B ¢

' International Symposium on New Information Processing Technologies *91,
Tokyo, Japan, March 1314, 1991

PROGRAMMING MODELS FOR MASSIVELY PARALLEL SYSTEMS
W. K. Giloi and W. Schroeder-Preikschat

GMD Research Center for Innovauve Computer Systems and Technology
at the Technical University of Berlin
Hardenbergpiatz 2, D-1000 Berlin 12, Germany, e-mail: giloi@gmdtub.uucp

Abstract

New, very important appiication paradigms call for the development of massively parallel computer
systems. During the ninetes highly integrated processing nodes will become feasible having a per-
formance range of 102 to 103 MIPS and MFLOPS, respecdvely. The entre system will be capabie of
processing several hundred thousand to several million bits with each clock cycle. These systems are
by nature diswibuted memory systems in which the nodes communicate through message passing.
Recently, new kinds of hierarchical interconnectdon smuctures have evolved that combine economy of
realizaton with the high connecuyvity required for massively parallei systems. In order to provide for
the necessary scalability of massively parallel systems, new programming models must be developed
that allow programming to take place at a sufficiendy high level of abstraction as needed to make such
a system programmabie and convenient to use. Moreover, the level of absacton must allow appli-
cation programs to be writen independently of the actual size of the system. This requires the view of
either virtual shared memory or virtual processors, as well as new concepts for extremely efficient
diswibuted operating systems, highly optimizing compilers, and adequate support by the hardware.
These issues are addressed in this paper. While for the virtual shared memory paradigm efficient
solutions are already evolving, the virtual processor approach is endrely new. Some first implemen-
tation concepts are presented in the paper.

1 INTRODUCTION

Massively parallel systems are computers with a verv large number of processors. What is "very
large”, however, 1s swongly dictated by the technology available. So far, Thinking Machine's CM-3
with 64K single-bit processors was considered by many as the epitome of "massively parailel."
However, the next generation of largely parallel MIMD architectures with up to 2096 nodes [1] will
be more parallel than the CM-3, since each processor processes 64 bits in parailel.

A Connection Machine with up 1o 256K processors has been announced. Will that be the new
definirion of "massively paralle!" ? The New Information Processing Technologies Study envisions
systems with millions ot processors. With the up-coming 100-million-transistor technology (64-
Mbyte chip) this seems pertectly feasible. Does "massively parallel” therefore begin with a million
processors ?

One important, yet unanswered question is whether massively parallel systems are meant to introduce
a new programming styie or whether they are just a means to raise the peak performance limits of
supercomputers by some orders of magnitude while adhering 1o a convenrional programming style. In
either case the success of such an endeavor will srongly depend on the solution to the question how
to program efficiently a system with many thousands or even millions of processors ? All these are
pertinent questions that as of yet have hardly been addressed. This paper tries to give some answers.

Whatever the programming paradigm is, the user should not be aware of the physical processors, let
alone have to program them, as this very well might prove to be an unmanageabie problem. Does the
user have to see individual processors at all and, if yes, what for ? If the individual processors are not
visible, wouldn't it be more efficient in terms of the communication and management overhead to
have, say, 16K of 64-bit processors rather than one million single-bit processors ? Where are the
applications that demand bit-serial processors ? The first massively parallel computer, the Connection
Machine became successful in the marketpiace only after it was converted into a 64-bit number
cruncher. In order not to mix apples and oranges, it may be better to speak of the millions of bits
processed with each clock cycie and leave it as a hardware detail how many bits wide the processors
are made.

In this paper we will consider two scenarios. In the first case the computer hardware is massively
parallel, while the programming mode! is of the conventional shared memory kind. Since it is
impossible to efficiently realize a massively parallel architecture as a shared memory system, there
exist only virtually shared memory. In the second case, we introduce the massively parallel sysiem as
a programming model rather than a hardware feature. In this case the processors of the massively
parallel architecture are virmal processors, and the user can define any arbimary number of them. This
will be very suitable in programming paradigms where the probiem consists of a very large number of
objects, each of which is to be subjected to a primitve mansformaton. In this case, each object may
have individually assigned one of the virtual processors, to carry out the ransformaton.

For both cases we shall show how such systems can be impiemented. Both solutions, virtualization
of memory or virtualization of processors, introduces additional overhead, which is the price to pay
for the manageability of the system. Our goal is to minimize that overhead. Therefore, new concepts
for exwemely efficient distributed operating systems, highly optimizing compilers, and adequate
support by the hardware had to be deveioped. While for the virtual shared memory paradigm efficient
solutions are already evolving, the virtual processor approach is entirely new. Some first impiementa-
tion ideas are presented in the paper.

2 VIRTUALLY SHARED MEMORY

Largely parallel computer architectures are by nature disrributed memory architectures. In such a
system each processing node has access only to its local memory, while communication among the
nodes takes place through message passing. This leads 1o the programming model of cooperaring
parallel processes. The processes communicate on the basis of an appropriate inter process communi-
caton protocol. Data objects are encapsuiated into the process that owns them.

If the algorithmic structures and solution domains are very regular, the communicadon and syn-
chronization conditions of the parallel program can be sarisfied by preprogrammed communication
constructs loaded from a library [1]. Eventually, compiiers may even become smart enough to gene-
rate the communication constructs and put them into the right places [2].

If the algorithmic structures and soiution domains are highly irregular, these methods are prone to
fail. Consequently, it is left to the programmer to explicity perform the program partitioning into co-
operating processes, the workload distribution over the nodes. and the communication and synchro-
mization through the insertion of send and receive constructs. In massively parailei systems this is not
practcally feasibie [3].

These problems are largely avoided in shared memory systems. In this case, a conventional pro-
gramming style can be applied as reflected by such commoniy used programming languages as
Fortran, Lisp, Ada, or C. Data objects exist in a giobal address space; thus, different threads of con-

trol can readily share them. Of course, this still requires dara access synchronization provided by
some locking mechanism, e.g., semaphores, to ensure the correct order of darta access.

The global address space can be established in a distwributed memory environment by mechanisms that
provide the appiication software with the view of a virmaily shared memory [4]. Such a scheme intro-
duces additional overhead. To keep the overhead within tolerabie limits, a2 very efficient mechani-
zation is mandated, based on specific architectural support by the system. Such a mechanism will be
outlined below.

The main challenge of a virtually shared memory architecture (VSMA) is to ensure the conerence of
the distributed data. Fortunately, data consistency need not be enforced at all points in tme. Copies of
the shared data enudes thart are diswibuted over the system may be written at their owner's discretion
as long as nobody else reads them, and copies may be read in various nodes as long as nobody else
writes them. Therefore, data consistency need be enforced only at certain synchronization points.
This scheme is called weak coherence. Weak coherence means that there are critcal regions - we call
them weak blocks -- within which multipie writes to copies of the same data object are permitted. On
leaving the block, the system must merge the diverging copies into one consistent object, so that
strong coherence is reestablished without changing the program semantics. Weak consistency can be
mechanized efficiently in a diswibuted environment (5], thus enhancing the efficiency of the VSMA
significandy.

While most data entities in a VSMA may be owned by only one of the riaread of controls (TOC), there
exist aiso a number of shared entides. In this case the sharing TOCs must know where in the system
they are residing, and access rights must be issued for every such entity. Performing this at the granu-
larity level of single memory words would be inefficient. Therefore, it has been proposed to do the
sharing on the basis of the pages of the demand-paging node memories [4]. This scheme is therefore
called virmually shared memory.

The virtually shared memory solution offers the advantage that its management can be supported by
the local virtual memory managers of the nodes [4]. Copies of an entity that must be destroved
according to the wrize-invalidate method can simply be tagged invalid in their page descriptor. Any
artempt to access an invalid page leads to a page fault in the same manner as if the page were not
existent in the local memory, thus wiggering the fetch of the missing page.

In principle, the virtually shared memory approach offers the unique advantage that data migrate
dynamically 1o the site where they are needed. However, it depends very much on the initial
distribudon of services and data over the system how long it will take until the local working sezs will
have built-up in that manner. The better the original workload dismribution, the lesser will be the
message raffic needed to have the data objects migrate (o the nodes where they are required.

This adds an additional dimension to the compiexity of the compiler. In addition to the common
compiler optimizations, the compiler should automatically perform some a priori coarse grain
parallelization and load distribution such that the run-time migration of shared data entdes berween
the nodes is minimized. not because the VSMA principle would require it but for better efficiency. In
connectuon with the MANNA project, we are working on the impiementation of our distributed

virually shared memory scheme [5], inciuding the operating system [6], the compiler, and the
supportng hardware [7],

3 AN IMPLEMENTATION OF STRONG AND WEAK COHERENCE

Our implementaton of virmally shared memory [5] is based on a capability mechanism. A capabiliry
is a short message of fixed size conuining: the page identifier, the access right specification
(read/write), the owner identifier, and a pointer to the copy set list. In the srong coherence scheme
each page has exactly one owner-TOC: only the owner TOC may have the write capability. The
owner has a copy set list, listing all the TOCs that have a read capability to that page. The granting of
access capabilities is governed by the following two ruies.

Write capability granting rule:

A write capability to a shared page can be held only by one TOC at a time; i.e., there is only one
owner. On occurrence of a write fault in a TOC, that TOC will request the write capability from the
current owner. As long as the owner 1s in a crigcal region. 1t ignores the request, eise 1t must honor it
Before the new owner can exercise the write capability granted, it must invalidate all other copies of
that page.

Read capability granting rule:

A read capability may be simultaneously requested from the owner by any number of TOCs. As long
as the current owner is in a critical region, 1t ignores the request, else it must honor it. Before granting
the read capability, the current owner must change its own capability from wrize to read. Sub-
sequently, it sends the requested read capability together with a copy of the page to the requestor.

For efficiency reasons, this soong coherence scheme is supplemented by a weak coherence scheme.
Weak coherence means that inside a weak block several TOCs may have the righrt to write into the
same shared page bur nor into the same locarion (we call this a multiple-write page). Thus, inside a
weak block a shared page may have many owners (each one owning a write capability to its specific
copy). On leaving the weak block, the differing copies of the same page must be merged into a new
unique enuty that will reflect all the changes made by the various writers. Thus, the strong coherence
is reestablished.

Weak coherence is mechanized efficiently in the following manner. Let P, = ¥ p;, be the inital page.
Let P = 3 p; be the value of the page after a multiple write (in different locations p;). The new value P
can be expressed by the identity

P=p'Po+Po =[Z(P3‘Pio)]+Po
1

That is, mulitipie writers form the differences (p;-pip,) between the elements of pyg of the original page
and the modified elements p;. Each such difference can be viewed as an updare mask. The updated
page P is obtained by adding all the update masks to the original page P,. Since different TOCs must
not write into the same locanon, the different update masks are mutually exclusive.

This scheme allows the unificadon of all the changes to be performed in a distributed. pipelined

fashion, i.e., without any need for a global system manager. It also allows weak and strong data
coherence to coexist in the VSMA.

However, the VSMA approach inevitabiy leads to a large amount of traffic in the svstem. Critical
regions must be locked and unlocked. write and read capabilities and invalidation notices must be
exchanged between the nodes, and copies of data objects must be sent to the node where they are
reterenced. Therefore, the most effective hardware support fc r the VSMA is a very fast message-
passing mechanism for short, fixed size messages, including broadcasting capabilities. To minimize

the communication start-up time, each node must be equipped with a dedicated communication
processor [8].

: e e e e AL el el et n Tl

4 THE VIRTUAL PROCESSOR MODEL

As was pointed out above, by massively parallel compuring we understand a programming model
where the user can assign an individual processor to every basic computational activity in the
program. For exampie, if the user simulates a neural network, every neuron in the network -- no
matter how many -- will have assigned its individual. dedicated processor to compute the firing be-
havior of that neuron. In a lattice gauge simulation each moiecuie has its ‘'own’ processor to compute
its movement and its energy, etc. If one has a billion molecules, one therefore needs a billion proces-
SOTS.

Synchronization of and communication among the cooperadng processors is greatly facilitates by two
major simplificatons:

(1) Synchronization is performed in a lock-szep fashion. That is. there are alternating computation
and communication phases. In the computation phase all computational steps of an iteration
are performed by all processors. In the subsequent communicadon phase the resuits of the
computation step are communicated throughout the system. The lock step-step mechanisms
ensures that the receiving processors are ready to receive a message when the communicadon
phase is entered. Therefore, the overhead of a rendezvous protocol can be avoided.

(2) Communication is not secured. This assumes that the applicadons for massively parallel
systems are such that sporadically occurring message faults do not affect the result
significantly. This is certainly the case in all Monte Carlo simulatdons and in neural nerworks,
but also in numerical applications where a fauity message causes not more than a local
perturbaton that "dies off” after a few steps.

The virtual processor model in connection with the lock-step synchronization is appropriate in all
cases that allow for a fine-grain partutoning of the solutdon algorithm into a very large number of
primitive operatons thart all have approximately the same execunon time. In the reaim of Monte Carlo
simulations, large neural networks, etc. such a behavior is evident. However, the model can be ap-
piied also in "classical' numerical applications such as PDE solvers, by assigning to each grid point a
dedicated processor.

This model is maintained regardless of the physical size of the machine, i.e., the actual number of
processors. Consequently, the processors of the programming model are virmal processors that are
dedicarted by the compiler to the computational tasks of the program and mapped by the operating
system onto the set of available physical processors. That is. a virtual processor is in reality a thread
of conrrol (a process) that is executed by one of the physical processors. In order to make this scheme
as efficient as possible, we introduce in the following the notion of featherweight processes.

5 FEATHERWEIGHT PROCESSES

5.1 What Are Featherweight Processes ?

Unlike heavyweight processes, lightweight processes do not constitute a domain of protection bur just
some means of sructuring a program [9]. Protected address spaces are usually provided only for
enare groups of lightweight processes. This makes the context switches among lightweight processes
of the same group much faster, for they all have the same snvironment.

In order to implement our virtual processor model efficiently, we need a mechanism that is ver simpler
and more efficient than lightweight processes. Therefore. we inroduce the notion of featherweight
processes. The foundaton for the implementation of featherweight processes is provided by the
PEACE family of operating system kernels [6].

Featherweight processes are the mechanization of the virtual processor programming mode!l. They
provide no protection for process execurion and inter process communication, leaving the physical
separation of the node memories as the only means of protection in the system. Narurally, this does
not protect the system against fauits in inter process communicaton. Therefore, featherweight proces-
ses are suitable only in a single-user, single-task mode of operation that can tolerate sporadic com-
munication faults. The thus reduced functionality of featherweight processes reduces their run-ame
overhead to0 a bare minimum.

5.2 Semantics of Inter Process Communication

Since no protected communication domains for the featherweight processes are provided, the com-
munication among them 1s torally unrestricted. That is, each process can communicate with every
other process. Unlike conventional systems, where it is the task of the operating system kernel to
provide such domains of protection, the correctness of the program execution is ensured by the
execution model of a single-user, singie-task operation in a lock-step fashion. The global lock-step
synchronization scheme excludes the possibility that messages may be sent at a time when the
recipient is not in the receiving state.

Hence, featherweight processes are combined with featherweight communication, in which data
ransfers are secured only by the hardware but not by the communication protocois carried out by the
operating system kernel. Unsecured communication means that the sender must not first seek a
rendezvous with the receiver 1o find out whether the larer is ready for the communication, before a
message can be sent. However, even in that scenario some minimum of supervisory functions must
be exercised by the operating system kernel, because it must sdll be guaranteed that the physical
communication channel does exist; e.g., that the interconnect is not biocked and buffer space is
available in the receiving node.

3.3 Featherweight Process Impiementation

The implementation of featherweight processes can be based upon a corourine mechanism, executed
under supervision by the operating system. This reduces context switches to the simple task of saving
some registers. Therefore, the operating system kernel executes a function toc_resume() (toc:
thread of control). The implementation of toc_resume() and the number of registers to be saved de-
pends in the first place on the node processor architecture. In our impiementation of the PEACE
kernel, which is written in C++, one must make sure that all the registers used by C++ are saved too.
Therefore, the number of registers to be saved depends aiso on the implementation. The overhead
caused by register saving is minimized by the following mechanism.

The compiler partitions the register set of the processor into two banks: volarile and non-volatile
registers. The volatile registers are used only for holding local parameters and intermediate results.
Therefore, they need not be kept consistent between procedure calls (assuming an interrupt-free
operaton). Only the non-volatile register bank is used for storing giobal variabies and, thus, need be
exchanged on a coroutine switch.

The functionality of the operating system kernel that supports featherweight processes is simpie: all
that is required is the handling of TOCs and the (unprotected) communication among them. The
availability of the communication hardware is checked by an appropriate driver. This operating
system kernel is the simpiest member of the PEACE family of operating system kemnels [6]. It can be
bound to the application program as a library routine.

5.4 Performance

In the existing implementation of toc_resume() on the MANNA system [7], which operates with
the Intel 1860 processor, the cost of a coroutine switch amounts to 2 instructions for the call, 1
instruction for the return, and 2n instructions for saving the non-volatile registers. Hence. a coroutine
switch takes a total of

3+2n
cycles.

Our C or C++ compilers assign 15 integer and 6 floating-point registers to the non-volatile bank, thus
requiring the saving of 21 registers. In conrrast, the Forran compiler utilizes the fuil set of registers
for optimizations and thus declare all 32 floating-point registers of the i860 as non-voiatie. Hence,
the coroutine switch overhead on the next generation of RISC processors or superscalar processors
will be in the order of magnitude of 1 microsecond. Assuming for such a processor a sustained per-
formance of 30 MFLOPS, this is the equivalent of 30 numerical operations. One can assume that the
primitive operation performed by the virtual processor in each computational step encompasses
approximately that many instructions, which means that we will have a fairly balanced system.

The estimate above scales with technology; i.e., as the MFLOPS rate goes up, so will the MIPS rate.

This reconfirms our belief that the virtual processor paradigm will become a viabie, highly appropriate
programming model for massively parailel computer systems.

References

[1] Rattner J.: Grand Challenge Compuring Systems, plenary paper presented at the 24th Hawaii
Internat. Conf. on System Sciences, Jan. 1991

[2] Zima H.P., Bast H.-J., Gemndt M.: SUPERB -- A Tool for Semi-Automatic MIMD/SIMD
Parallelization, Paralle} Comp. 6 (1988), 1-18

(3] Joint Workshop of INRIA and the US Office of Naval Research, Roquencourt, France, Dec.
2-5, 1990

[4] Li K.: Shared Virtual Memory on Loosely Coupled Multiprocessors, Ph.D.thesis, Yale
University 1986

[5] Giloi W.K. et al.: A Capability-Based, Distributed Implementation of Virtual Shared
Memory Architectures, Proc. 2nd European Dismibuted Memorv Conf.. (1991)

[6] Schroeder-Preikschat W.: Overcoming the Startup Time Problem in Distributed Memory
Architectures, Proc. 24th Hawaii Internat. Cont. on Svstem Sciences (1991), 551-359

(7 Giloi W.K.: GENESIS and MANNA: Goals, Conceprs, and Achievements, submitted for
publication to the Journal for Distributed and Paraile! Computing (1991)

(8] Giloi W.K., Schroeder W.: Very High-Speed Communication in Large MIMD
Supercomputers, Proc. ICS '89, ACM order no. 415891, 313-321

[9] Cheriton D.R.: Multi-Process Structuring and the Thoth Operating System, Ph.D.thesis,
University of Waterloo, UBC Tech. Report 79-3, 1979

