Modeling Replication and Placement
in the PEACE Parallel Operating System
- A Case for Dual Objects *

Jorg Nolte
Wolfgang Schréder-Preikschat
German National Research Center for Computer Science
GMD FIRST at the Technical University of Berlin
Hardenbergplatz 2, W-1000 Berlin 12, Germany
{nolte,schroeder-preikschat}@kmx.gmd.dbp.de

March 10, 1992

Abstract

Parallel operating systems are designed to specifically support the execution
of parallel programs on parallel computer architectures. The most challenging
architectures are those which are based on distributed memory. These architec-
tures imply the modeling of both parallel programs and the parallel operating
system by an ensemble of interacting objects. Interactions then take the form
of remote object invocation. The paper motivates dual objects as a mechanism
for replication and placement.

1 Introduction

Forthcoming massively parallel systems are distributed memory architectures
consisting of several hundreds to thousands of autonomous processing nodes
interconnected by a high-speed network. A major challenge in operating system
design for these parallel architectures is to elaborate a structure that reduces
system bootstrap time, avoids bottlenecks in serving system calls, promotes
fault tolerance, is dynamically alterable, and application-oriented. At the same
time utmost highest communication performance must be provided.

The communication performance problem is dominated by the message star-
tup time, i.e., the time which is lost for further application program processing.
For example, with the scalar performance of a 40 MIPS processor in mind, a
process-level message startup must be performed in the order of magnitude of
10 psec. In this case, a balanced ratio between the per-node computing power
and network communication latency is achieved [4]. It is obvious that these
performance figures call for extremely lightweight operating system structures,

*This work was supported by the Ministry of Research and Technology (BMFT) of the
German Federal Government, grant no. ITR 9002 2.



i.e., for dedicated parallel operating systems. The solution to these problems is
an approach in which an operating system is being understood as a family of
program modules [6] and not as a monolithic ”saurian” of more or less related
components.

An example of the family-based approach is PEACE (8], the parallel opera-
ting system developed for SUPRENUM [3]. PEACE started in 1986 as an object-
based operating system relying on the microkernel approach. Lessons learned
from this development led to the conclusion that a microkernel-based system
organization is not lightweight enough for parallel architectures ([7] and [1]).
The more promising approach is to combine the idea of program families with
object orientation [2] and, thus, to abandon the microkernel approach. Since
1990 PEACE therefore runs through a metamorphosis, from an object-based to
an object-oriented system.

The paper presents a novel object model which is used in PEACE to compose
both parallel programs and operating system family members. This model in-
troduces dual objects [5] as a mechanism for replication and placement of objects
in massively parallel systems.

2 Transparency vs. Efficiency

A meaningful load balancing scheme must rely on some kind of object mobility.
This further calls for transparency which, however, is not free of charge and may
have a significant drawback on efficiency. In contrast, efficiency is a predominant
issue of parallel computing. A vicious circle.

The art in parallel operating systems design, therefore, is to support trans-
parency without loosing efficiency. A maxim must be not to punish an appli-
cation by system functions which will never be used. This includes the entire
spectrum of computer resources, ranging from memory space to processor cy-
cles. An open, application-oriented operating system structure is required, with
the application and not the operating system deciding which functions must be
supported and which must not.

In such a context, the application should be viewed as an integrated member
of the operating system family. Object orientation [10] then is the natural choice
to realize such a family. Following this approach, an application is always con-
sidered as the final system extension - it is a final specialization of fundamental
operating system abstractions.

In the realm of distributed memory architectures, this requires object ori-
entation, i.e., inheritance to be extended into a distributed environment. In
addition, remote object invocation (ROI) must be supported most efficiently.
To speed-up processing in a parallel/distributed system, some kind of object
replication is needed. Maintaining consistency of the replicated objects, howe-
ver, is not the primary issue. It depends on the application and, thus, is a typical
example of a minimal system extension and should therefore be introduced by
subclassing.

This motivates an object model which places the focus on the separation of
replicatable from non-replicatable state information of an object. The notion



of dual objects supports directly this approach, without prescribing consistency
measures between replicated data.

3 Dual Objects

A dual object consists of two closely related but physically separated parts:
the prototype and at least one likeness (Fig. 1). Conceptually, the prototype is
a mobile object. At any given time, each allocated dual object has only one
prototype, but it may have more than one likeness. The prototype logically has
a private state and a public state. A likeness is built by extracting the public
state, encapsulating the eztract by a proxy object [9] and exporting the prozy
into the context out of which allocation of the dual object was requested. In
addition to the extract, the proxy carries a system-wide unique reference as a
hint to the storing site of the prototype.

extract I

______________________________________________________________________

extraction &
unification

ROI \

public state

private state

Figure 1: Prototype vs. Likeness

Operations on a likeness (i.e., the extract) are performed by standard local
object invocation (LOI), i.e., without crossing protection domains. Operations
on a prototype (i.e., the private state) are performed via ROI. Whether LOI or
ROI takes place is transparent to the applying entity, except for the different
execution times.

The manipulation of an extract leads to the (tolerated) inconsistency with



its original public state. When the prototype is invoked the extract is unified
with the private state to re-establish consistency. Unification is being done at
the storing site of the prototype. First, the public state is replaced by the ex-
tract and then the operation on the prototype is executed. When the operation
terminates, a new extract is generated, replacing the extract at the storing site
of the corresponding likeness. A new likeness is built and vertical consistency
established.

The proxy is a prototype capability. When a likeness is drawn from its pro-
totype the public state gets to be replicated by exporting the encapsulating
proxy. It is the individual decision of the entity which receives the proxy to
initiate replication of the same and, thus, granting prototype access to others.

The extract of a prototype may be empty, meaning that the prototype has
a private state only. Consequently, proxy replication will not evoke possible
extract inconsistencies. In this case, ROI is the only means to interact with the
dual object. Only in case of a non-empty extract proxy replication becomes the
reason for possible inconsistencies between the various likeness instances of the
same prototype. To (re)establish horizontal consistencybetween these instances,
the model motivates customization (i.e., specialization) on a per-proxy basis.
If required by the parallel application, a likeness and not its prototype inherits
the capability for consistency maintenance.

A dual object is specified by adding annotations to its C++ class. These
annotations describe the intended use of the entire class, the runtime behavior of
individual methods, and parameter passing semantics. They are not interpreted
by a standard C++-compiler, but by the P++ class generator [5].

4 A Case Study

To exemplify the concepts described so far, the modeling of a neural network
is considered. A neuron is a cell (a passive object) with some inputs and some
outputs. It is represented as a dual object (fig. 2). The neural network thus is
implemented by a distributed data structure.

class Neuron/#*!::neuron!*/: private Tree(Neuron) {

private:
double threshold; // when to fire
double sum; // added inputs
public:
double weight; // output weight
neuron(double thresh); // constructor
void connect(/*!copy!*/Neuron*, double); // linkage
void fire()/*!trigger!*/; // activate net

}/*!global!#*/;

Figure 2: Annotated Neuron Class

In the scope of P++, the global annotation splits the original class de-



finition into a likeness class and a prototype class. Due to the annotation
/*!::neuron!*/, the prototype class is referred to by neuron, whereas the
likeness class will be named Neuron. The public member weight represents the
extract of the dual object of that class.

The inherited Tree(Neuron) defines the outputs of a neuron. Fach output
stands for a neuron likeness, encapsulated by a neuron proxy. A proxy then is
passed by copy to connect it as output to the applied neuron. For simplicity,
inputs are not considered in this example.

Fach time a neuron is fired, the weight will influence the sum. Note, since
weight is the replicated extract (encapsulated by a proxy), it will have different
values for different connections. If the sum exceeds the threshold, the neuron
starts firing recursively all its outputs. Since it is not necessary to wait for
the termination of fire, the trigger annotation is used to unblock the caller
directly after the callee received the invocation message: no explicit response is
expected.

Neuron prototypes are managed by a multitude of active objects. Each of
these objects is termed clerk. When applying P++, a clerk is automatically
generated on behalf of the global annotation. To construct a neural network,
neuron clerks may be spread equally over a computer network. Afterwards,
neurons will be placed onto the clerks using placement constructors (fig. 3).
Note that P4+ extends the original signature of a constructor with arguments,
which control object placement in different ways. It also adds to the anno-
tated class a superclass which deals with ROI. This superclass provides the
feature location(), which returns the clerk reference of the dual object (i.e.,
the proxy).

Neuron *x, *y, *z;
balance* site = new balance("Neuron"); // determine clerk

"o

x = new Neuron (3.2); // default placement
y = new Neuron (8.4, site); // allocate at clerk
z = new Neuron (0.1, y->location()); // collocate y and z
x->connact (y, 1.7); ] Link x with y...
x->connect (z, 7.2); Ll .. .and with 2
x-2fire (): // start network

Figure 3: Neural Network Construction

To achieve load balancing, the idea is not to migrate (active) clerks between
the nodes, but (passive) neurons between the clerks. This approach directly re-
flects the needs of massively parallel systems, which require efficient mechanisms
for lightweight resource management. The object paradigm supports this desire,



since addressing of objects instead of processes introduces a finer granulation
for load balancing strategies and efficiently supports migration techniques.

5 Upcoming Work

Objective PEACE with dual objects is currently running as guest level imple-
mentation under SunOS 4.1. Ports onto a i860-based parallel computer, a Trans-
puter system, and SUPRENUM are in progress.

Future work encompasses the integration of fine grain load balancing, vir-
tually shared memory with strong and weak consistency, and persistency. Ori-
ginally developed as a testbed, the guest level implementation will be extended
to support parallel computing on workstation networks. The goal is to provide
a single platform concept for a number of distributed memory architectures
ranging from local area network systems to dedicated parallel computers.

References

[1] R. Bryant, Hung-Yang Chang, B. Rosenburg, “Experience Developing the
RP3 Operating System”, Computing Systems, The Journal of USENIX
Association, Vol. 4, No. 3, pp. 183-216, 1991

[2] J. Cordsen, W. Schroder-Preikschat, “Object-Oriented Operating Systems
Design and the Revival of Program Families”, Proceedings of the Second
International Workshop on Object Orientation in Operating Systems,
IEEE 91TH0392-1, pp. 24-28, Palo Alto, CA, October 17-18, 1991

[3] W. K. Giloi, “The SUPRENUM Architecture”, CONPAR 88, Manchester,
UK, Cambridge University Press, pp. 10-17, 1989

[4] H. Mierendorff, “Bounds on the Startup Time for the GENESIS Node”, ES-
PRIT Project No. 2447, Technical Report, GMD F2.G1, Bonn, 1989

[5] J. Nolte, “Language Level Support for Remote Object Invocation”, Techni-
cal Report, GMD FIRST, Berlin, Germany, 1991

[6] D. L. Parnas, “Designing Software for Ease of Extension and Contraction”,
IEEE Transaction on Software Engineering, Vol. SE-5, No 2, 1979

[7] W. Schréder-Preikschat, “Overcoming the Startup Time Problem in Distri-
buted Memory Architectures”, Proceedings of the 24th Hawaii Interna-
tional Conference on System Sciences, Vol. 1, pp. 551-559, 1991

(8] W. Schroder-Preikschat, “Scalable Operating System Design”, Technical
Report, GMD FIRST, Berlin, Germany, 1991

[9] M. Shapiro, “Structure and encapsulation in distributed systems: the Proxy
Principle”, Proceedings of the 6th International Conference on Distribu-
ted Computing Systems, pp. 198-204, Cambridge, Mass. (USA), 1986

[10] P. Wegner, “Classification in Object-Oriented Systems”, SIGPLAN Noti-
ces, 21, 10, pp. 173-182, 1986



