures.Traditionally, parallel applications call for extremely high performance of both hard-ware and software. Very low communication latency and, thus, very high communicationperformance are still the predominant user requirements that must be ful�lled by paralleloperating systems for Mimd computer architectures. While in the past shared memoryarchitectures did play the major role, it is very well accepted now that innovative parallelcomputers will be tightly-coupled distributed systems. In order to improve programmabil-ity and, thus, not only user acceptance but also maintainability and applicability, trans-parency [14] cannot be sacri�ced. Transparency, however, can be achieved only at the costof e�ciency. Transparency in the context discussed here means to hide from parallel ap-plications problems coming up with distributed systems. E�ciency means to reduce themessage startup time for a given application to an absolute minimum. The former impliessystem software overhead, whereas the latter demands to generally avoid this overhead. A\vicious circle" parallel operating systems are assigned to break up.As a solution to this problem, two major aspects will be discussed in the following in-vestigations. Firstly, the design of a parallel operating system should lead to a programfamily [25] and, secondly, the implementation should follow the paradigm of object orien-tation [32]. The goal is to try to answer the question of whether distributed (microkernel-based) operating systems are suited for distributed memory parallel computers or speci�csystem software structures are required. If there is the need for speci�c system softwarestructures, the questioning of how much these structures di�er from, or will have in commonwith, distributed (microkernel-based) operating systems is investigated.The outline of the paper is as follows. Section 2 brie
y discusses the characteristics ofparallel operating systems. In Section 3 the functional decomposition made in design processof the Peace [29] parallel operating system is considered. Peace will serve as a case studysystem. Following that, Section 4 explains various system con�gurations emerging fromproblem-oriented arrangements of the Peace building blocks. Conclusions are presented inSection 5. 1

2 Parallel Operating SystemsAlmost any new (commercial) operating system that appears at the market is based on themicrokernel architecture [10]. The most recent example of this fact isWindows-NTTM [6].At �rst sight, this seems to suggest exploiting a microkernel as the common platform ontop of which the parallel operating system should be built. It is quite feasible to evenport microkernel-based UnixTM systems onto distributed memory parallel computers [34],with every node executing the microkernel, a subset of system servers, and at least oneapplication task. But the question comes up whether this really is the right approach.Adopting portable operating systems to parallel machines and providing speci�c, portableoperating system support for parallel computing on these machines are two di�erent matters.The purpose of this section is to show that a microkernel-based architecture is not theultima ratio for building parallel operating systems. First, a brief survey of the currentstate of the art of parallel operating systems takes place. After that, the two most crucialdesign constraints are discussed. These constraints give the arguments to seek for a platformdi�erent than a microkernel. Finally, the design principles standing behind the alternativeapproach are presented.2.1 State of the ArtFor many years, parallel programming was closely related to parallel computing in a sharedmemory multiprocessor system environment. This understanding was also a dominatingissue in operating systems development over the past decade. Multiprocessor operatingsystems such as Mach [33] emerged. But even with these speci�cally designed operatingsystems scalability problems arose when the number of processors signi�cantly increased [2].In many cases these problems were due to an inappropriate kernel structure.In shared memory systems, the granularity of program units that can be executed inparallel is determined by the performance of the process model. The most important aspecthereby is the overhead for process creation, synchronization, and switching. Crucial pointsalways are the vertical interactions between the (non-privileged) application process andthe (privileged) operating system kernel. These interactions are extremely heavyweightwhen compared to local program activities. Most recently, approaches have been madeaimed at reducing kernel interactions in the course of context switches to an absolute min-imum [18]. However, completely bypassing the kernel is not feasible. Both, monolithicand microkernel-based operating system architectures have in common that user and kernelspace are physically isolated from each other. The separation is necessary in traditionalmulti-tasking and timesharing systems. But it is not a predominant requirement in thecontext of (massively) parallel computing.A well-known fact is that shared memory computer architectures are no longer able tokeep pace with the dramatically increasing performance requirements of parallel applica-tions. Well established computer manufacturers identi�ed this problem and decided to gothe alternative way also, namely to refer to distributed memory architectures. Faced withthis situation, parallel operating system design must not place the focus on \old-fashioned"shared memory computer architectures|although the design must not completely ignorethese architectures. 2

A parallel operating system still must take care for the management of a (possibly)very large number of nodes, be able to tolerate node failures, provide I/O services, enablevirtualization of nodes by implementing a proper process and address space model, andease the programming of parallel applications. A site-transparent execution of applicationtasks must be supported, such that (static/dynamic) load balancing becomes feasible. Thiscalls for access transparency, e.g. on �les, I/O devices and other system services, but alsoon application processes. Bootstrapping the system and network-wide loading of processesmust be supported. In this context, one of the major problems will be to synchronizeglobal system activities and to detect the minimal functioning of the system. Centralizedapproaches are to be rejected as they will not only raise fault-tolerance problems but alsoresult in a serious performance bottleneck. Last but not least, traditional system servicesare required such as process, memory, and address space management. Thus, paralleloperating systems are requested to provide many services distributed operating systemstypically provide. However, they should provide these services only on extant-on-use basisand not at all times as this will imply a potential performance bottleneck and an increaseof system complexity.The major di�erence to distributed (microkernel-based) operating systems is that quitea large number of applications accommodate their degree of parallelism to the degree ofparallelism provided by the hardware. Hence, the operating system is not in all cases re-quired to multiplex a single node between several tasks or even threads of control. Standarddistributed operating systems, however, are supposed to do so. Of course are multi-taskingoperating system kernels able to process \well-shaped" parallel applications whose tasks canbe mapped in one-to-one correspondence with the nodes. In particular, this also holds formicrokernel-based systems. However, all the microkernels presently available at the marketfail to e�ciently support the above mentioned type of parallel application [28]. The mainproblem is the arti�cial boundary between user and kernel. This boundary is due to themicrokernel approach and not necessarily demanded by the parallel application. Even if thehardware supports direct network access from user mode and, thus, allows to bypass thekernel when global communication has to take place, yet overloading processing nodes withunneeded system functions does not only waste local memory resources1 but also limitsscalability in general.For all these reasons discussed above and due to the lack of properly designed paralleloperating systems, parallel computer manufacturers developed their own system softwareplatforms. These platforms, however, cannot always be regarded as operating system butrather runtime environment. They were speci�cally developed for a certain distributedmemory parallel computer, having a certain set of applications in mind. Examples areCS/Tools [21], PARIX [26], and UBIK [30]. Except the former mentioned one, these allare systems developed for Transputer-based architectures. The iPSC/2 hypercube with1Virtual memory on the processing nodes is in almost every case sacri�ced, not only for technical reasons.Data parallel programming of distributed memory machines typically makes very large local address spacessuper
uous. Moreover, an \unlimited" local address space is in contradiction to the Mimd principle, namelyto avoid the von Neumann bottleneck to the memory. Note that traditional virtual memory has only littlein common with virtual shared memory [19]. The latter was not introduced to solve the problem of memoryover-allocation, but rather to present a view of a global, common address space that is physically distributed.In particular, for performance reasons, this view can (and should) be implemented without relying on pagingbut on compiler and runtime system support. 3

its 128 nodes is controlled by NX/2, a parallel operating system providing virtual sharedmemory [20]. The operating system for the CM-5 [5], called CMost, is a SunOS variant.This variant, however, is only executed on the control processors. Processing nodes are runby a runtime executive and, normally, will be subjected to single-tasking mode of operation.Nevertheless, there is also support for multi-tasking. But this means that the controlprocessor, i.e., CMost, preempts all tasks belonging to the same application remotely \atthe same time". Multi-tasking is not an autonomous feature of the processing nodes2.These systems have two things in common: highly e�cient network-wide communicationand poor functionality. They all su�er from a design concept that makes it impossible toscale up with the manifold demands of parallel applications. Similarly, state of the artdistributed (microkernel-based) operating systems su�er from a design concept that makesit impossible to scale down kernel functionality accordingly. This is where an innovativeparallel operating system has its niche. The design is required to support scalability in thetwo directions. Functional enrichment must be possible. The design of parallel operatingsystems is assigned to provide a framework for the composition of application-orientedparallel computing platforms.2.2 Design ConstraintsParallel computing de�nes its own \book of rules". No matter which principle is usedfor designing a parallel operating system, the resulting implementation must never hideperformance. One of the most crucial performance limiting factors is embodied by thecommunication system and addresses the message startup time problem. Another importantfactor is the complexity and, thus, immense di�culty of programming massively parallelsystems. This calls for new programming models and still involves large e�orts in theory,language design, and compilation techniques. It is well known, that programming thesessystems must be \liberated from the von Neumann style" [1], but there still are no satisfyingprogramming models available. Compared to that, the operating system can only provide avery modest contribution to cope with the complexity of a machine consisting of thousandsof interconnected nodes.2.2.1 Message Startup TimeThe communication performance problem in massively parallel computer architectures isdominated by the message startup time. Basically, the message startup time determineshow many processor cycles are lost to local application program processing by performingremote interprocess communication. The loss of \number crunching" power caused therebyis not only due to the communication protocol overhead but also a question of the actualoperating mode of the node [28]. A single-tasking mode of operation, e.g., does not implyany form of address space isolation. There is no need to protect either the tasks (sincethere is only one per node) or the kernel (since it only has to keep track of the resourcesof a single task): neither horizontal nor vertical (address space) isolation is required. Thus,the kernel is nothing but a communication library, sharing with the application task the2This somewhat strange scheduling strategy is the result of providing direct user-level access onto thenetwork hardware interface. However, the problem is not in granting the access but the lack of a properlydesigned hardware interface that supports multi-tasking on the node and enables user-level access.4

same address space. Of course, this is inconceivable if a multi-tasking mode of operation isdemanded by the application and, hence, must be supported on the node.The choice of the proper operating mode depends on constraints de�ned by the applica-tion and the kernel architecture. There are a number of parallel applications that scale verywell with the actual number of nodes. These applications call for single-tasking support onthe nodes. The microkernel architecture promotes the encapsulation of system services byuser-mode tasks. This approach demands multi-tasking support on the nodes even if onlya single application task must be locally processed. In this case, the microkernel does notwork for but against the parallel application if the (parallel) operating system was assignedto reduce the message startup time to an absolute minimum.The message startup time mainly is determined by the communication latency of a sin-gle network-wide message passing operation. Latency is caused by all \vertical activities"needed at the source and destination node to send, receive, and deliver a message request(and not the message contents) to a process and all \horizontal activities" between thenodes to execute the communication protocol. That is to say, communication latency is theproduct of node latency and network latency. In massively parallel systems, node latencyprimarily is due to software overhead, i.e., the message passing kernel, whereas networklatency depends on the hardware, i.e., the interconnection network. With the scalar per-formance of a 40 Mips processor (Risc technology) in mind, communication latency mustbe below 10 �sec. As discussed in [22], only then a balanced ratio between the per-nodecomputing power and network performance is achieved.2.2.2 System ComplexityProgramming and management of thousands of interconnected nodes is a non-trivial task|and it does not get better with millions of nodes. It is not only the problem of keepingtrack of all node resources and to associate nodes with application tasks. This still assumesthat a proper programming model exists, enabling to generate that many tasks or threadsof control. Also bootstrapping an operating system enters completely new dimensions.Getting an operating system instantaneously loaded over all the nodes is not only utopiabut will also signi�cantly slow down system startup time. In addition to the di�cultiesarising from the complexity of the computer architecture, the main software problem is thecomplexity of the operating system and the procedure that must be executed during theinitialization process.Basing on a dynamically alterable operating system, bootstrapping only must take careof the absolute minimal subset of system functions that need to be operable at any time.In addition to that, relying on incremental loading features, the consequence will be tosolely bootstrap a single node and to continue bootstrapping of other nodes on demand.The nodes (and so are operating system services) must only be in operation when they areneeded by some application. In �nal consequence the application always takes responsibility(i.e., is the reason) for node bootstrapping. It turns out that, on the basis of the adequateoperating system structure, the majority of nodes of a massively parallel system must notbe bootstrapped at all|incremental loading encompasses incremental bootstrapping. Insuch a context, garbage collection becomes indispensible as well. Just as system functionsare loaded on demand, namely when invoked for the �rst time, they must also be deleted5

automatically when their presence is no longer required.These considerations lead to a situation in which emphasis for the system design mustrest on the ability of being almost arbitrarily con�gurable. It thus tenders to model operat-ing system services by (\medium-grained") objects and trying to reduce the con�gurationproblem to the question of how to generally map objects onto a parallel machine. Program-ming massively parallel systems then mainly becomes a con�guration problem. This is truefor both the user application and the parallel operating system. In order to ease con�g-uration, an object model must found the basis of programming. In this sense, massivelyparallel systems and distributed systems share a very common basis. Approaches stemmingfrom the distributed systems area [15] become transferable to the area of massively parallelsystems to aid the mapping of at least the operating system. Thus, the least minimumrequirement in the development of parallel operating systems is to design a structure thateases con�guration. The operating system must show an actual representation that logicallyconsists of a number of \transient objects".2.3 Design PrinciplesA solution to the problems discussed in the previous sections is to understand a paralleloperating system as a program family and to use object orientation as fundamental imple-mentation discipline. The former concept (program families) helps to prevent to designa monolithic system organization and the latter concept (object orientation) enables thee�cient implementation of a highly modular system structure.2.3.1 Program FamiliesThe program family concept distinguishes between a minimal subset of system functions3and minimal system extensions. It does not prescribe any particular implementation tech-nique. The minimal subset of system functions de�nes a platform of fundamental abstrac-tions serving to implement minimal system extensions. These extensions then are made onthe basis of an incremental system design [13], with each new level being a new minimalbasis, i.e., virtual machine, for additional higher-level system extensions. A true application-oriented system evolves, since extensions are only made on demand, namely when neededto implement a speci�c system feature that supports a speci�c application. Design deci-sions are postponed as far as possible. In this process, system construction takes placebottom-up, but is controlled in a top-down (application-driven) fashion.In its last consequence, applications get to be the �nal system extensions. The tradi-tional boundary between application and operating system becomes indistinct. The oper-ating system extends into the application, and vice versa. An incremental system designalso promotes a dynamically alterable system structure. This approach, thus, is the key tosuccess to overcome the bootstrap problem discussed earlier.2.3.2 Object OrientationApplying the family concept in the software design process leads to a highly modular struc-ture. New system features are added to a given subset of system functions. Because of the3The term \minimal basis" is used as synonym too.6

strong analogy between the notions \program family" and \object orientation", it is almostnatural to construct program families by using an object-oriented framework [4]. Both ap-proaches are in a certain sense dual to each other. The minimal subset of system functionsin the program family concept has its counterpart in the superclass of the object-orientedapproach. Minimal system extensions then are introduced by means of subclassing. Inheri-tance and polymorphism are the proper mechanism to allow that di�erent implementationsof the same interface may coexist at the same time. Code reuse is signi�cantly enhanced,increasing the commonalities of di�erent family members:\We consider a set of programs to be a program family if they have so much incommon that it pays to study their common aspects before looking at the aspectsthat di�erentiate them" [25].For the development of parallel operating systems it is sensible to chose, above all,the program family concept as fundamental design principle. Object orientation shouldprimarily be used as implementation and not as design instrument. Inheritance makes itmuch easier to implement and maintain an incremental system design, but is not mandatoryfor it.3 Functional DecompositionThe maxim for the design and development of operating systems for distributed memoryparallel computers is to reduce the number of site-dependent components to an absolute min-imum. Hereby, a site denotes either of cluster, node, processor, or address space. Whetheror not a system component is sharing with other system components a speci�c site shouldbe a matter of con�guration and not implementation. A highly modular system structureis required. This structure must enable, but not enforce, the decoupling of functional unitssuch that a high degree of decentralization becomes possible. In order to design a structurethat meets the needs of (massively) parallel systems, the following three aspects give somedirections:� The hardware architecture relies on a message passing system. This requires somekind of message passing kernel acting as a software backplane to interconnect all theentities (i.e., user and/or system tasks) that are going to be executed by the parallelmachine.� The parallel machine is of limited scalability. Applications that were designed tooperate in an environment with a larger (or even unlimited) number of nodes mustbe supported by a parallel computing platform virtually o�ering any degree of paral-lelism. Instead of dealing with physical processors (or nodes), precautions for a virtualprocessor model must be made.� The computing platform is a functionally dedicated system. Not all nodes are equippedwith the same set of peripherals and are executing the same software. Most of thenodes are used for number crunching purposes and not every node is directly connectedto a mass storage device, for example. 7

This suggests a system organization, in which each aspect is covered by a separatebuilding block, leading to three major subsystems. Two basic rules motivate this step.The �rst rule is that splitting up a system into subsystems leads to a general divisionof complexity and, thus, makes the problem of constructing a parallel operating systemmore understandable and manageable. The second rule is that a modular structure of well-de�ned subsystems reduces the number of node-bounded system components to an absoluteminimum.With these aspects in mind, since entities must be able to cooperate with each other, thesoftware backplane has to act as minimal subset of system functions. Providing the notionof virtual processors is been done by introducing minimal extensions to the minimal basis,since not every application will acquire more nodes than are physically available. Similarly,services that depend on the availability of speci�c devices are quali�ed as system extensions.The same holds for services that are only used in the context of speci�c applications.3.1 MacrostructureEvery family member is constructed from three major building blocks (Figure 1). Thesebuilding blocks are the nucleus, the kernel, and Pose, the Parallel Operating System Ex-tension. In addition to the system components, the application is considered as the fourthintegral part of this architecture. The application largely determines the complexity of afamily member and the distribution of the building blocks over the nodes of the parallelmachine.
kernelnucleus

application

O {perating}

S {ystem}

E {xtension}

P {arallel}

supervisor mode

user mode

Figure 1: Building blocksThe nucleus implements system-wide interprocess communication and provides a run-time executive for the processing of threads. It acts as minimal basis and is part of the8

kernel domain, with the kernel being a multi-threaded system component that encapsulatesminimal nucleus extensions. These extensions implement device abstractions, dynamic cre-ation and destruction of process objects, the association of process objects with namingdomains and address spaces, and the propagation of exceptional events (traps, interrupts).Application-oriented services such as naming, process and memory management, �le han-dling, I/O, load balancing, and (inter-) networking to provide some host access are per-formed by Pose.Kernel and Pose services are built by active objects implemented by lightweight pro-cesses. In contrast, the nucleus is an ensemble of passive objects that schedule active objects.Each service that is provided by both Pose and kernel is implemented by an entity thatmay consist of several active objects, enabling concurrent service processing. An entityprovides a common execution domain for active objects and de�nes the unit of distribution,while an active object is the unit of execution.Nucleus and kernel constitute the kernel entity. This entity de�nes an abstract processorfor the execution of possibly multi-threaded tasks. The sole purpose of the kernel entity isto provide hardware abstractions that make (parallel) applications and Pose independentfrom the physical characteristics of a given processing node. This also includes providingthe concept of \logical nodes".3.2 Extensibility and Con�gurabilityEntities are system extensions. They are loaded on demand and (in most cases) can bearbitrarily distributed over the nodes of the parallel machine. The need for having a speci�centity running on a particular node is expressed either by the application or by a systemadministrator. In the former case, the entity gets to be loaded when the service it representsis called for the �rst time. The entity vanishes when this service is no longer needed. Thismay happen, for instance, upon termination of the application entity that demanded theservice. Note that in this model, application entities are not distinguished from systementities. In other words, provided that the application is properly structured, incrementalloading of parallel applications is free of charge.In the system administrator case, an initial con�guration description speci�es whichentity must be initially loaded (i.e., bootstrapped). This procedure loads \opaque" enti-ties from some bootstrap device (usually, disk or network) and stores them into the localmemories of the nodes. With understanding parallel programs as a group of such relatedentities, bootstrapping also can be applied to get applications running. The purest form ofbatch processing is achieved.Either way, Pose is a dynamically alterable building block. The design speci�es thatPose alters its shape with respect to the applications that are to be executed by the parallelmachine. Thus, applications determine the actual complexity of the parallel operatingsystem. In �nal consequence, they are responsible for bringing (i.e., bootstrapping) theoperating system on the machine.Incrementally loading the operating system does not mean to place Pose entities ontothe node where the demanding application task is residing. Since these entities are quali�edas site-independent, they can be loaded on any appropriate node. In order to achievean \optimal" mapping, expressing some nearest neighbor relationship between the entity9

and either of higher-level application or lower-level hardware/software component may besensible. This is where the con�guration aspect comes in. The entity is to be attributedproperly and the attributes must be interpreted by some low-level load balancing service.3.3 User and Supervisor ModeLogically, application and Pose are assumed to be executed in the non-priviledged pro-cessing mode (user mode) of the underlying processor. In contrast, nucleus and kernelare assigned for execution in privileged mode (supervisor mode). Thus, the logical designde�nes an arti�cial boundary to isolate these two components from other entities. Thisdoes not mean that the actual system representation always must show for isolated systemcomponents. Rather, the purpose of introducing the boundary is to guarantee downwardscalability.The system design must be complete for being able to later integrate the version of asystem component of signi�cantly lesser (i.e., scaled-down) functionality. Therefore, it is ofimportance to clearly identify those components that, under certain circumstances, mustbe executed in privileged mode and others that can be executed in non-privileged mode.Note that supervisor mode components also constitute the set of (logically) node-boundedentities. The complexity of this set has signi�cant impact on how long it takes getting theparallel machine started. By designing a system structure that exhibits a
uent boundarybetween user and supervisor mode the number of node-bounded entities becomes dependenton the application that must be supported.This design especially promotes address space sharing between all entities of the samenode, provided that the structure of the application allows to do so. In a single-taskingmode of operation, e.g., application, Pose, kernel, and nucleus all may execute withina single address space. However, it must be clear that only in the presence of secureprogramming languages and in the absence of temporary node failures the model of a singleaddress space can be considered as being safe. Nevertheless, this model still is applicable formature applications|and, of course, for mature system components|to prevent per-nodeoverhead in crossing subsystem boundaries. As a consequence, since it is not possible tosafely protect user domains, the entire parallel machine then must be operated in batchmode.3.4 Functional HierarchyThe functional hierarchy de�ned between Pose, the kernel, and the nucleus makes possi-ble a very high degree of decentralization (Figure 2). All components are encapsulated by(active/passive) objects, which requires object invocation schemes to request service exe-cution. Well-de�ned interfaces enforce a clean separation of all building blocks. Di�erentstyles of calling sequences, to pass the interface, then basically distinguish between singleand multiple address space system con�gurations.3.4.1 Invocation SchemesNucleus services are made available to the application and Pose via Nearby Object Invo-cation (Noi). The logical design assumes a separation of the nucleus from the application10

LOI

NOI

ROI

ROI

{L,R}OI

NOI

POSE

kernel

nucleus

application

Figure 2: Problem-oriented invocation schemes(and Pose), which calls for the use of traps to invoke the nucleus and for address spaceisolation. This is the place where cross domain calls may happen. The nucleus is \nearby"the using entity. It shares with the entity the same node, but not necessarily the sameaddress space segment. Since kernel and nucleus together reside in the same address space,the kernel performs Local Object Invocation (Loi) to request nucleus services.Kernel services are made available via Remote Object Invocation (Roi). The Roi schemealways implies context switching, but not necessarily address space switching [24]. A sep-arate thread of control is used to execute the requested method (i.e., service). In contrastto that, Noi logically implies the activation/deactivation of the nucleus address space vialocal system call traps. The implementation of Roi takes advantage of the network-widemessage passing services provided by the nucleus and, thus, is logically based on Noi. How-ever, since nucleus and kernel together de�ne a single program, nucleus primitives invokedby the kernel to either issue or accept Roi requests hence will not be activated via Noi butLoi.Services of Pose are requested via Loi and Roi. The former scheme is used to interactwith the Pose passive objects (i.e., runtime system library) whereas the latter is usedto interact with the Pose active objects. In certain situations the Pose library directlytransforms the issued Loi into one or more Roi requests to the kernel. The Pose servicethen is not provided by an active Pose object but entirely on a library basis.3.4.2 Actual StructureFrom the design point of view neither the kernel nor Pose need to be present on every node,but only the nucleus. In a speci�c con�guration, the majority of the nodes of a massivelyparallel machine is equipped with the nucleus only. Some nodes are supported by the kerneland a few nodes are allocated to Pose. All nodes can be used for application processing,11

but they are all not obliged to be shared between user tasks and system tasks.The functional hierarchy of the three building blocks expresses the logical design ofPeace but not necessarily the physical representation. The building blocks have beendesigned by considering the various schemes of object invocation (Figure 2). However, itdepends on the actual operating system family member whether these schemes becomee�ective as speci�ed by the design or can be replaced by a more simple and e�cient alter-native.Although the functional hierarchy assumes Noi for the interaction between application(Pose) and nucleus, the Loi scheme is used for those members of the kernel family whichplace their focus on performance. The entrance to the nucleus is represented as an abstractdata type with two implementations. The �rst implementation sacri�ces vertical and hor-izontal isolation. Thus, there is neither a separation between user and supervisor mode ofoperation (vertical isolation) nor a separation between competing tasks (horizontal isola-tion). In this case Noi actually means Loi. The second implementation assumes complete(i.e., vertical and horizontal) isolation and requires a trap-based activation of the nucleus.Noi then becomes a cross domain call. Both variants basically distinguish between single-tasking (no isolation) and multi-tasking (isolation) mode of operation. They implementdi�erent members of the kernel family.A single-tasking mode of operation implies that only a single address space is supportedon the node. As was pointed out above, Noi then takes the form of Loi. This also meansthat all interactions with the local residing kernel happen via Loi too. Thus, instead ofRoi, as speci�ed by the design (see also Figure 2), the more e�cient alternative is appliedin that case. Note that this con�guration sacri�ces the address space boundary betweenhigher-level entities and the nucleus. Since the nucleus is part of the kernel address space,sacri�cing nucleus isolation also implies sacri�cing kernel isolation. As the kernel \uses"[25]the nucleus, and thus depends on its correctness, it makes little sense to isolate the kernelin this situation. Nevertheless, kernel services still can and must be provided via Roi. Inother words, there are di�erent invocation schemes existent at the same time to interactwith the kernel: Lio is employed by co-located entities whereas Roi serves to execute kernelrequests issued by remote residing (user/system) entities.3.5 MicrostructureThe minimal subset of system functions de�ned so far is a compromise between scalingtransparency and e�ciency. In fact, the compromise was made only with respect to theinterface speci�cation of the abstract data type representing this subset. The internalbehavior of the abstract data type is manifold and basically distinguishes between singleand multi-tasking mode of operations. That subset de�nes a \minimal but perfect basis"for distributed memory parallel applications.O�ering dedicated single-tasking and multi-tasking kernel implementations enables theuser to deal with the tradeo� between performance and functionality on an individual basis.Parallel applications whose tasks can be mapped in one-to-one correspondence with thenodes are not punished by multi-tasking overhead, as these applications will be supportedby a single-tasking kernel. Experiences show that this overhead takes up to 74 % of themessage startup time when executing a user-level send-receive-reply sequence [28]. Note, a12

state of the art microkernel however supports only multi-tasking and, thus, unnecessarilydrains computing power from a single-tasking application.The minimal subset of system functions is represented by a kernel family that imple-ments four di�erent operation modes (Figure 3). Each operation mode is represented by asubfamily. The entire family tree shows di�erent nucleus versions, with the root (top) beingthe most simple and the leaf (bottom) being the most complex instance. As functionalityand complexity increases, node and, thus, communication latency increases.
multi-user/multi-tasking

single-user/
multi-tasking

multi-user/
single-tasking

single-user/single-tasking

nucleus separation

network communication

security

kernel isolation

network integrity

task scheduling

task isolation

thread scheduling

Figure 3: Nucleus family treeThis organization of the nucleus (i.e., the kernel entity) is one of the major di�erences tostate of the art microkernel designs. The kernel entity de�ned is no single microkernel, buta \microkernel family". It can be adapted to the individual needs of parallel and distributedapplications by providing family members that exhibit di�erent system characteristics re-garding functionality and performance.3.5.1 Single-User/Single-TaskingThe root of the family tree shows three di�erent nucleus instances supporting single-user/single-tasking mode of operation, with tasks possibly being multi-threaded. This oper-ation mode allows only one user application at a time and merely supports the processing ofone task per node. A single address space model is implemented. Consequently, the entireparallel machine is subjected to batch processing. This enables the most e�cient executionof the parallel program and at the same time leads to the most ine�cient utilization of the13

parallel machine, since the machine cannot be shared between a number of applications.Processing of non-dynamic parallel applications is readily supported by the networkcommunication instance. At this stage, thread dispatching is non-preemptive and com-pletely under the control of the application task. This nucleus representation is extremelylightweight and supports the notion of featherweight processes. Featherweight processes area scaled-down version of lightweight processes. Each of them implement the purest form ofa unit of execution, without consideration of any protection and security measures.Thread preemption is the minimal extension to network communication. This meansthread scheduling on a timer basis, actually introducing a second scheduling level. Thislevel implements Cpu protection [27], since a single thread (or task) is no longer able toseize the processor. The additional level knows the bundle as scheduling unit. A bundleconsists of one or more threads, with non-preemptive scheduling of threads of the same bun-dle. Preemptive scheduling only happens between bundles. Bundles are thus autonomousscheduling units and are given a limited time quantum during which execution proceedswithout scheduler intervention. As a consequence, threads execute no longer under the con-trol of the application task but the system (i.e., nucleus). This enables to safely integratekernel-level lightweight processes that implement the service access point for Roi. Thesethreads then are combined into a kernel bundle, while all other threads form the applicationbundle. By that means, kernel service processing works independently from the processingof the application task. It ensures that remotely requested services are processed latest whenthe thread scheduler gains control and selects a clerk [24] for execution|provided that theapplication task sharing with the kernel entity the same address space is \well-behaved"4.The next nucleus instance does not really introduce additional functionality, but providesthe platform for multi-tasking and/or multi-user mode of operations. These operationmodes call for isolation and protection measures. Thus, the nucleus separation instanceintroduces as minimal extensions to thread scheduling Noi and Roi patterns in order torequest services from the nucleus and the kernel, respectively. This kernel family memberprovides a nucleus trap interface. Higher-level entities are physically uncoupled from nucleuscode. Since every nucleus and kernel instance takes the form of an abstract data type, theseentities are also logically uncoupled from kernel-level data. This supports dynamicallychanging the operating mode of a node by replacing the actual kernel entity by a di�erentimplementation. However, note that only code separation is supported, but not memoryprotection. As a consequence, the passing of complex data structures between the kernelentity and higher-level entities is straightforward and involves no Mmu programming.3.5.2 Multi-User/Single-TaskingIn a distributed memory parallel machine, multi-user mode of operation is feasible evenif only a one-to-one correspondence between tasks and nodes is supported. The entiremulti-node machine can be allocated to di�erent users at the same time. For this purpose,di�erent user partitions are provided, with every user application executing within a private4With scheduling bundles of threads that reside within the same address space, in a shared-memorymultiprocessor environment, several processors then may be in charge of executing di�erent bundles. Inthis model, an application task consists of several bundles to take advantage of preemption and of theshared-memory processor architecture. 14

partition. Obviously, this does not require local ("on-board") security measures to protectthe tasks from each other, but it requires to protect the network interface. By direct networkaccess the user task is able to intrude the network and, thus, tasks mapped to di�erent userpartitions.In order to provide a multi-user function, the kernel entity must be entirely isolated.Memory protection is to be introduced as minimal extension to nucleus separation. Thisresults in a new family member, providing kernel isolation. Because the nucleus is part ofthe kernel entity, applying memory protection to the nucleus also implies the isolation ofparts of the kernel address space. In this case, nucleus invocation, i.e., crossing the trapinterface, usually does not cause increased overhead. However, the passing of data structuresgets more heavyweight. It mainly depends on the Mmu and on the (kernel) address spacemodel whether or not additional overhead is introduced5. Anyway, the increase of nucleusfunctionality is encompassed by a potential loss of communication performance.Once the kernel entity is protected, tasks are no longer capable to intrude lower-levelsoftware components and, thus, bypass protection domains. However, in order to com-municate, tasks need to know communication endpoint (i.e., thread) identi�ers, and theseidenti�ers must be passed down to the nucleus along with a communication request. Ina multi-user con�guration, tasks mapped to di�erent user domains must therefore be pre-vented from being able to successfully apply communication endpoint identi�ers of eachothers domain. This is the purpose of the minimal extension to kernel isolation, namelynetwork integrity.In order to model and enforce protection domains, a capability-based approach [7] isused. This approach grants object access only if a thread (i.e., subject) is in the possessionof that object or one of its proxies. An object must be created and bound to a system-wideunique identi�er before it can be used. It is assumed that a unique identi�er cannot bededuced [23]. In order to achieve this, the nucleus generates a random number which, com-bined with a global hash key, is used to make identi�ers system-wide unique. Note that thisprocedure works autonomously and needs not be controlled by a central system component.The creator implicitly possesses the newly created object and henceforth acts as its owner.It is the autonomous decision of the owner to make the object either globally known, by ex-porting its unique identi�er, or even accessible, by exporting its proxy object [24]. Thus, theaccess domain of an object may be extended only through the owner. As a consequence, thenucleus must not verify that communication to an active object is allowed but only whetherthis object exists|knowing the capability of this object enables communication.3.5.3 Single-User/Multi-TaskingThe scheduling paradigm which was introduced by the thread scheduling instance does notdistinguish between multiple autonomous program entities. Merely execution of a singleapplication program (i.e., task) is supported. With having introduced nucleus separation,the processing of several application programs becomes possible by slightly extending the5Usually, the address space of the currently executing thread is mapped into the kernel address space.This enables direct access onto its user address space when the thread temporarily executes in kernel space,unless theMmu requires, though, to explicitly classify each access as a user mode address space operation. Inthat case, simple memory load/store instructions may easily expand to heavyweight read/write procedures.15

scheduling functions. The nucleus can be easily shared by a number of application tasks, asit exploits a trap mechanism to provide a common entry point for independently generatedprograms.A task is represented as a team of lightweight processes, with the team possibly exhibitingseveral thread bundles that can be autonomously scheduled. The team owns resources suchas message bu�ers, memory space for stacks, process descriptors; and task scheduling thenmeans to additionally keep track of the resources owned in order to select the next taskready to run. A scheduling discipline may be favorable that takes care of the current loadand, thus, is trying to improve global system utilization. This further calls for minimalscheduler extensions to those already provided by nucleus separation.At this stage, multi-tasking can be readily supported even if private address spaces arenot provided. A private address space serves for two basic purposes. On the one hand itimplements memory protection, isolating programs from each other. On the other handit de�nes a logical address space to execute a program, enabling code/data relocation atruntime. Being relocatable is also a property of position independent code, which thenneeds to be generated by a compiler. In addition, the use of secure programming languagessupports program isolation without the necessity of address space protection hardware.For all these reasons an intermediate step was made. This step introduces the taskscheduling instance as a platform for multi-tasking. A minimal extension to this platform isintroduced with task isolation, encorporating full address space protection. This extensionis used to generally improve system availability and in those cases where neither the pro-gramming language nor the compiler provides adequate support for a single address spacemulti-tasking mode of operation. Task isolation extends not only task scheduling but alsokernel isolation. The latter family member already provides vertical isolation to protectthe kernel entity from higher-level user entities. With task isolation, the nucleus is alsofunctionally enriched by measures of horizontal isolation to protect user entities from eachother.3.5.4 Multi-User/Multi-TaskingBy combining the functions of network integrity and task isolation, a new nucleus instanceemerges. This instance introduces multi-user security. Multi-user security in a distributedenvironment demands communication �rewalls and protected address spaces. The former isachieved by ensuring network integrity and the latter is achieved by enforcing task isolation.Obviously, the peak of system functionality has been reached, however only at the cost ofsystem performance.3.6 Communication SystemThe nucleus performs network-wide message passing between processes and address spacesand needs a communication system for this purpose. The communication system is askedto (1) keep track of interactions between remote residing processes (i.e., active objects),(2) execute some sort of transport protocol, and (3) control the network hardware inter-face. A communication system emerges that exhibits three problem-oriented protocol layers(Figure 4). 16

upcallsdowncalls

nucleus

software events

hardware events

device

CLUB

COSY

NICE

process

Figure 4: Communication system architectureInteractions between the layers happen via downcalls and upcalls [3]. Queues are usedwhere possible to decouple the di�erent
ows of control. Calls in either direction are virtu-ally asynchronous, since it depends on the actual load and on the nucleus con�guration ofwhether message transfer requests must be queued or can be immediately carried out. Thecommunication protocols implemented by these three layers are also referred to as NC2,which stands for \Nice{Cosy{Club".3.6.1 Inter-Nucleus ProtocolThe nucleus supports network-wide communication between both processes (i.e., threads)and address spaces (i.e., teams). Interprocess communication is synchronous and packet-oriented whereas the communication between entire teams works segment-oriented and isasynchronous. In order to communicate, the locality of processes (active objects) and/orteam address spaces (passive objects) must be known. This is the task of the top layer ofthe communication system. It determines the correlation between active/passive objectsand the nodes where these objects are residing.Network-wide communication between objects is supported by Nice (Network Indepen-dent Communication Executive). The Nice layer implements the inter-nucleus protocol. Itextends into a network environment local functions dealing with the control of processesand address spaces. Network communication is not been done by Nice, but by some lowerlevel communication system (i.e., Cosy). Instead, state transitions of processes and ad-dress spaces are controlled to logically enable end-to-end data transfers without the needfor intermediate bu�ering. 17

The base function of the inter-nucleus protocol is to verify the presence of communicationendpoints. This measure is to ensure availability of address spaces that are either sourceor destination of a data transfer. The basic inter-nucleus protocol primarily encapsulatesresource management strategies. It does not implement security measures. Since not inevery con�guration the parallel machine is run in a multi-user mode of operation, securityis implemented as minimal extension to a minimal subset of Nice functions.3.6.2 Transport ProtocolData transfer is accomplished by Cosy (COmmunication SYstem). This layer encapsulatestransport protocol functions and provides an abstraction from actually given network ca-pabilities. Depending on these capabilities, Cosy is more or less complex. It provides aprotocol family and not only a single implementation for all possible system con�gurations.Logically, Cosy takes responsibility for a secured data transport of arbitrarily sizedmessages. However, \logical" does also mean a con�guration in which Cosy is not incharge of any network activities. That extreme situation arises when the network hardwareitself is capable of transferring message streams in a manner required by parallel applica-tions. In those cases, Cosy simply passes through all requests from and to Nice, withoutinterpretation.Cosy supports the concept of virtual channels. Downcalls fromNice, that have networkrelevance and thus imply a message transfer, are furnished with logical addresses of the nodesto which these calls are directed. A logical connection between the sending and the receivingnode is established and made known by generating a virtual channel identi�er. In reality, avirtual channel is nothing but a number that is used as hash key to locate protocol objectsthat manage a speci�c connection. Upcalls from Club deliver virtual channel identi�ers aspart of the Cosy packet that was just received.The protocol objects Cosy implements distinguish between di�erent data transportfunctions. They are tuned with respect to the given class of network, however withouthaving knowledge of how this network is really accessed. Access transparency in this caseis rendered possible by Club. Transport protocol functions for message segmenting andreassembly, e.g., are provided when it is required by the network or even by the application.3.6.3 Network Device ProtocolAbstraction from the physical network interface is been done by Club (CLUster Bus).The bottom layer of the communication system, thus, encapsulates the network device andattaches the nucleus physically to the network. This layer implements the network devicedriver.Club provides the view of an abstract network device that may have several physicalrepresentations. The Club abstraction makes Cosy independent from the network deviceactually used, no matter of whether this device is a physical or a logical one. By that means,the portability of Cosy protocols is supported. It also provides a framework for the de-velopment of communication protocols, as it becomes possible to test new implementationsunder the control of some host operating system instead of being compelled to use the barehardware. 18

Another important aspect of Club is to allow coexisting Cosy entities to share a singlenetwork device. A sending Cosy entity provides additional demultiplex information used bythe receiving Club instance to select the proper transport protocol entity for the incomingmessage6. Which pair of Cosy entities becomes e�ective is an attribute of the messagesending process. In principle, Club performs dynamical binding of upcalls to Cosy acrossthe network. A message object that is going to be transmitted by means of Club encodesthe upcall handler (i.e., method) to be used for the delivery of that object to the peer Cosyentity|a Club message is some sort of \Active Message" [31].3.7 Communication LatencyThe most crucial aspect ofMimd systems is the message passing performance, in particularthe message startup time. As was mentioned earlier, the message startup time dependson the communication latency of a network-wide message transaction. The communicationlatency depends on (1) the node latency for sending and receiving a message to/from thenetwork and (2) the network latency for actually transferring the message to the peer node.Node latency is mainly a software issue, whereas network latency primarily depends onthe communication hardware. Thus, in order to reduce the message startup time, thenode latency should be kept as small as possible|and this calls for a proper design andimplementation of the nucleus and the embedded communication system.The \coarse grain" approach is to rely on a kernel family. That is to say, node latencyis reduced by letting applications only pay for the service functions really needed. Thisapproach is re�ned basing on a communication paradigm by means of which arbitrarilysized messages are exchanged (1) in a pipelined manner and (2) directly between the addressspaces of the communicating threads without intermediate bu�ering. The transfer of amemory segment basically means to send a message header immediately followed by amessage trailer. At the receiving site, the message header is used to announce the arrivalof a message segment and to enable the delivery of the incoming data to the destinationaddress space. The basic idea is the following:� overlap the header transmission with the procedure locally executed to setup themessage trailer;� overlap the trailer transmission with the procedure remotely executed to deliver themessage segment.Trying to overlap the above mentioned communication phases is motivated by the \short-term bu�ering" capabilities of the network. Typically, there are two categories of bu�ers.These are the \communication wire" and the sending and receiving Fifo registers of thenetwork hardware interface. If Dma is exploited in the transfer procedure, an overlap maybe given only if the memory bandwidth is not fully utilized in order to send the messageout of the node. As long as the Cpu can run memory cycles and/or primarily performscode/data cache accesses, the fetch-execute-cycle is not delayed and operates with full speed.6This feature is required if the same network is the only means by which node bootstrapping is possible.In this case, \normal" messages must be distinguished from \bootstrap" messages.19

This makes the processing of Cpu instructions (in particular, nucleus software) appear inparallel to the network-wide transfer of memory cells.The scenario of trying to overlap message setup and transmission phases is illustratedin Figure 5, which shows a �ne-grain breakdown of the communication latency. Networklatency basically consists of two parts: packet latency (i.e., message header transmission) andsegment latency (i.e., message trailer transmission). It depends on the network architecturewhether both parts will accumulate to the same delay. Note that the network may be tunedto speci�cally support the transfer of small and �xed size packets [5]. Node latency is thesum of sender latency and receiver latency. The former is due to the header and trailersetup procedure, referred to as header latency and trailer latency, respectively. The latteris due to (1) signaling and handling a communication interrupt, (2) receiving a packet fromthe network, (3) forwarding this packet to Nice, (4) verifying the destination address spacesegment, and (5) accepting the message segment from the network. The last four stepsdetermine the delivery latency of a segment and are the most crucial factors in trying toreduce the message startup time. In principle, these steps are performed by the portablepart of the nucleus. The �rst step listed relates to the non-portable nucleus part and ishighly processor-dependent. The play for tuning the receiver latency, thus, is the fractionmade up by the delivery latency.
header latency

trailer latency

packet latency

segment latency

sender latency

network latency

communication latency

receiver latency

delivery latency

Figure 5: Message delivery latencyAchieving message delivery on time is a question of the receiver latency. The longer theexecution path is between signaling the communication interrupt (in order to receive themessage header) and accepting the message segment, the longer the receiver latency is. Thelength of this path particularly depends on the processor architecture and on the operatingmode of the receiver node. State of the art Risc processors may cause a prohibitively large20

performance decrease of interrupt-driven communication systems7. A single-tasking mode ofoperation calls for signi�cantly less nucleus functions that must be processed in the receiveprocedure than a multi-tasking mode. Consequently, delivery latency of a single-taskingnode is smaller.In order to overcome the receiver latency problem two solutions are possible. The �rstsolution applies a di�erent communication pattern. This pattern, e.g., will cause the Cosyentity at the receiver site to explicitly signal when to transfer the message trailer, whichrequires to execute a handshake protocol. Similarly, the Cosy entity at the sender site onlytransmits the header and then waits on the signal to start the trailer transfer. The secondsolution is to still rely on the original communication pattern but introduce a delay slotbetween the transfer of message header and trailer. The delay slot is computed accordingto the following formula:Tpacket = Lpacket + LdeliveryTsegment = Ltrailer + LsegmentTdelay = Tpacket �MIN(Tsegment; Tpacket)However, introducing delay slots is a meaningful undertaking only if message delivery withina known and �xed time frame can be guaranteed. This calls for real-time capabilities of allnucleus instances involved in network-wide high-volume data transfer. In particular, it re-quires NC2 to implement a (scaled-down) real-time communication protocol [9]. In additionto that, the network hardware must provide guarantees for the allocation of packet transferslots. There must be a �xed and known (worst-case) delay from which the occurrence ofthe remote communication interrupt due to a transmitted header packet can be deduced.This delay is the packet latency.4 System CompositionA number of problem-oriented system con�gurations become possible by combining thebuilding blocks nucleus, kernel, and Pose in a manner required by the hardware architectureand/or demanded by the parallel application. In the following, a distinction between anative operating system for distributed memory parallel computers and a parallel computingplatform for (high-performance) distributed systems is made. It is demonstrated that thedesigned system architecture is applicable in completely di�erent environments.4.1 Native Operating SystemA native operating system runs on the bare hardware. It is assigned to control all hardwareresources without assistance of some other operating system. Being of native type mainly is7For example, the Peace trap handler for the i860 is about 2000 lines of C code and has to take intoaccount a number of obstacles de�ned by the pipeline architecture of this processor. Assuming 40 Mipsperformance, a single interrupt may cause a delay of approx. 50 �sec before the �rst (C++) interrupthandler statement is executed. This is about three times slower than in the case of a 2Mips mc68020, whichis a Cisc processor. E�ectively, there is a factor of 55 in interrupt handling startup time decrease, althoughthe i860 has a 20 times higher scalar performance than the mc68020.21

the question of how to isolate and implement the hardware-dependent system components.Hardware dependency also means site dependency, namely that a device driver, e.g., hasto reside on the node the device to be controlled is attached to. As discussed later on,replacing carefully isolated components may not only imply the portage onto completelydi�erent hardware platforms but also to transform a native operating system into a user-level runtime executive.There are two system components encapsulating site-dependent functions. These arethe nucleus and the kernel. The nucleus is site-dependent because it acts as the minimalbasis needed to interconnect cooperating active objects of a parallel/distributed applica-tion. Since the nucleus supports network-wide communication and preemptive scheduling,hardware-dependent modules are used as abstractions from a clock device and a network de-vice. In addition to that, the nucleus shows for hardware-dependent modules that implementprocessor abstractions needed to perform process switching and interrupt synchronization.The kernel is site-dependent because it encapsulates additional device driver functionsused to support speci�c application and/or system con�gurations. Examples are the Mmudriver and the disk driver, the former necessary to implement multiple address spaces orvirtually shared memory and the latter required for �le handling purposes. In addition tothese hardware-dependent features, the kernel also is assigned to implement a dynamicalprocess model. This calls for process management functions that are not necessarily hard-ware but site-dependent. Process creation, e.g., means allocation of a process control blockon a speci�c node and this can be done only by kernel modules residing on that node.Pose is classi�ed as site-independent and, thus, hardware-independent in terms of porta-bility. Although providing memory management and �le handling functions, e.g., Pose ishardware-independent since it bases on hardware abstractions introduced by the kernel.Both examples depend on abstractions from low-level hardware capabilities and are not re-quired to be co-located with the hardware devices that e�ectively carry out the managementfunctions, namely to setup some address space segment or read/write a disk block.For the reasons mentioned above, Pose is arbitrarily distributable across the parallelmachine. Since the presence of the kernel is only required in the context of speci�c applica-tion or system structures, nodes may also be equipped with the nucleus solely. This leads toa number of possible node con�gurations as illustrated in Figure 6 (shaded boxes intimatethe application building block).4.1.1 User-Speci�c NodesA user-speci�c node is equipped with a minimal subset of system functions only. Focusis on application processing and this means to entirely sacri�ce on Pose. That is to say,Pose services are provided elsewhere, but never on a user-speci�c node. These services arerequested on Roi basis and, therefore, transparently accessible from remote.With this background, only nucleus and kernel are provided as local system support.However, the kernel is required only under the following circumstances:� the node has globally accessible devices attached to,� the node is to be managed/controlled from remote, and/or� the application calls for scaling transparency.22

(statical tasks)
multi-taskingsingle-tasking

(dynamical threads)

single-tasking
(statical threads)

single address space

multi-tasking
(dynamical tasks)

multi-tasking
(monolith)

multi-tasking
(microkernel)

device server

system server

non-specific
nodes

network

user-specific
nodes

system-specific
nodesFigure 6: Operating mode varietyIn the �rst case, the device driver simply exhibits a Roi interface. The second case workssimilar and, for instance, enables remote residing system components to force a \warmstartup" and to construct/destruct active objects and/or address spaces. The third caseassumes support for dynamical process management to enable many-to-one correspondencebetween application tasks and nodes.Applications that scale well with the actual number of available nodes only call for asingle-tasking mode of operation. In this mode, a further distinction is made between con-�gurations supporting statical threads and dynamical threads. In the statical case, multiplethreads of control are established as a \side-e�ect" of bootstrapping. These threads thenexist as long as the node is executing the single application task. As a consequence, onlythe nucleus is required for application processing. In the dynamical case, multiple threadsof control are dynamically created and destroyed. This feature is provided by the kernel.The nucleus remains unchanged and the kernel adds minimal nucleus extensions used forthread management.The main characteristic of the statical and dynamical threads model, however, is thesingle address space on a node. Thus, nucleus and kernel take the form of a runtime library23

that is directly linked to the application task. All local system functions are requestedon a Loi basis. The kernel additionally o�ers a Roi interface to remote residing systemcomponents. This single address space approach reduces the message startup time to anabsolute minimum, since protection domains are not implemented and, therefore, must notbe bridged in the course of processing communication primitives. The single address space,thus, is the most important prerequisite to make lightweight processes even featherweight.Scaling transparency calls for multi-tasking mode of operation. This implies multipleaddress spaces per node. A further re�nement leads to the distinction between statical tasksand dynamical tasks. This is a similar distinction as the one made in the case of singleaddress spaces. A library implementation of nucleus and kernel, as in the single addressspace variant, is no longer feasible. Rather, the kernel family member providing nucleusseparation (refer to Section 3.5) is to be used as minimal basis on that node.4.1.2 System-Speci�c NodesA system-speci�c node is used as server station and provides globally accessible operatingsystem services. These nodes provide services that either have been o�-loaded from user-speci�c nodes or are required to control devices. That is to say, system-speci�c nodes mayhost site-dependent as well as site-independent services.One scenario in establishing a system-speci�c node is to have only nucleus and kernelrunning, with the kernel encapsulating one or more node-speci�c device drivers. In thiscase, a device server node is con�gured. This node provides remote device access on Roibasis. The nucleus is used to enable cooperation with the device driver (an active object)residing on that node. A typical example is to introduce a disk node. The main purposeof the kernel-level disk driver then is to implement disk block caching on that node andto provide cache read and write operations via Roi. In this case, �le system functions areprovided elsewhere and may even be available on a library basis, only. Since Roi is usedto interact with the device, applications are unaware of the fact that disk I/O is not reallyperformed by a user-speci�c node, for instance. This also is true with �le managementfunctions taking the form of a user-level library, thus hiding the disk driver (i.e., cache)interface.The disk driver example explained above may cause problems with several applicationtasks going to access the same disk partition, i.e., �le. In order to prevent data inconsisten-cies, a �le cache consistency protocol is to be executed. This can be readily achieved on alibrary basis as well. Another and more straightforward approach, however, is to add a �lemanager to the device server node. This introduces a system server node that does not onlymake devices globally accessible but is also assigned to provide general (site-independent)operating system services.File management is only one example to establish a system server node. Naming, pro-cess management, address space management, paging (e.g., in a virtually shared mem-ory context), trap handling, incremental loading, load balancing, networking are furtherexamples|and the list could be continued. That is to say, almost any Pose service isa candidate for being o�-loaded from user-speci�c nodes and, thus, establishing a systemserver node. All these services are provided on Roi basis and are therefore accessible cross-ing node boundaries. 24

The device server con�guration also implies a single address space model. Solely thekernel entity (i.e., nucleus and kernel) is executed on the node. In the system server case,address space isolation may be required. However, whether or not this really needs tobe done depends on the number and type of Pose services being executed by the node.Separation between user and supervisor mode could be an issue, just as address spaceprotection. Logically, a system server node implies a multi address space model.4.1.3 Non-Speci�c NodesA non-speci�c node executes user as well as system tasks. That is to say, in additionto nucleus and kernel, non-speci�c nodes also exhibit the Pose and application buildingblock. With Pose being executed in user mode, a con�guration emerges that compares toa typical microkernel organization. In this case, nucleus and kernel provide a (supervisormode) platform on top of which microkernel-based user and system applications can beprocessed. For obvious reasons, vertical and horizontal isolation measures are required.That is to say, the kernel entity needs to be isolated from higher-level (user and Pose)tasks and the tasks need to be isolated from each other. A distinction between user andsupervisor mode of execution is demanded.The second con�guration of a non-speci�c node is to have only application tasks exe-cuting in user mode. Pose, kernel, and nucleus then will be subjected to supervisor modeexecution. In addition to that, operating system services are provided by passive objects.This leads to a traditional monolith, i.e., a procedure-based operating system in which allservice functions are mapped into the same (supervisor mode) address space. Both, theRoi paradigm used to interact with Pose and/or kernel and the Noi paradigm used tointeract with the nucleus are of procedure-based nature anyway. It merely is a question ofhow these calling principles are carried out by an actual system representation.The duality of process-oriented and procedure-oriented operating system structures [16]makes possible to present a design that can be implemented either way. However, having aprocess-oriented implementation (by means of active objects) in mind is the right approachin order to prevent possible performance bottlenecks. It is important to clearly identifysystem components that are possibly associated with an autonomous thread of control,protected by a separate address space, executed on a di�erent node, and, therefore, accessedvia Roi. On this basis, it becomes a matter of con�guration to generate an actual systemrepresentation that really exhibits active objects as service providing entities. The otherway round, namely assuming that all components will share the same address space, mayend up into a highly ine�cient implementation if decentralization needs to be achieved ina later development phase. This even may hold although, from the software technical pointof view, either representation is possible.4.1.4 Con�guration InterplayAll con�gurations discussed above are able to coexist. The nucleus is used as commoncommunication platform. Since Pose and kernel services are provided by means of Roi,user-speci�c nodes are able to request services executed by either system or non-speci�cnodes. Vice versa, system-speci�c nodes are used to manage the parallel machine in termsof a processor bank, allocating user-speci�c nodes for the processing of parallel applications.25

Whether or not user-speci�c nodes can be run by a combination of the con�gurationsshown in Figure 6 (and explained above) actually depends on the application. For example,a load balancer (residing on a system server node) may decide to allocate as many tasks aspossible in one-to-one correspondence with the nodes. If the number of tasks exceeds thenumber of available nodes, some and not all of the nodes need to be driven in multi-taskingmode of operation. This assumes that the number of tasks is already known at loadingtime. A con�guration description (in the sense of a batch job speci�cation) can be usedto instruct the load balancer accordingly. That way, parallel applications are tried to bemapped onto a multi-node machine with the goal of keeping the message startup time forthe majority of tasks as small as possible. Note, one-to-one correspondence between tasksand nodes also implies a single address space model and, thus, results in a low messagestartup time.4.2 Parallel Computing PlatformThe previous subsection discussed a system con�guration that was classi�ed by a monolithicrepresentation of Pose, kernel, and nucleus. All three building blocks share the sameaddress space and will be subjected to supervisor mode of execution. The other view,however, may also be sensible, namely to let the building blocks execute in user mode. Inthis con�guration, a so-called \guest level" implementation of the native operating systemon top of some other (host) operating system emerges. In fact, if the designer decides toconstruct a highly portable and con�gurable operating system, a guest level implementationis feasible in almost every case. It is mainly a question of how to isolate hardware-dependentsystem components|and this, at all, is the key question in order to achieve portability.A guest level implementation of a parallel operating system is not only sensible but alsomandatory at all. Consider the case in which a parallel machine is attached to some hostcomputer on top of which a quite di�erent operating system is likely to be executed. In thatcase, software packages need to be available for not only interconnecting the two di�erenthardware components but also coping with the heterogeneity issues raised by two di�erentoperating systems. Three approaches for host interconnection can be distinguished. Theseapproaches di�er in the way a parallel application is going to be mapped onto the entirehardware complex. They also exhibit di�erent techniques to physically interconnect bothhost and parallel computer.4.2.1 Asymmetrical CouplingA straightforward way to achieve the host coupling is to mainly provide utility programsthat help users to utilize the parallel machine for their own purposes. These programs rununder control of the host operating system. They are started by some sort of commandinterpreter. The entire complex de�nes a hosted system (Figure 7).The parallel operating system then has to exhibit (1) a communication service that relieson protocols dictated by the host operating system and (2) service functions implementingthe bridge to the host-resident utility programs. For example, in the Unix case Tcp/Ipneeds to be run by some node of the parallel machine. Typically, the coupling is implementedby a system-speci�c node. This node also may be assigned to execute software that enablesthe interaction with the utilities controlling the parallel machine. In that scenario, the host26

(UNIX)

workstation

PEACE

PEACE

host

gateway processor
bank

application

tcp/ip

TCP/IP

ROI

NC

parallel computer
shell

2Figure 7: Hosted systemcomputer acts as frontend only. Application tasks are only executed by the multi-nodemachine.Although straightforward and undoubtedly applicable, the pure frontend approach hasits limits for quite a reasonable number of (distributed memory) parallel applications. Manyof these applications distinguish between a host task and a node task. There will be onehost task only, but a number of node tasks. The host task typically creates the node tasks,distributes initial parameters, and awaits �nal results that have been jointly computedby these subtasks. Node tasks actually represent the computational aspect of the parallelapplication, while the host task corresponds to the management aspect. This is also referredto as \host/node programming". In fact, the parallel program is to be distributed not onlyover the nodes of the parallel machine, but also over the host.4.2.2 Logically Symmetrical CouplingIn order to overcome the limits given with an asymmetrical coupling between host andparallel computer, a host task must be supported by the same software platform used toprocess node tasks. This can be achieved by following up two ideas:� make changes in the host operating system, i.e., add new kernel functions that mirrorthose provided on the nodes;� let the kernel unchanged and provide a user-level software package that simulates thenodes of a parallel machine.Following an approach that relies on host operating system kernel changes to achievethe interconnection extremely limits applicability and availability of the parallel machine.Even in the kernelized approach an e�cient coupling is not guaranteed. For these reasons,the more promising way is to entirely rely on user-level software packages.This is where the guest level implementation of a parallel operating system demonstratesits full power. In is not only a means by which parallel computing is made feasible byrelying on local area network technology, for instance. Rather, this implementation de�nes27

an abstract parallel machine, hiding from the application the di�erent hardware subsystems.Basically, a self-hosted system emerges as shown in Figure 8.
(PEACE)

(UNIX)

parallel computer
PEACE

PEACE

processor
bankgateway

host

guest level

application

tcp/ip

TCP/IP

ROI

ROI

NC
2

workstation Figure 8: Self-hosted systemThe tasks of the parallel application all see the same abstractions. The host task isable to cooperate with the node tasks on Roi basis. In particular, the host task candirectly exploit the services provided by the parallel operating system. Vice versa, theparallel operating system is enabled to take advantage from the services provided by thehost operating system. The host-residing part of the guest level implementation takes carefor the mappings.Nevertheless, the coupling between host and parallel machine is only logically symmet-rical. This is because the interconnection still bases on two di�erent networking schemes.The host is reachable via standard technology, such as Ethernet or Fddi and Tcp/Ip. Thenodes of the parallel machine are networked by means of a problem-oriented communicationsystem, e.g. the NC2 suite. As consequence of these quite di�erent networking techniques,a system-speci�c node as gateway still is indispensable. The gateway function then is totranslate Tcp/Ip messages into NC2 messages, and vice versa.4.2.3 Physically Symmetrical CouplingThe gateway node of the parallel machine may easily become a serious bottleneck if largetra�c is encountered. For example, this is the case when only the host provides specialoutput devices in order to adequately display the results of a parallel computation. A typicaldevice is the graphics display. Such a display usually is shared by a number of di�erentapplications and not necessarily been used by parallel applications only. Its proximity tothe host, thus, is quite reasonable.Overcoming the potential I/O bottleneck de�ned by the gateway node, however, hasfar-reaching consequences. First, additional hardware support is required, namely to di-rectly attach the host computer to the network that interconnects the nodes of the parallelmachine. Second, standard communication protocols as used by the host operating systemfor Lan environments must be sacri�ced. 28

(PEACE)

(UNIX)

workstation parallel computer

guest level

host

PEACE

bank
processor

application

ROI

NC
2Figure 9: Self-hosted integrated systemThis approach leads to a fully integrated system (Figure 9). It does not require tore-implement (or even port) parts of the parallel operating system, excepted the Cosy pro-tocols. The guest level implementation still may be a user-level software package. However,instead of accessing Tcp/Ip sockets, e.g., raw network device access is required. The guestlevel then must have been extended by the same Cosy implementation that is actually beenused by the native nuclei.5 ConclusionA massively parallel computer, by its nature, is a tightly-coupled distributed system. Parallelapplications being run by this machine, thus, are speci�c types of distributed applications.These applications demand system-wide message passing with very low latency and veryhigh e�ciency. It is this performance issue which, from the operating system design point ofview, is one of the most signi�cant characteristics to distinguish a parallel application from adistributed application. Distributed operating systems, even those basing on a microkernel,are by far too overhead-prone. Rather, speci�cally designed parallel operating systems arerequired, which also show for distributed operating systems characteristics.The major goal in parallel operating system design, therefore, is to combine transparencywith e�ciency. Transparency means to hide from parallel applications typical problemscoming up with distributed systems|but without enforcing transparency in all cases. Thisrequires to provide almost every system service a distributed operating system provides|but not necessarily providing these services at all times. E�ciency means to reduce themessage startup time for a given application to an absolute minimum. Message passing is afundamental system capability to support inter-node communication in massively parallelsystems and, hence, must be provided by a proper platform|but without all applicationsbeing obliged to use the same platform. Thus, system services are to be provided on extant-on-use basis.State of the art parallel operating systems design must obey the maxim not to punishapplications by unneeded system functions which are unexploited but still \used"[25]. Thisincludes the entire spectrum of computer resources, ranging frommemory space to processorcycles. An open, application-oriented operating system structure is required, with the29

application and not the operating system deciding which functions must be supported andwhich must not. An approach should be followed in which an operating system is beingunderstood as a family of program modules and not as a monolith of more or less relatedcomponents. In such a context, the parallel application is an integral part of a family ofparallel operating systems and object orientation then is the natural choice to design anddevelop such a family. Thus, an application becomes the �nal system extension.The paper presented rationale and concepts of the design of parallel operating systemsfor distributed memoryMimd machines. Peace was used as a case study system to exem-plify the design concepts. The Peace system is running as Unix guest level on a clusterof workstations and as native operating system on a 16 node (32 processor, i860) Mannasystem [12], 64 node (T800) Transputer system, and 320 node (mc68020) Suprenum sys-tem [11]. It provides a common, object-oriented and scalable \software backplane" forparallel computing [17].AcknowledgementI would like to thank Joachim Beer for his helpful comments on the manuscript of thisreport.References[1] J. Backus. Can Programming Be Liberated from the von Neumann Style? A FunctionalStyle and Its Algebra of Programs. Communications of the ACM, 21(8):613{641, 1978.[2] R. Bryant, Hung-Yang Chang, and B. Rosenburg. Experience Developing the RP3 Op-erating System. Computing Systems, The Journal of USENIX Association, 4(3):183{216, 1991.[3] D. D. Clark. The Structuring of Systems Using Upcalls. Operating Systems Review,19(5):171{180, 1985.[4] J. Cordsen andW. Schr�oder-Preikschat. Object-Oriented Operating System Design andthe Revival of Program Families. In Proceedings of the Second International Workshopon Object Orientation in Operating Systems (I-WOOOS '91), pages 24{28, Palo Alto,CA, October 17{18, 1991. IEEE 91TH392-1.[5] Thinking Machines Corp. The Connection Machine CM{5 Technical Summary. SystemReferance Manual, October 1991.[6] H. Custer. Inside WINDOWS-NT. Microsoft Press, ISBN 1-55615-481-X, 1993.[7] R. S. Fabry. Capability-Based Addressing. Communications of the ACM, 17(7):403{412, July 1974.[8] Feasibility Study Committee of the Real-World Computing Program. The Master Planfor the Real-World Computing Program, March 2, 1992. Draft.30

[9] D. Ferrari. Real{Time Communication in an Internetwork. Technical Report TR-92-001, International Computer Science Institute, Berkeley, CA, 1992.[10] M. Gien. Micro-kernel Architecture { Key to Modern Operating System Design. Tech-nical Report CS/TR-90-42.1, Chorus syst�emes, Paris, 1990.[11] W. K. Giloi. The SUPRENUM Architecture. In Proceedings of CONPAR 88, pages10{17, Manchester, UK, September 12{16, 1988. Cambridge University Press.[12] W. K. Giloi and U. Br�uning. Architectural Trends in Parallel Supercomputers. InProceedings of the Second NEC International Symposium on Systems and ComputerArchitectures, Tokyo, August 1991. Nippon Electric Corp. appears as book.[13] A. N. Habermann, L. Flon, and L. Cooprider. Modularization and Hierarchy in aFamily of Operating Systems. Communications of the ACM, 19(5):266{272, 1976.[14] A. J. Herbert and J. Monk. ANSA Reference Manual. Advanced Network SystemsArchitecture, Cambridge, UK, 1987.[15] J. Kramer and J. Magee. Dynamic Con�guration for Distributed Systems. Transactionsof Software Engineering, SE{11(4), 1985.[16] H. C. Lauer and R. M. Needham. On the Duality of Operating System Structures.Operating Systems Review, 13(2):3{19, April 1979. Reprint of Proceedings of the 2ndInternational Symposium on Operating Systems Structures, IRIA, October, 1978.[17] J. Lennon. Give Peace a Chance. The Plastic Ono Band { Live Peace in Toronto,Apple Records, 1969.[18] H. M. Levy. Proceedings of the Thirteenth ACM Symposium on Operating SystemsPrinciples, Oct. 13{16, 91, Asilomar Conference Center, Paci�c Grove, CA, USA. ACMOperating Systems Review, Vol. 25, No. 2, Special Issue, 1991.[19] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, YaleUniversity, 1986.[20] K. Li and R. Schaefer. A Hypercube Shared Virtual Memory System. In Proceedingsof the 1989 International Conference on Parallel Processing, volume 1, pages 125{132,1989.[21] Meiko Ltd., Bristol, UK. CS/Tools Programmer's Manual, 1990.[22] H. Mierendor�. Bounds on the Startup Time for the Genesis Node. Technical report,GMD F2.G1, Bonn, Germany, 1989. ESPRIT Project No. 2447.[23] S. J. Mullender and A. S. Tanenbaum. The Design of a Capability-Based DistributedOperating System. The Computer Journal, 29(4):289{299, 1986.[24] J. Nolte. Language Level Support for Remote Object Invocation. Arbeitspapiereder GMD 654, Gesellschaft f�ur Mathematik und Datenverarbeitung, St. Augustin,Germany, June 1992. 31

[25] D. L. Parnas. Designing Software for Ease of Extension and Contraction. Transactionon Software Engineering, SE{5(2), 1979.[26] Parsytec Computer GmbH, Aachen, Germany. PARIX Programmer's Manual, 1991.[27] J. L. Peterson and A. Silberschatz. Operating System Concepts. Addison-Wesley Pub-lishing Company, ISBN 0-201-06079-5, second edition, 1985.[28] W. Schr�oder-Preikschat. Overcoming the Startup Time Problem in Distributed Mem-ory Architectures. In Veljko Milutiniovic and Bruce D. Shriver, editors, Architec-ture and Emerging Technologies Tracks, volume 1 of Proceedings of the Twenty-FourthAnnual Hawaii International Conference on System Sciences, pages 551{559, Kauai,Hawaii, January 8{11, 1991. IEEE Society Press, IEEE 91TH0350-9.[29] W. Schr�oder-Preikschat. PEACE|The Logical Design of Parallel Operating Systems.1993. In preparation.[30] Telmat, France. UBIK Programmer's Manual, 1990.[31] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages:a Mechanism for Integrated Communication and Computation. Technical ReportUCB/CSD 92/675, University of California, Berkeley, CA, 1992.[32] P. Wegner. Classi�cation in Object-Oriented Systems. SIGPLAN Notices, 21(10):173{182, 1986.[33] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky,D. Black, and R. Baron. The Duality of Memory and Communication in the Imple-mentation of a Multiprocessor Operating System. In Proceedings of the Eleventh ACMSymposium on Operating System Principles, volume 21 of Operating Systems Review,pages 63{76, Austin, Texas, CA, 1987. ACM.[34] R. Zajcew, Paul Roy, David Black, Chris Peak, Paulo Guedes, Bradford Kemp, JohnLoVerso, Michael Leibensperger, Michael Barnett, Faramarz Rabii, and Durriya Net-terwala. An OSF/1 UNIX for Massively Parallel Multicomputers. In Proceedings of theUSENIX Winter Technical Conference, pages 449{468, San Diego, CA, USA, January25-29, 1993.
32

