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Abstract

Forthcoming massively parallel systems are dis-
tributed memory architectures. They consist of sev-
eral hundreds to thousands of autonomous processing
nodes interconnected by a high-speed network. A ma-
jor challenge in operating system design for these ar-
chitectures is to combine transparency with efficiency.
The paper motivates the program family concept and
object-orientation as implementation instrument to
build parallel operating systems that can be suited to
the individual needs of parallel applications and com-
puter architectures.

1 Introduction

A major challenge in operating system design for
massively parallel architectures is to design a struc-
ture that reduces system bootstrap time, avoids bot-
tlenecks in serving system calls, promotes fault tol-
erance, is dynamically alterable, and application-
oriented. These architectures are based on distributed
memory, l.e., they are distributed systems. Parallel
applications for these types of systems are distributed
applications demanding system-wide message passing
with very low latency and very high efficiency.

The communication performance problem in these
systems is dominated by the message startup time.
Basically, the message startup time determines how
many processor cycles are lost to local application
program processing by performing remote interpro-
cess communication. The loss of “number crunching”
power caused thereby, is not only due to the com-
munication protocol overhead but also a question of
the actual operating mode of the node [14]. A single-
tasking mode of operation, e.g., does not imply any
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form of address space isolation. There is no need to
protect either the tasks (since there is only one per
node) or the kernel (since it only keeps track of the
resources of a single task). Thus, the kernel is nothing
but a communication library, sharing with the appli-
cation task the same address space. Of course, this
is inconceivable if a multi-tasking mode of operation
must be supported on the node.

The choice of the proper operating mode depends
on constraints defined by the application and the ker-
nel architecture. There are a number of parallel ap-
plications that scale very well with the actual number
of nodes. These applications call for single-tasking
support on the nodes. The microkernel architecture
[6] promotes the encapsulation of system services by
user-mode tasks. This approach calls for multi-tasking
support on the nodes even if only a single application
task must be locally processed. In this case, the mi-
crokernel does not work for but against the parallel
application if the (parallel) operating system was as-
signed to reduce the message startup time to an abso-
lute minimum.

Only extremely lightweight operating system struc-
tures will overcome the startup time problem in dis-
tributed memory architectures — “network bandwidth
is rendered virtually insignificant” [10]. Above all, the
performance limiting factor is the per-node operat-
ing system software overhead and Taking into account
state of the art hardware technologies, it is not the
limited network bandwidth that signifanctly increases
the message startup time.

State of the art parallel operating systems design,
therefore, must obey the maxim not to punish an
application by system functions which will never be
used. This includes the entire spectrum of computer
resources, ranging from memory space to processor cy-
cles. An open, application-oriented operating system
structure is required, with the application and not the
operating system deciding which functions must be



supported and which must not. An approach must be
followed in which an operating system is being under-
stood as a family of program modules [13] and not as a
monolith of more or less related components. In such
a context, the parallel application is an integral part
of a family of parallel operating systems and object ori-
entation [17] then is the natural choice to design and
develop such a family [4]. Thus, an application be-
comes the final system extension.

An example of the family-oriented approach is
PEACE [15], the parallel operating system developed
for SUPRENUM [7]. PEACE started in 1986 as an
object-based operating system relying on the micro-
kernel approach. Since that time it evolved to an
object-oriented system in which the microkernel-based
representation is only one variant of the operating sys-
tem family. This metamorphosis is in progress since
1990.

Lessons learned from the SUPRENUM development
led to the conclusion that a microkernel-based sys-
tem organization is not lightweight enough for par-
allel architectures [14]. Similar observations have
been made with porting both Mach onto a shared-
memory parallel computer [2] and Chorus onto a
high-performance Risc architecture [16]. Overcom-
ing the performance bottleneck problem in distributed
memory architectures forbids a single microkernel im-
plementation aimed at supporting both a family of
parallel operating systems and parallel applications.
Rather, the operating system family must be extended
by a microkernel famaly [5].

The paper presents the PEACE parallel operating
system family. It demonstrates object orientation as
the key for constructing featherweight, flexible, and
high performance operating systems for massively par-
allel systems. The paper concentrates on the descrip-
tion of the family organization and on a detailed illus-
tration of the cooperation between the various build-
ing blocks. A case study on the modeling of active
objects in PEACE is presented to exemplify how the
design of a family of parallel operating systems may
benefit from an object-oriented implementation.

2 Family organization

PEACE is a framework for (distributed) parallel ap-
plications and provides a Process Erecution And Com-
munication Environment for distributed memory mas-
sively parallel architectures. Although specifically de-
signed to support high performance parallel comput-
ing, the PEACE framework is also suitable for con-
structing (microkernel-based) distributed operating
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systems with realtime capabilities as well as object-
oriented parallel computing platforms for workstation
networks.
2.1 Functional decomposition

The global architecture assumes that a member of
the PEACE parallel operating system family is con-
structed from three major building blocks. These
building blocks are the nucleus, the kernel, and Posg
(Fig. 1). In addition to the system components, the
application is considered as the fourth integral part of
this architecture. The application largely determines
the complexity of a family member and the distribu-
tion of the building blocks over the nodes of the par-
allel machine.
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8{ystem}
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Figure 1: Building blocks

The nucleus implements system-wide interprocess
communication and provides a runtime executive for
the processing of threads. It is part of the kernel do-
main, with the kernel being a multi-threaded system
component that encapsulates minimal nucleus exten-
sions. These extensions implement device abstrac-
tions, dynamic creation and destruction of process ob-
Jects, the association of process objects with naming
domains and address spaces, and the propagation of
exceptional events (traps, interrupts). Application-
oriented services such as naming, process and memory
management, file handling, I/O, and load balancing
are performed by PosE, the Parallel Operating Sys-
tem Extension of PEACE. !

Kernel and PoSE services are built by active ob-
Jects. In contrast, the nucleus is an ensemble of passive
objects that schedule active objects. An active object
is implemented by a lightweight process. A number

1In the following, PEACE is used as the synonym for both
the framework to build parallel operating systems and the two
fundamental building blocks nucleus and kernel.



of these objects may share the same address space,
thus constituting a team of lightweight processes, i.e.,
a heavyweight process. Each service that is provided
by both PosE and the kernel is implemented by such
a team and represents a PEACE entity. Entities are
system extensions. They are loaded on demand and
(in most cases) can be arbitrarily distributed over the
nodes of the parallel machine.

The dividing line between user and supervisor mode
as shown in Fig. 1 is a logical boundary only. It de-
pends on the concrete representation of the interac-
tions specified by the functional hierarchy [9] (and of
the hardware architecture) whether this boundary is
physically present.

2.2 Invocation schemes

The functional hierarchy (Fig. 2) defined between
PosE, the kernel, and the nucleus makes possible a
very high degree of decentralization. All components
are encapsulated by (active/passive) objects.

application

[LR)OI
POSE

NOI/

PEACE

nucleus

Figure 2: Functional hierarchy

Nucleus services are made available to the appli-
cation via nearby object invocation (Norl). The logi-
cal design assumes a separation of the nucleus from
the application (and Posk), which calls for the use
of traps to invoke the nucleus and for address space
isolation. This is the place where cross domain calls
may happen. The nucleus is “nearby” the using en-
tity. It shares with the entity the same node, but not
necessarily the same address space segment.

The kernel resides with the nucleus in the same ad-
dress space. Together they constitute the kernel en-
tity. The kernel therefore performs local object invo-
cation (Lo1) to request nucleus services. Kernel ser-
vices are made available via remote object invocation
(Ro1). The Rot scheme always implies context switch-
ing, but not necessarily address space switching. A
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separate thread of control is used to execute the re-
quested method (i.e., service). In contrast to that,
NoI implies the activation/deactivation of the nucleus
address space via local system call traps. The imple-
mentation of Rol takes advantage of the network-wide
message passing services provided by the nucleus and,
thus, is based on NoI.

Services of POSE are requested via Lol and Rol.
The former scheme is used to interact with the Pose
runtime system library, while the latter is used to in-
teract with the POSE active objects. In certain situa-
tions the PoOSE library directly transforms the issued
Lol into one or more RoI requests to the kernel. The
PosE service then is not provided by an active POSE
object, but entirely on a library basis.

2.3 Actual structure

From the design point of view neither the kernel nor
PoSE need to be present on each node, but only the
nucleus. In a specific configuration, the majority of
the nodes of a massively parallel machine is equipped
with the nucleus only. Some nodes are supported by
the kernel and a few nodes are allocated to Posg. All
nodes can be used for application processing, but they
are all not obliged to be shared between user tasks and
system tasks.

The functional hierarchy of the three building
blocks expresses the logical design of PEACE but not
necessarily the physical representation. The building
blocks have been designed by considering the various
schemes of object invocation (Fig. 2). However, it de-
pends on the actual operating system family member
whether these schemes become effective as specified by
the design or can be replaced by a more simple and
efficient alternative.

Although the functional hierarchy assumes NoI for
the interaction between application (Posg) and nu-
cleus, the Lol scheme is used for those members of
the nucleus family which place their focus on perfor-
mance. The entrance to the nucleus is represented as
an abstract data type with two implementations. The
first implementation assumes no vertical isolation be-
tween PEACE (nucleus and kernel) and the using en-
tities and no horizonial isolation between the entities
itself. Thus, there is neither a separation between user
and supervisor mode of operation (vertical isolation)
nor a separation between competing tasks (horizontal
isolation). In this case Nol actually means Loi. The
second implementation assumes complete (i.e., verti-
cal and horizontal) isolation and requires a trap-based
activation of the nucleus. NoI then becomes a cross
domain call.



The two variants basically distinguish between
single-tasking (no isolation) and multi-tasking (isola-
tion) mode of operation. They are part of the nucleus
family which in total consists of up to eight members
[5], each one offering different performance character-
istics and different functionality.

This organization of the kernel entity is one of the
major differences between the PEACE approach and
state of the art microkernels. The PEACE kernel en-
tity is no single microkernel, but rather a “microkernel
family”. Tt can be adapted to the individual needs of
parallel and distributed applications.

Offering dedicated single-tasking and multi-tasking
kernel implementations enables the user to deal with
the tradeoff between performance and functionality
on an individual basis. For example, parallel ap-
plications whose tasks can be mapped in one-to-one
correspondence with the nodes will never be pun-
ished by multi-tasking overhead. Experiences with
PEACE have shown that this overhead consumes about
74 % of the message startup time [14]. For the
SUPRENUM implementation, which is based on a 2
MipPs mc68020 processor, system-wide bi-directional
interprocess communication using a 64 byte packet
takes about 784 psec in multi-tasking mode and
204 psec in single-tasking mode. A state of the art
microkernel however supports only multi-tasking (6]
and, thus, unnecessarily drains computing power from
a single-tasking application.

3 The role of object orientation

Applying the family concept in the software design
process leads to a highly modular structure. New
system features are added to a given subset of sys-
tem functions. Because of the strong analogy between
the notions “program family” and “object orientation”
(Fig. 3), it is almost natural to construct program
families using an object-oriented framework [4]. Both
approaches are in a certain sense dual to each other.

The minimal basis of system functions in the pro-
gram family concept has its counterpart in the super-
class of an object-oriented design. Minimal system
extensions then are introduced by means of subclass-
ing. Inheritance and polymorphism are the proper
mechanism to allow that different implementations of
the same interface (abstract data type) may coexist at
the same time. Code reuse is significantly enhanced,
increasing the commonalities of different family mem-
bers: “We consider a set of programs to be a program
family if they have so much in common that it pays to
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Figure 3: Program families vs. object orientation

study their common aspects before looking at the aspects
that differentiate them” [13].

PEAGE has much in common with Choices [3]. Both
systems share the same idea of an operating system
family being object-oriented implemented. PEACE ex-
tends the Choices approach by the notion of a kernel
family that offers to the user a number of operating
modes for a node. Above all, the PEACE approach
conforms to the program family concept. Object ori-
entation is primarily used as implementation and not
as design instrument. Inheritance makes it much eas-
ler to implement and maintain an incremental sys-
tem design, but is not mandatory for it. The design
(i-e., structuring) of PEACE was and is family-oriented,
while the implementation was object-based and is now
object-oriented.

4 Modeling active objects

As an example of how object orientation is used in
PEACE and how all four building blocks of the entire
architecture cooperate, the process management sub-
system is discussed in the following. This subsystem
implements active objects.

4.1 User view

An active object is constructed from a PEACE class
that contains an eutonomous method (action()) to
specify the (private) thread of control of instances of
that class. The method must be redefined by a spe-
cialized (application-oriented) class to enable the con-
struction of an active object. Redefinition and thus
specialization is accomplished by means of inheritance
and crosses traditional protection boundaries. Thus, a
parallel PEACE application is a PEACE specialization.
The user is required to design a new subclass and to
specify its own action(). One or several subclasses
may be designed this way, to generate one or more
process types.



PEACE is implemented in C++, whose dynamic
binding feature (virtual function) is used to make the
autonomous thread of control known to the nucleus.
This thread of control then implements a lightweight
process. The private data space of the correspond-
ing active object are own variables of that process. A
lightweight process is created/destroyed by executing
the constructor/destructor of the class of an active ob-
ject.

An active object acts either as native of the ker-
nel or as an application, POSE, or kernel thread.
For each case PEACE provides individual base classes
whose constructors/destructors take care of the dif-
ferent ways to create/destroy the processes. Basing
classes on native makes derived classes dependent on
internal (nucleus and kernel) abstractions and requires
that these objects be subjected to supervisor mode of
execution. It serves to implement site dependent enti-
ties such as low-level device drivers. Basing classes on
thread supports the implementation of site indepen-
dent entities, whose executions are independent on the
actual processing mode (user vs. supervisor) and on
the effective destination node. Either way, the same
action() specification is used to identify the entry
point of the active object. This makes the associa-
tion of a “user process” to either thread or native
virtually transparent.

4.2 The thread

Almost every active PEACE object is a thread and,
thus, is constructed from a class that is composed by
maultiple inheritance from PoSE and nucleus classes
(Fig. 4). 2 A thread instance is associated with
a kernel-level active object, which effectively is imple-
mented as a native thread (described in 4.3) — in fact,
native scheduling yields thread processing. For the
mastering of a native active object and, thus, of its
associated thread instance, Rol to the kernel manag-
ing this object must be performed (arrow in Fig 4).
For this purpose, an active object stores the address
of a lightweight kernel process (clerk) used to receive,
execute, and confirm the RoI requests. Mastering an
active object means attaching it to a POSE entity (i.e.,
server) that performs process-related functions. For
example, this is used to make name server known on
a per-process basis and to define naming domains.

The construction of a thread instance results in the
construction of an active object being managed by the
kernel and, usually, in the creation of a (user) stack. A

2 Arrows mean " uses” [13] and lines additionally mean " in-
herits”.
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“kernel affair” is going to be established. In order to
hide internals of the kernel (and the nucleus) from the
clients, the general external interface on these active
objects is specified by an abstract class. The inter-
face class describes an abstract data type with dif-
ferent implementations, each one introducing a new
process type. For threads being able to receive mes-
sages, each thread instance is bound to a system-wide
unique identifier which serves as the ticket for system-
wide interprocess communication carried out by the
nucleus. Being in the possession of such an identifier
(i.e., sparse capabilily) enables interprocess communi-
cation.
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Figure 4: User abstractions

The kernel performs an upcall to invoke an active
object when it has been initially scheduled, i.e., “boot-
strapped”. A specialized upcall handler then takes
care of the invocation of action() in the thread
context. Note, thread applies dynamic binding to
“move the points” 3 for the upcall. Upon return from
action(), the handler stops further processing of its
enclosing thread. By performing NoI to the nucleus,
it awaits a signal (i.e., notice) to invoke action()
again and will never return to the kernel. Dynamic
binding is also applied to specify the problem-oriented
action() in the application context. The specialized
upcall handler hence leads to the activation of a cus-
tomized action().

From the kernel (and nucleus) viewpoint a PEACE
entity is activated as an ordinary task, which solely
is represented by a native thread. At this point in
time, only a single thread of control executes inside
the entity. Further threads must be created by the
entity itself. Upon startup, the local runtime system
creates a thread root instance. The corresponding
“primer” action() is nothing but the object-oriented

3(Am.) “shift the switch”



variant of the main() entry point of Cprp @
4.3 The native

It was mentioned above that native scheduling
vields thread processing. This corresponds to the tra.
ditional way of modeling processes in a multi-tasking
environment which distinguishes between user and su-
pervisor mode of operation. The process (logically)
has two stacks, one for each operation mode. Depend-
ing on its execution state, the process is referred to as
a user process (user mode execution) or as as kernel
process (supervisor mode execution), with each mode
executing on a different stack.

A native thread is a kernel process. It has an own
stack only in the case of vertical isolation, i.e., when
No1 is implemented as cross domain call. Tn a single-
tasking environment without any isolation measures
the native executes on the stack of its user thread,
Thus, in these configurations the thread is processed
In supervisor mode too. It shares with the nucleus
(kernel) the same address space.

A Process Conirol Block (PcB) is used for each
native thread to keep track of all process activi-
ties. It is a common approach in operating systems
design that many different kernel modules share the
same PcB for performance reasons. These modules,
e.g., perform dispatching, scheduling, synchronization,
communication, and resource management. They all
store their process-related state information into a sin-
gle data structure. Concerning Pce members, the
sharing often is disjunctive, i.e., the kernel modules
usually access only their own state information. How-
ever, they still have global knowledge about all the
information stored in the PcB and thus are interde-
pendent — they “yse” [13] each other, which leads to
a very poor internal system organization. The UNix
Proc structure is a typical example of this Pcs repre-
sentation. Moreover, note that it 1s only the physical
representation as a flat data object which yields per-
formance — and not necessarily the logical one.

Inheritance is used to design the PEACE PcB and to
introduce new process-related state information. Each
class in the hierarchy is an abstract data type and, thus,
allows state manipulation only via (inline) methods.

*Note that this procedure also supports non object-oriented
PEACE applications, such as those ones written in C. The men-
tioned local runtime system contains a default main() imple-
mentation which invokes Peace() to create the root instance,
A user still may use its own main(), with the effect that no
root instance is being created by default. In this situation only
kernel-level process abstractions are used to implement a user-
level thread. Later, the user may decide to enter the “object-
oriented world” by simply calling peace().
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Since PEACE is implemented in C++, instances of (hi-
erarchically composed) classes have a stafical represen-
tation. The consequence is a flat data object represen-
tation of a single PcB and at the same time a highly
modular kernel organization.

The class hierarchy (Fig. 5) to construct a PcB also
serves a second purpose. It transforms a non object-
based physical processor into an object-based abstract
processor. At the lowest level (i.e., root of the inheri-
tance tree) a thread of control is ordinarily represented
by a program counter and other CPU registers. At a
higher level the process becomes an active object en-
capsulating a private thread of control.
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Figure 5: The process control block

kernel

The entire class hierarchy consists of ten levels
(boldfaced symbols from top to bottom in Fig. 5,
with the top being the lowest level), each of which
implementing a virtual machine [9]. The correspond-
ing class descriptions specify both the state (i.e., PcB
fragment) and the operations of a virtual machine.
The meaning of each level is as follows:

0 Abstraction from the physical processor. It de-
scribes the non-volatile register set as specified by
the C++ compiler and used to save/restore the Cpu
context upon process switches.

1 Introduction of concurrency. Coroutines are used
as abstractions from a single-processor machine and
found the basis for low-level process switching.

2 Abstraction from non object-based processors. The
autonomous method action() is declared as pure
virtual function.

3 Abstraction from the process dispatcher. The dis-
patcher is adaptive and provides problem-oriented
context switching capabilities. Context switching



may require saving and restoring other processor
registers than the non-volatile register set, for ex-
ample, the register set of a floating point unit used
by “number crunching” processes. Dynamic bind-
ing is used at this level to reflect the various re-
quirements.

4 Abstraction from the process scheduler. The sched-
uler is adaptive and provides problem-oriented
scheduling capabilities. Dynamic binding is used
at this level to introduce a per-process scheduler,
providing a platform for a multi-scheduler environ-
ment.

5 Iniroduction of message-driven scheduling. This ab-
straction implements a refinement of the schedul-
ing abstraction. A process is given a system-wide
unique identifier and associated with a mailbox and
a signalbox. The mailbox stores received but not
yet delivered (i.e., consumed) message packets and
the signalbox keeps track of synchronization events
that have been signaled by the team of the pro-
cess. The unique identifier makes a process object
system-wide hashable.

6 Introduction of kernel-level resource management.
This abstraction also conforms to the abstract in-
terface of an active object (see 4.2), providing a
default implementation for the mastering of active
objects.

7 Introduction of kernel-level active objects. This ab-
straction serves as the general basis for dynamically
created processes of any type. A shepherd process,
e.g., is a thread of the kernel entity which is respon-
sible for the handling of a specific interrupt. It is a
coupling between a physical interrupt vector entry
and a unique thread of control.

8 Upcall linkage. This abstraction stores the refer-
ence to an object used to upcall (i.e., bootstrap) a
thread instance.

9 Upcall handling. There are two abstractions at this
level, distinguishing between user and supervisor
mode threads. For a user mode thread, additional
processor registers are used to implement vertical
isolation. For example, in order to transfer con-
trol from supervisor to user mode and, thus, let a
native “emigrate” from the kernel to startup pro-
cessing as a user-mode thread, the cross domain
call must be furnished with the user-mode soft-
ware prototypes of both stack pointer and program
counter.

The design decision to distinguish between user and
supervisor mode is met at a very high level of the ker-
nel design. Active objects always start processing in
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supervisor mode and may switch over to user mode af-
terwards. Objects never leaving supervisor mode ex-
ecution are considered as kernel immigrants. Objects
entering user-mode processing (i.e., kernel emigrants)
be subjected to vertical isolation and a cross domain
upcall must be performed to transfer control accord-
ingly. In either case, the objects is given a user-level
visibility, making the PCB representation transparent
even for kernel threads. This design decision is one
reason for the fact that almost the complete PEACE
(i.e., kernel and nucleus) implementation also runs as
guest level on top of a host operating system such as
UNIX.

4.4 Liaison of thread and native

In order to instantiate an active object, the kernel
proper to create this object must be selected. A design
decision was to address the kernel entity on a per-
object basis, i.e., virtually give every active object its
own managing kernel entity. Thus, the kernel plays
the role of an abstract processor and any number of
these processors may be used to build up an abstract
parallel machine.

4.4.1 Dual objects

Kernel selection in a distributed environment means
identifying the entity which manages the construction
of some process instance. In PEAGE, the constructor
for an active object has a formal parameter that is
used to address the managing entity of that object.
A default address is provided for the ease of trans-
parency. This default address selects the kernel entity
that shares the same node with the client entity re-
questing object construction. The service access point
(i.e., the system-wide unique identifier) of the kernel
entity is stored with an active object descriptor in the
client context. It is used for further operations on that
object (and for its destruction) to identify the proper
managing entity. Thus, the destructor of an active
object will automatically find the way to the kernel
entity that was responsible for construction.

This type of a remotely managed object is called
dual object [12]. It has a dual representation, distin-
guishing between the client and the server site. Ac-
cessing the client site representation (likeness) auto-
matically yields a Rorl to the dual server site repre-
sentation (prototype). Inheritance is supported in a
distributed environment, crossing protection bound-
aries. Thus, providing access transparency on objects
or object fragments.



For each representation of a dual object, a class
specification is used. Both specifications are auto-
matically generated from a dual class by applying the
PEACE C++ class generator tool. The dual class is
the original C++ class enriched by annotations (em-
braced in C-like comments) to describe the behavior of
objects of that class. Basically, a generated client class
1s a subset of the generated server class. They both
contain the public classes of the original class hierar-
chy specified by the dual class and they are extended
by additional classes to support hashing and server se-
lection. The server class furthermore contains all the
private classes of the original class tree. Moreover, a
clerk class is generated for the server site. This class is
a thread and describes active objects that are capable
of managing dual objects of the dual class from which
the clerk description was generated.

4.4.2 Kernel linkage

The association between a thread and a native is
physically implemented by a pointer to a dual object
(broken arrow in Fig. 6).
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/' \POSE
thread
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------------- kemel

Figure 6: Liaison of thread and native

The likeness instance of this object consists of the
system-wide unique identifier of the native and an in-
terface object for native mastering, both considered
as the “heirloom” for the dual class. The prototype
Instance contains the same information plus a native
pointer (uparrow in Fig. 6). A kernel clerk receives
Ro1 requests issued by the clients being in the pos-
session of (and having applied) the likeness part. This
remote residing lightweight server process performs for
the clients the requested operation on the prototype
instance and dereferences the native pointer. For ex-
ample, the kernel clerk maps all operations for native
mastering performed on the likeness onto the corre-
sponding operations of the linked native object. The
clerk thread is a kernel representative and its system-
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wide unique identifier is nothing but the address of the
kernel entity managing process objects.

In order to make derived classes independent from
using Lo1 or RoI to interact with the kernel, a thread
only sees the “heirloom” for a dual class (solid dow-
narrow in Fig. 6) and not the dual class itself. Thus,
RoI to the kernel to construct/destruct and access an
active object, is transparent to the user — it could even
be a Lol for certain kernel configurations (see 2.3).

5 Discussion

A system that comes very close to PEACE is Choices
[3]. Many ideas found in Choices are present in
PEACE, and vice versa. This is because both systems
share the same fundamental idea of a family of oper-
ating systems [9]. They extend this idea into object-
oriented, distributed/parallel environments.

Like Choices, PEACE is a class-hierarchical sys-
tem in which inheritance is excessively used to cus-
tomize basic operating system abstractions. About
118 classes presently constitute the PEACE kernel en-
tity, which corresponds to less than 10000 lines of
C++ code. The minimal basis of system functions
in Choices implements a multi-tasking mode of oper-
ation only. In contrast, PEACE further distinguishes
between a number of operation modes and allows dif-
ferent implementations of the same abstract interface
of the minimal basis coexist. The single-tasking ker-
nel family member, e.g., optimally supports a single-
tasking parallel application even in a distributed en-
vironment. Multi-tasking applications are supported
by a corresponding multi-tasking kernel.

It is exactly this feature which becomes more and
more important for forthcoming parallel operating sys-
tems. Without this kind of variety, a performance bot-
tleneck problem is predefined in the system design.
There are a number of parallel applications whose
tasks can be mapped in one-to-one correspondence
with the nodes of a parallel machine. However, they
clearly will be handicapped if a multi-tasking kernel is
the only choice to support parallel processing.

The PEACE approach goes beyond state of the art
microkernel architectures [6]. It supports a scalable
kernel architecture, in which a microkernel is only one
concrete representation [5]. A microkernel is a fairly
complex component, used to support the implementa-
tion of operating system services and the processing
of distributed applications. The design assumes that
even local system services are executed on top of the
microkernel. This calls for multi-tasking mode of op-



eration on a single node and requires complete kernel
isolation.

A microkernel is of course capable of executing
single-tasking applications. However, it will only pro-
vide the adequate system support for multi-tasking
applications if performance becomes the predominant
issue. There is absolutely no reason to hamper “well-
shaped” single-tasking applications in their attempt to
get the utmost highest performance out of a parallel
machine. Because of its scalable kernel architecture,
PEACE bridges the gap between parallel systems and
distributed systems.

Parallel computing defines its own “book of rules”,
even if parallel computer architectures are distributed
systems. No matter which principle is used for de-
signing a parallel operating system, the resulting im-
plementation must never hide performance. For ex-
ample, with the scalar performance of a 40 MIPS pro-
cessor (Risc technology) in mind, a process-level and
network-wide message startup must be performed in
the order of magnitude of 10 psec. In this case, a bal-
anced ratio between the per-node computing power
and network communication latency is achieved [11].

Porting distributed operating systems onto dis-
tributed memory computer architectures can be
straightforward. However, it still needs a large effort
to make these architectures work fast for applications
which have little in common with distributed program-
ming. Bespoke tailoring then means to think about
what can be removed from the system design. Re-
moving a function from a complete system which is not
family-oriented organized and implemented is almost
impossible. Even if being unexploited, these func-
tions can be sources of (communication) performance
loss because of their interdependencies with other sys-
tem functions — they are not called (i.e., needed) but
“ysed” [13] by the application. A multi-tasking ker-
nel running a single-tasking application program is the
typical example for this situation.

Choices, Chorus, and Mach, e.g., are faced with this
problem. The former is family-oriented designed and
relies on microkernel-like functions. The latter two are
not family-oriented but microkernel-based designed.
In contrast to these systems, PEACE is family-oriented
designed and does not rely on microkernel-like func-
tions. Compared to PEACE, their design does not sup-
port scaling down kernel functionality to an absolute
minimum to meet the hard performance requirements
of many parallel applications. Basing parallel applica-
tions on a microkernel platform requires that “faster
hosts are needed” [10] to speed up performance. How-
ever, even if faster hosts are used, the performance
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bottleneck still remains the same. PEACE overcomes
this bottleneck by its nucleus family.

PEAGE is an object-oriented operating system fam-
ily that corresponds to the classification that object
orientation, above all, means inheritance [17]). Inheri-
tance also means specialization. An object-oriented
operating system must therefore use inheritance to
compose internal system abstractions. It must fur-
ther offer polymorphism for user customization. Thus,
inheritance must cross traditional protection bound-
aries, such as to physically isolate supervisor mode
entities from user mode entities. The PEACE design
and implementation follows these maxims.

Using C++ to implement an object-oriented oper-
ating system family has many advantages — although
the language itself is not in all cases the best choice.
Because of the static nature of C++, almost no “in-
heritance tax” must be paid for having built class hier-
archies. Since dynamic binding is not a default case,
“tax return” is possible. By supporting class-based
object orientation [1], most of the methods are rep-
resented as inline functions. This way, “tax abate-
ment” can be asserted. All these aspects enable the
implementation of featherweight system components
and disprove the “myth” that object-oriented oper-
ating systems can only offer poor performance in the
area of distributed/parallel computing.

6 Conclusion

Massively parallel systems are based on distributed
memory architectures. For many reasons, they call
for variety of operating system kernels and, thus, moti-
vate the program family concept to design and develop
system software support. Program families imply ob-
ject orientation at least in the implementation pro-
cess. This aids the realization of flexible, application-
oriented, and high-performance parallel operating sys-
tems suited to the needs of massively parallel systems.

The PEACE approach presented in the paper is to
define a framework to build a family of (parallel) op-
erating systems. It goes beyond state of the art micro-
kernel approaches and applies the program family con-
cept also to designing and implementing a microker-
nel. A PEACE operating system thus is not supported
by a single microkernel, but rather by a microkernel
family.

PEACE is currently running as guest level imple-
mentation under SunOS 4.1. Ports onto a i860-based
parallel computer and a Transputer system are al-
most completed. Future work encompasses the inte-
gration of fine grain load balancing, virtually shared



memory with strong and weak consistency, and per-
sistency. Originally developed as a testbed, the guest
level implementation will be extended to support par-
allel computing on workstation networks. The goal is
to provide a single platform concept for a number of
distributed memory architectures ranging from local
area network systems to dedicated parallel computers.
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