Object-Oriented Operating Systems Design and
the Revival of Program Families*

J. Cordsen

W. Schroder-Preikschat

German National Research Center for Computer Science
GMD FIRST at the Technical University of Berlin
Hardenbergplatz 2, 1000 Berlin 12, FRG

Abstract

The ’myth’ is disproved that object-oriented opera-
ting systems offer pure performance in the area of
distributed/parallel computing. Rather, it is true that
the object-oriented paradigm is the only chance to build
high-performance systems while maintaining a clean
and evolutionary system structure.

1 Introduction

Since 1986 the PEACE group at GMD FIRST is in-
volved in the design and development of operating
system software for massively parallel systems being
based on distributed memory architectures. Massively
parallel means several hundreds to thousands of pro-
cessing nodes being interconnected by a very high-
speed network and communicating via message pas-
sing. Primary goal was (and is) to design system soft-
ware by consequently following the idea of program
families [12].

The first PEACE prototype was a microkernel-based
operating system family. Lessons learned from this
implementation led to the conclusion, that the micro-
kernel approach is not the ultima ratio to build opera-
ting systems for massively parallel distributed memory
machines — and for others too. Furthermore we were
forced to the conclusion that an operating system
family based on generic libraries and description utili-
ties for system generation isn’t the overall approach
to meet both distributed and parallel computing.

Although the PEACE communication performance
is excellent for distributed systems, it is not for mas-
sively parallel systems. Problem is a significant por-
tion of multi-tasking overhead (about 60-70 %) with

*This work was supported by the Ministry of Research and
Technology (BMFT) of the Federal Government, grant no. ITR
9002 2.

each remote message transaction [15]. This overhead
is implied by the microkernel approach, which at least
requires to process a number of system tasks on each
node. Most of the applications, however, are of single-
tasking nature, i.e., they are distributed applications
with a single task being mapped onto each processing
node of the parallel machine.

Based on this experience a complete PEACE re-
design was made. The microkernel approach was com-
pletely abandoned and a shift was made from object-
based to object-oriented system organization. The
new PEACE, also refered to as objective PEACE, is
an object-oriented computing surface providing object
support to user applications. An extremely small and
efficient minimal basis of system functions builds a
process execution and communication environment
for massively parallel applications. By means of mini-
mal system exlensions custom-made microkernels and,
thus, operating systems can be constructed.

2 Approaching the Concept of Pro-
gram Families

In the program family concept a minimal subset
of system functions provides a common platform of
fundamental abstractions. This minimal basis encap-
sulates solely mechanisms from which more enhanced
system functions can be derived. It will be built by
a consequent postponement of design decisions. Fun-
damental abstractions to make massively parallel sys-
tems work then are processes and communication, i.e.,
message passing.

Dependent on the individual application, a step-
wise functional enrichment of the minimal basis is per-
formed by means of minimal system extensions on-
ly. These extensions encapsulate mechanisms and/or
strategies. However, it might be the case that no Sys-



tem extensions are necessary at all. The application
itself is always the best extension one can think of — it
1s the final extension any way. A minimal basis which
supports threading and communication already suf-
fices to execute parallel programs. Moreover, it could
be considered as the only operating system support
residing on a processing node and being required by
the application.

By adding minimal extensions, an operating system
family is constructed bottom-up, whereby construc-
tion is controlled top-down: lower-level components
are introduced only when required by higher-level
components. This way, system functions for schedu-
ling, security, process management, (virtual) memory
management, exception handling, file handling, check-
pointing and recovery are introduced. An open,
application-oriented and evolutionary system organi-
zation is the consequence.

Understanding functional enrichment as an add-to
in terms of components is only one aspect. It also
includes component replacement. During the design
phase, a commitment on a minimal subset of sys-
tem functions must be made, with the risk of sta-
ting wrong design decisions. The processing of pa-
rallel applications by a massively parallel machine
always implies communication, hence the need for
communication functions. The application might al-
so call for a single or multi-threaded address space
(i.e., task) on a node. Another application demands
multi-tasking, which then is a functional enrichment
of multi-threading. Should the minimal basis there-
fore support multi-tasking ? If the design decision ad-
vocates multi-tasked nodes and tasks are mapped in
one-to-one correspondence with the nodes, then a sig-
nificant degradation of the message startup time will
be the result [15]. Multi-tasking is not free of charge,
even if not utilized by the application. The design de-
cision to support solely multi-tasked nodes would have
been met too early.

Nevertheless, common to all applications is the
same external interface of the minimal basis. What
differs is the internal behavior, i.e., the implementa-
tion. The external interface is mainly concerned with
communication, while the internal behavior mainly
dictates the process model and the operation mode
of the node. With the minimal basis being an abstract
data type [10], a number of implementations of the
same interface can coexist. This makes the minimal
basis exchangeable at least from the design point of
view. Flexibility is maintained although the minimal
subset of system functions must have been fixed early
in the software design process.

Applying these design principles of program fami-
lies lets the microkernel appear as a number of custom-
made extensions to a minimal basis. It is merely a
member of the operating system family: the bridge to
distributed systems is being built.

3 The Object Paradigm and Common
Operating Systems

It is quite known and scientific proved for a couple
of years that the object paradigm offers an exten-
sive support in the construction of complex software
programs. Nevertheless, object-oriented programming
still fights for acceptance in the area of distributed/pa-
rallel operating systems. A few research groups, i.e.
projects that are free from commercial commitments,
meanwhile started new object-oriented implementa-
tions from scratch.

The following is an attempt to state the object
paradigm in well known operating systems, ignoring
support layers and programming environments for dis-
tributed systems. An amalgamation with these layers
may be appropriate for distributed systems, but not
for massively parallel systems.

Despite of the vagueness of the term object-oriented
operating system the following categorization is made
with respect to Wegner’s definition [18] and based on
pertinent literature.

The designers of Amoeba [17] call their system
object-based. This classification holds with system
servers being active objects. Each server acts as an
abstract data type, encapsulating state information
and providing a set of operations available through
remote procedure calls. Thus the number of objects
is fixed through the amount of servers. The Amoeba
design philosophy leads to a more considerable object
world than operating systems which act as a distri-
buted UNIX clone.

The fortune of Chorus [13] is struck by a two-
edged sword. Originally designed and implemented
by Inria/France, later adopted and commercialized
by Chorus systémes. While Chorus systemes conse-
quently pursues requirements of commercial systems
— the latest Chorus V3 supports binary instead of
source compatibility for Unix — Inria is concerned
with object-oriented support layers for distributed ap-
plications on top of existing operating systems. This
leads to a lot of experience with the object-oriented
paradigm and at the same time forbids a reflection in
its own implementation.

At the moment, Mach [1] is the most favorite



distributed operating system, thereby characterizing
state-of-the-art techniques and the indecision in use
of object-oriented programming. While the designers
boast about their Mach 3.0 microkernel, the distribu-
tion guide announces that the multi-server environ-
ment will take a long time to go, since it is built
from scratch using object-oriented programming. This
is in contrast to the actual microkernel implementa-
tion (100.000 lines of C-code with about 350 goto-
statements) and symbolizes an attempt to fit out a
house’s attic on top of wobbly foundations. Neverthe-
less, according to [5] Mach 3.0 was designed to sup-
port object-oriented programming based on an ob ject-
oriented kernel interface. However, revising a former
interface and refrain classes and inheritance will at
best offer an object-based interface.

Although previously stated as object-oriented [16]
the x-kernel [9] is merely object-based. The kernel is
written in C, and the protocol and session objects just
provide an uniform set of operations thus fulfilling an
advanced object-based topic.

Examining Clouds [4] lets the object paradigm
come more into light. The kernel implementation
(12.000 lines of C4++ and 1.000 lines assembly code)
is object-oriented, but system objects are restricted to
kernel space. User level objects are confronted with
a system call interface, which is motivated by effi-
ciency reasons, thereby introducing an invincible gap
to object-orientation. However, Clouds is an object-
based operating system based on an object-oriented
kernel.

With respect to the systems mentioned so far,
Choices [2] is the only object-oriented operating sys-
tem. Representing the idea of a family of operating
systems through a class hierarchy and inheritance of-
fers a flexible mechanism to derive adequate operating
system support. The basic Choices abstraction, how-
ever, only provide multiprocessing, thereby being to
restrictive in a massively parallel computing environ-
ment.

4 The PEACE Approach

PEACE uses a class hierarchy and inheritance as
the fundamental paradigm to build both a message
passing kernel family and an operating system family,
with the former being an integral part of the latter.
The minimal basis of the class hierarchy is constituted
by objects for single-processing and synchronous com-
munication. Minimal extensions then are abstraction-
s for threading, address space isolation, multi-tasking

and multi-user/multi-tasking. Thus PEACE goes be-
yond Choices and embodies not only the notion of cus-
tomized operating systems but also of kernel, that are
tailored for particular hardware and software configu-
rations. Currently the nucleus of the message passing
family encompasses 89 classes.

Designing PEACE as an object-oriented operating
system family from the hardware layer up to the ap-
plication level interface enables not only to fulfill the
requirements of distributed programming but also to
satisfy specific demands from massively parallel com-
puting environments [11]. These demands call for a
systemwide message startup time in the order of mag-
nitude of 10 usec (40 MIPS processor).

At the root of the family tree, support of single-
processing is made feasible with a kernel that takes
the form of a communication library which is directly
linked to the application task. This introduces the
notion of featherweight processes [8]. These processes
are not involved in any security measures. They can be
compared with coroutines being subject to extremely
lightweight thread scheduling. Since application and
kernel share a common address space, context switches
are reduced to the simple task of saving/restoring re-
gisters. The leafs of the family tree are multiproces-
sing kernels supporting standard multi-tasking and /or
multi-user multi-tasking functions with address spaces
being isolated.

The minimal basis of objective PEACE is always
built by passive objects. These objects are instances
of either class message (systemwide packet-based syn-
chronous communication), class transfer (systemwide
data transport between peer address spaces) or class
landmark (systemwide unique addresses). Minimal ex-
tensions, however, can be passive as well as active
objects. The extensions can be understood as being
horizontal, vertical or both. In the horizontal case a
complete new abstraction, i.e class, is introduced. A
typical example would be the addition of threading.
Vertical extension is by means of component replace-
ment and specialization, e.g to introduce protection
boundaries, dedicated network drivers and problem-
oriented protocol machines. An example for the com-
bination of horizontal and vertical extension is dy-
namic management of process objects. A new process
subclass is introduced, by derivation from a subclass
describing kernel processes, and made available to fur-
ther derive customized (user) processes. This way, the
kernel-level process control block is built by a hierachy
of eight classes to make the non-volatile Cpu register
set a process (i.e, active object) executing in its own
address space.



The extension by means of an active object
would be necessary to enable remote object construc-
tion/destruction. These active objects (clerks) are
made hidden and handle remote (in the sense of
disjoint address spaces) object invocation requests.
Whether the specialized family member ends up in
a pure passive or passive/active representation is ap-
plication dependent. If no one-to-one correspondence
between application processes and processors is given,
the resulting PEACE member consists of both passive

and active objects. Otherwise, passive objects are the
building blocks.

5 Upcoming Work

Presently (July 1991) our vote for an object-
oriented PEACE operating system family is based on

e experiences from cooperations with research
groups for parallel computing on a 320 node su-
percomputer [6] using object-based PEACE,

e commercial and research projects on distributed
systems using object-based PEACE,

e knowledge from a guest level implementation of
objective PEACE being the minimal extension for
threading (8.000 lines of C++ and 100 lines as-
sembly code),

e preliminary results from an ongoing port of the
guest level implementation on a parallel machine
consisting of eight nodes each equipped with two
Intel 1860 processors.

In addition, design and implementation of object-
oriented language level support for remote object in-
vocation was finished. It is in use to automatically
generate clerks, i.e active PEACE objects, as required.

Dynamic (re)configuration receives great attention
in daily work, since it is stated for years that configu-
ration is a core issue to meet the needs for massively
parallel systems. In the PEACE approach an overall
object invocation mechanism implies that the kernel
itself can be subject to dynamic reconfiguration [14]:
e.g. replacing a single-processing kernel by a multi-
processing kernel.

Nearly all research groups that focus on paral-
lel/distributed operating systems spend large efforts
in the area of distributed shared memory or virtual-
ly shared memory, as we call it. In connection with
object-based PEACE we were engaged to embed the
shared memory paradigm in a distributed memory ar-
chitecture [7]. Although this still is an important and

essential topic, the challenge of objective PEACE moti-
vated new ideas. We are now concerned with a form of
object mobility, in which the protocol for maintaining
consistency is an inherent object feature.

The application is confronted with a class hierar-
chy of consistency protocols. Specializing abstract
class definitions through dedicated implementations
provides an environment by which the required consis-
tency maintenance is made feasible. A framework for
the specification of consistency protocols is a simple
and elegant way to adopt application-oriented strate-
gies. Not least, the demand for such a framework is
backed by mechanisms like ezternal pagers in Mach.
A detailed description of these vagrant objects, called
hobos, is in progress [3].

References

(1] M. Accetta, R. Baron, D. Golub, R. Rashid, A.
Tevanian, M. Young, “Mach: A New Kernel Foun-
dation for UNIX Development,” In Proceedings of
the Summer 1986 USENIX Conference, pp. 93-112,
July 1986.

[2] R. Campbell, G. Johnston, V. Russo, “Choices
(Class Hierachical Open Interface for Custom Em-
bedded Systems),” AcMm Operating Systems Re-
view, Vol. 21, No. 3, pp. 9-17, July 1987.

[3] J. Cordsen, “VoTE for PEACE,” In preparation.

(4] P. Dasgupta, R. J. LeBlanc, M. Ahamad, U. Ra-
machandran, “The Clouds Distributed Operating
System,” To appear in IEEE Computer, August,
1991,

[5] R. Draves, “A Revised IPC Interface,” In Pro-
ceedings of the Mach Workshop, Burlington, Ver-
mont, USENIX Association, pp. 101-121, October
4-5,1990.

[6] W. K. Giloi, “SUPRENUM: A Trendsetter in
Modern Supercomputer Development,” In Pro-
ceedings of the 2nd International SUPRENUM Col-
loguium, Bonn, Germany, Sep. 30-Oct. 2, pub-
lished in Parallel Computing, Vol. 7, No. 3, pp.
283-296, 1988.

[7] W. K. Giloi, C. Hastedt, F. Schon, W. Schroder-
Preikschat, “A Distributed Implementation of
Shared Virtual Memory with Strong and Weak Co-
herence,” In Proceedings of the 2nd European Dis-
tributed Memory Computing Conference, Munich,
Germany, pp. 22-31, April, 1991.



[8] W. K. Giloi, W. Schréder-Preikschat, “Program-
ming Models for Massively Parallel Systems,” In-
ternational Symposium on New Information Pro-
cessing Technologies 91, Tokyo, Japan, 1991.

[9] N. C. Hutchinson, L. L. Peterson, “The x-Kernel:
An Architecture for Implementing Network Proto-
cols,” IEEE Transactions on Software Engineering,
Vol. Se-17, No. 1, pp. 64-76, January, 1991.

[10] B. H. Liskov, S. Zilles, “Programming with Ab-
stract Data Types,” SIGPLAN NOTICES, Vol. 9,
No. 4, 1974.

(11] H. Mierendorff, “Bounds of the Startup Time for
the GENESIS Node,” ESPRIT Project No. 2447,
German National Research Center for Computer
Science, Institute GMD-F2.G1, 1989.

[12] D. L. Parnas, “Designing Software for Ease of Ex-
tension and Contraction,” IEEE Transactions on
Software Engineering, Vol. SE-5, No. 2, pp. 128-
138, March 1979.

[13] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrman, C. Kaiser,
S. Langlois, P. Léonard, W. Neuhauser, “CHORUS

Distributed Operating Systems,” Computing -
Systems Journal, Vol. 1, No. 4, pp. 305-370, Fall,
1988, The USENIX Association. Also as Technical
Report Cs/TRr-88-7, Chorus systemes, Paris, 1988.

[14] H. Schmidt, “Making PEACE a Dynamic Alter-
able System,” In Proceedings of the 2nd European
Distributed Memory Computing Conference, Mu-
nich, Germany, pp. 422-431, April, 1991.

[15] W. Schréder-Preikschat, “Overcoming the Start-
up Time Problem in Distributed Memory Ar-
chitectures,” In Proceedings of the 24th Annu-
al Hawaii International Conference on System
Sciences, Kauai, Hawaii, USA, Vol. L, pp. 551-559,
January 1991.

[16] M. Shapiro, “Object-Support Operating Sys-
tems,” Position Paper for the Workshop on Opera-
ting Systems and Object Orientation, July, 1990.

[17] A. Tanenbaum, R. van Renesse, H. van Staveren,
G. J. Sharp, S. J. Mullender, J. Jansen, G. van
Rossum, “Experiences with the Amoeba Distri-
buted Operating System,” Communications of the
AcM, Vol. 33, No. 12, pp. 46-63, December, 1990.

[18] P. Wegner, “Dimensions of Object-Based Lan-
guage Design,” Special Issue of SIGPLAN Notices,
Vol. 22, No. 12, pp. 88-97, 1987.



