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ABSTRACT

Massively parallel systems are based on distributed memory concepts and
consist of several hundreds to thousands of nodes interconnected by a
very high bandwidth network. Making these systems work requires a
very careful operating system design. A distributed operating system is
required that takes the form of a functionally dedicated server system.
This approach reduces system overhead on the nodes and enables a
problem-oriented mapping of system services onto the distributed
hardware architecture. The program family concept for operating system
construction, combined with a novel virtually shared memory approach,
then provides a powerful basis for parallel and distributed computing.

1. Introduction

Massively parallel systems consist of several hundreds to thousands of nodes
interconnected by a very high bandwidth network. They are multicomputer systems
with distributed control, built by autonomous, cooperating nodes. At the lowest level,
there is no longer the view of a global, common address space, as is the case with tightly
coupled shared memory multiprocessor systems. Rather, each node has only direct access
to its local, on-board memory. Global memory access and, thus, inter-node cooperation,
happens exclusively by means of system-wide message passing.

In general, the notion of a distributed memory architecture comprises distributed
systems capabilities, with all their advantages and problems. That is, operating system
design aspects for distributed systems |[Tanenbaum, van Renesse 1985] also apply to
massively parallel systems [Schroeder, Gien 1989]. An important role plays transparency .
At least, this requires to hide the way of locating and accessing system services, especially
in cases where service replication is given. Making and keeping massively parallel
systems work also requires some means for fault tolerance [Randell et al. 1978].
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At the other end of the spectrum, efficiency is predominant. The startup time of a
message passing operation is the most crucial factor with respect to overall
communication performance [Mierendorff 1989]. Because message passing is fundamental,
achieving very high performance, i.e. very short communication latency, is a must.

In order to improve the acceptance of massively parallel systems — and of distributed
systems in general —, the buzzword virtually shared memory [Li 1986] stands for a central
mechanism which must be supported by todays distributed operating systems. For an
overview of state-of-the-art designs and implementations see [Ousterhout 1989].

This paper describes concepts for distributed operating systems of massively parallel
systems. The elaboration of these concepts was based on experiences made with the
design, development and implementation of PEACE [Schroeder 1988], the distributed
operating system for SUPRENUM [Giloi 1988|. It is explained by what means PEACE
copes with the tradeoff between efficiency and transparency.

The basic PEACE approach is to consequently follow the well-established software
engineering rules for the development of program families, i.e. to identify a minimal
subset and minimal extensions of system functions [Parnas 1979]. In order to deal with
the structure and complexity of massively parallel systems, these rules are applied to
construct a family of distributed operating systems. In a similar way, a message-passing
kernel family lays the basis for providing transparency without loosing efficiency. In this
sense, PEACE aims to be a general solution for current, as well as future, massively
parallel systems based on distributed memory.

After a description of basic abstractions provided by, and the design principles
applied to, PEACE, the global system organization is discussed. Subsequently,
mechanisms for service invocation and object localization are considered. By what means
the system is getting started and object mobility (i.e., migration, checkpointing/recovery,
virtual memory and virtually shared memory) is supported will be explained afterwards.
Some concluding remarks complete the paper.

2. Basic Abstractions

The primary purpose of PEACE was and is to provide a process execution and
communication environment for large scalable distributed applications. A minimal
subset of system functions should be applicable for making both user and system
applications work on massively parallel systems.

In this sense, it was not intended to construct another general purpose distributed
operating system. Rather, the focus was on fundamental mechanisms that make the
construction of a large class of distributed applications feasible. Special concern was
hereby devoted to the extension of traditional operating system family concepts
[Habermann et al. 1976] into the area of distributed and massively parallel systems. In
the following subsection, the basic abstractions employed to build the PEACE distributed
operating family are described.



2.1. Threads and Teams

Following state-of-the-art distributed operating systems, above all V [Cheriton 1984]
and Amoeba [Mullender, Tanenbaum 1986], the PEACE process model distinguishes
between heavyweight process and lightweight process. Heavyweight processes are teams
of lightweight processes, i.e., shells for one or more instances of threads. The term

process is used as a synonym for either thread or team.

Teams define a global execution domain for threads. This comprises a common
address space, uniform team scheduling strategies, and common access rights onto PEACE
objects. These objects are, e.g., memory segments, teams, threads, files, devices, and so
on. Team scheduling always applies to a number of threads and is triggered on a time
slice basis. In addition, different teams may be given different time slices and may be
scheduled following different strategies. With threads being mapped onto different
processors, true parallel processing of a team is supported in case of shared memory
multiprocessor systems.

In PEACE, the potential for thread scheduling is given only by two situations, namely
as a side-effect to the reception of either messages or events [Hewitt 1977]. One extreme
is that threads are preempted and/or immediately started upon receiving a message.
The other extreme, which is the default case, is that threads behave like coroutines and
are scheduled in a round-robin fashion.

A thread is the unit of execution, whereas a team is the unit of distribution.
Consequently, different threads of the same team are not distributed over different nodes.
This is also true in cases of virtually shared memory where teams are considered to have
direct access to a common, global address space that is physically distributed over a
number of nodes. From the notion of teams it is obvious that threads of the same team

do have virtually shared memory access, too.

Threads, in the form of lightweight processes, are more than a unit of execution.
Interactions between threads are supervised by the PEACE nucleus. For dedicated,
massively parallel applications, however, thread supervision can be sacrificed to speed up
overall performance. The purest form as a unit of execution is wanted. Therefore,
PEACE introduces the notion of featherweight processes [Giloi, Schroeder 1991]. This
process type represents extremely lightweight processes. Their weight is largely
determined by the type of processor actually used, and not by the system software.
Featherweight processes are the most basic PEACE process type that can be distinguished
from simple coroutines, i.e. they are subject to lightweight thread scheduling.

2.2. Events

The potential for more than one thread of control within a team calls for intra-team
synchronization. Because threads implicitly share the address space of their team, only
simple event propagation mechanisms are required.

An event is specified by an arbitrary bit pattern fitting into a single processor
register. Two event propagation strategies are provided, one-to-one and one-to-many. In
the former case, the bit pattern is interpreted as a thread identifier and is classified



accordingly. In the latter case, the bit pattern remains uninterpreted. In both cases, the
bit pattern then is used to check for suspended threads that await the specified event.

Events are not queued and do not cross team boundaries. An event count is
maintained, allowing a thread to unblock only if the specified number of propagation
requests related to the same event has occurred.

Propagating an event to a suspended thread that awaits the event implies setting this
thread ready to run again, meaning thread scheduling. In addition to the event, the
propagation request also specifies the scheduling strategy which is to be applied to each
properly blocked thread. That is, the actual thread scheduling strategy may be
bypassed. Instead, a preemptive strategy may be applied, i.e. the propagating thread
may decide to implicitly relinquish control of the processor if some other thread is
synchronized on the occurrence of the indicated event.

2.3. Messages

Communication between different threads is one of the primary issues in making
massively parallel systems work. In addition, very high performance is predominant,
especially limiting the startup time for a single message transfer to an acceptable

minimum.

A message startup comprises all system activities at the sending and the receiving site
in order to transfer user-level data between peer address spaces. Before the end-to-end
data transfer will be possible, the receiving thread is to be located and its existence is to
be verified. This at least requires the transmission of a small control message (header) to
the receiving site. Before checks are possible, the incoming control message must be
buffered and queued. In order to reduce system overhead at the receiving site in this
situation, the control message should take the form of a fixed-size packet.

In PEACE, message passing means the exchange of fixed-size packets which, in
addition to the header field, carry some user data to the receiving thread. This approach
guarantees a most efficient communication. As explained later, the transfer of arbitrarily
sized data is accomplished by a separate mechanism.

A synchronous request—response model of communication is supported.
Asynchronous communication implies increased buffer management and copying
overhead. Therefore it is not considered of being a minimal subset of system functions,
i.e. a basic mechanism. In addition, buffering and copying increases the message startup
time.

The only need for asynchronous communication is in cases where computation and
communication shall overlap. In means in effect to have at least two separate threads of
control, namely one for communication and another one for computation. For these
purposes lightweight processes, i.e. PEACE threads, are the best choice. The benefit of
this approach is a general improvement in structuring concurrent programs [Gentleman
1981).

The request —response model implies that a client issues the request message to a

server and implicitly awaits the response message. In terms of PEACE, the issuing of the



request message blocks the client thread . A server thread is blocked in cases where its
request message queue is empty. In this situation it will be unblocked by the first
incoming request message.

Once having accepted the request message, a rendezvous between client and server
thread is established. The rendezvous is finished either by replying to the client or by
relaying the client to (maybe) another server. Replying to the client results in the
delivery of a server-defined response message. The successful reply unblocks the client
thread. By default, relaying the client leads to the retransmission of the original request
message to the new server thread. The alternative is that this message is overwritten by
the server, i.e. the server thread passes a request message on behalf of the client thread.
Both, replying and relaying are non-blocking activities for the server. A relay keeps the
client thread suspended.

In order to reply or relay the client thread, a reply capability is required. In PEACE,
the entire server team gains this capability as soon as the rendezvous is established. As
was already mentioned, all threads of a team implicitly have the same access right onto
PEACE objects. A client thread is such an object. Thus, terminating the rendezvous is
not restricted to the server thread, rather it is extended to the server team.

2.4. Transfers

The transfer of objects of arbitrary size is not accomplished by the basic message
passing primitives. Rather, a separate mechanism is provided, called high-volume data
transfer. This mechanism is applicable only during a rendezvous, namely when in
possession of the reply capability. Under control of the server team, data sets can be
either read from or written into the client address space. Because the rendezvous is
assumed to either loosely or tightly synchronize the involved teams, high-volume data
transfer is a non-blocking activity.

With respect to intermediate buffering, this approach places no demands on the lower
level communication system and enables data streams to be always exchanged end-to-end
between peer team address spaces. Thus, the need for intermediate buffering may only
be caused by limited network interface capabilities, e.g. in cases where it is not possible
to directly pass incoming data through to the target team address space.

In the case of virtual memory support, a virtual transfer of arbitrarily sized messages
is made feasible. Rather than transferring complete data sets between the involved team
address spaces (copy semantic), the corresponding memory segments can be marked as
copy-on-write, at the client site, and copy-on-reference, at the server site. Thus, only
those pages are copied to the server address space which either are written into by the
client team or referenced by the server team. Transferring data into the client address
space works similarly, i.e., pages are copied that are written into by the server team or
referenced by the client team.

1 Usually, the blocking of a thread does not imply the blocking of the thread’s team. As long as at
least one more thread is ready to run within the team, processing continues.



2.5. Leagues

In order to provide security in the case of a multi-user mode of operation, only
related threads are allowed to communicate with each other. Threads which shall belong
to the same communication domain are said to belong to the same Ileague.
Communication within the league is unrestricted, while the crossing of league boundaries
is prohibited. In order to provide communication security, different users form different
leagues.

Leagues may overlap and are related to threads. The former aspect is required to
invoke system services by means of message passing, which is the only Way-in PEACE to
request service execution. With leagues being related to threads, it is feasible to have
system threads executing within user teams. These threads then perform system-related
actions, e.g. checkpointing, in close cooperation with other server processes which, for
safety reasons, are mapped into a private league. They perform these actions with
permissions granted to the private league, rather than permissions granted to the league

of their own team.

Controlling league membership of a thread is not assumed to be supported by
hardware. It is the responsibility of the nucleus to ensure thread integrity. Therefore,
leagues only apply to threads taking the form of lightweight processes. A league is not
associated with featherweight processes.

2.6. Gates

The addressing of communication partners is by means of system-wide unique
tdentifiers. These identifiers are represented by a numerical value and contain a logical
host field, providing the information where the effective location of the communication
partner is. They are locally managed on each node, thus, they are referred to as locally
unique identifiers, [ui.

A lur designates a gate, which acts as a port-like communication endpoint [Balzer
1971] without buffering capabilities but with routing capabilities. Normally, gates are
associated in one-to-one correspondence with threads, i.e. the creation of a thread also
results in the creation of a gate. Consequently, the [uf also designates a thread.

A thread may have several addresses (gates) at the same time, whereby each thread
address is represented by a lui. This way dynamic restructuring is supported. Even in
the case of team migration, threads still are reachable via their old address. The gate
then acts as a forwarding identifier, automatically routing messages and transfers to the
effective destination. By means of this routing capability, communication monitoring is
enabled too.

Remote gates may be cached locally and, hence, the same gate may be distributed
over several nodes. In this sense, the [ui does not necessarily specify the address where
the gate is stored, rather it is considered as a hash key to locate locally cached gates.
There are two reasons why the potential for gate caching is given. First, in order to keep
a distributed system running in case of a node crash, the in-use gates, having been stored
at a crashed node, are to be distributed to the nodes where they are used by threads.



Second, communication security also means to prohibit the sending of messages out of a
node. This is accomplished by storing a league identifier in each gate, in addition to a

thread identifier, and by replicating the corresponding gate to the (sender) nodes.

3. Design Principles

By applying basic PEACE abstractions the execution of processes as well as
synchronization and system-wide communication between any pair of related processes is
made feasible. Based on these abstractions all other system functions are realized. This
includes traditional operating system functions like disk and character [/O, device and
resource management, networking, fault tolerance, debug support, exception handling,
and so on. The following subsections describe by what means the PEACE operating

system family is structured, represented and configured.

3.1. Structuring by Functional Decomposition

A major challenge in operating system design for massively parallel systems is to
elaborate a structure that reduces system bootstrap time, avoids bottlenecks in serving
system calls, promotes fault tolerance, is dynamic alterable and application-oriented.
Hence, first of all a functional hierarchy of system components must be found that
corresponds to these needs.

According to the well known principle of stepwise refinement [Wirth 1971], functional
units are to be identified which are either independent from each other or show a
minimum of interaction. Note that this approach does not yet impose any
representation restrictions on a functional unit. Rather it aims to define and clarify

inter-unit relationships.

The resulting structure forms a hierarchy of functional units according to the uses
relation [Parnas 1976]. This way minimal subsets of system functions are identified.
The primary objective of this minimal subset is to form a problem-oriented abstract
machine for massively parallel systems. Using the primitives of this machine, minimal
system extensions then are realized in an application-oriented way. As a consequence,
each such extension defines a new operating system family member.

3.2. Representation by means of Active Objects

Distributed memory architectures call for an object-based system design, which also
is a prerequisite for constructing an operating system family. In addition, the actual
structure [Randell et al. 1978| of system software has important impact on the reliability
of the entire computer system. For all these reasons, functional units are represented by
active objects, i.e. processes.

3.2.1. Service and Manager

In operating system terms, a functional unit implements a system service, such as
process management or file handling. The system service is executed by a dedicated

system process. Consequently, requesting the execution of a system service requires to
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send a message to some process. A typical client — server relation is established.

The functional decomposition usually results in a multi-level hierarchy of service-
providing system processes. This means that these processes are in the situation of being
both client and server. Because of this duality, they are called maenager. A team is used
to implement a single manager, enabling concurrent service execution within the same
manager by means of multiple threads. In PEACE, the entire operating system then

consists of a multitude of cooperating manager teams distributed over the nodes.

The consequent usage of teams for system service encapsulation has several benefits.
It provides a natural basis for building application-oriented operating systems. System
services need only be present if they are required, meaning that the corresponding teams
are created and loaded on-demand. Especially in the case of massively parallel systems,
it is not required that user teams share the same node with system teams. This
significantly reduces global system initialization time and makes the parallel system to

appear as a processor bank whose purpose is to exclusively execute user applications.

Following the team structuring approach, the notion of a system call (service
invocation) is slightly different from the traditional viewpoint of a trap. A system call
must be requested by means of message passing, distinguishing between local and remote
operation. In order to hide all these properties from both the service user (client) and the
service provider (server), a PEACE system call takes the form of a remote procedure call
[Nelson 1982]. *  Based on the remote procedure call approach, only services which
are used to build the minimal subset of system functions, the abstract PEACE machine,
are subject to privileged supervisor mode execution by the underlying processor. All
other services are executed in non-privileged user mode. This, for example, distinguishes
PEACE from most of the state-of-the-art distributed operating systems such as Mach
[Young et al. 1987] and Chorus [Rozier et al. 1988], whose system managers are subject
to supervisor mode execution. In this sense, PEACE follows the pattern of object-oriented
operating systems [Balter et al. 1986] by means of a process-structured design approach.

3.2.2. Administrator and Porter

There are several reasons for service replication in distributed systems. One aspect is
to avoid the presence of bottlenecks in cases where a manager is overloaded by too many
service requests. Another case is redundancy for fault tolerant purposes. Furthermore,
there are replicated and over a number of nodes distributed I/O units such as disks. In
all these cases, managers are replicated because of performance, availability, or

architectural reasons.

This leads to the concept of distributed managers. The set of managers of the same
type constitutes a PEACE administrator. For scalability reasons, processes should not be
aware of using replicated services (managers). Rather they interact with an
administrator. In this situation, the administrator has to keep track of which manager is
to be selected for service execution. Explicit cooperation among the managers may be
one solution, meaning that all managers are trading resources with each other. However,
this implies a loss of scalability at the manager level.



The more flexible and efficient solution to the manager selection problem is to assume
an object-oriented view of system service invocation. Provided that the service instance,
i.e. object, is properly identified by the request, manager selection becomes a straight- .
forward business. The extreme solution is to have a one-to-one correspondence between
service instance and thread. For example, in case of a file manager, each open file object
may be managed by a private thread of the file manager team, meaning that the thread’s
lut can be used as a file descriptor. Issuing a file I/O request means that the
corresponding message can be directly passed to the proper manager without
intermediate routing.

For these reasons, the PEACE administrator concept is not only supported by a
number of managers, but also by a related porter that directs requests to the proper
manager and, thus, serves as an administrator interface. Figure 1. illustrates this

approach.

administrator

manager

% <,
manager,,

Figure 1: The administrator concept

The porter takes the form of a library and, thus, is part of*the team address space of
the service-requesting process. Dependent on the type of service, the porter may also
encapsule private threads. For example, using p.orter threads enables service-related
exception handling on a message-passing basis. In addition, the administrator typically
forms a separate league, meaning that porter threads, on the one hand, belong to the
administrator league and, on the other hand, reside within a team that belongs to a
different league. These porter threads then access system services with permissions
granted to the administrator, rather than permissions granted to their teams.



3.3. Configuration by a Third Party

In the scope of massively parallel systems it is important to reduce the amount of
system software which is to be executed by each node; otherwise, system bootstrapping
becomes a nightmare. For this reason, PEACE distinguishes between site-dependent and
site-independent managers. A site-dependent manager typically provides low-level and
hardware-related services. For example, the disk manager must reside in a node that has
a disk attached and encapsules device dependent functions. The file manager, which uses
the disk manager, may reside elsewhere and is considered site-independent.

In many cases, the same service may have several representations. A me'mory
management service, e.g., can be realized with or without dedicated hardware support
such as a memory management unit. This does not necessarily require to provide a
-different service interface. Rather, the service can be viewed as an abstract data type
[Liskov, Zilles 1974] that has several implementations which all inherit the same external
interface. Dependent on the user requirements and on the availability of dedicated
hardware support, the proper memory manager can be used. The configuration decision
then will be made with respect to either performance, protection, or hardware
availability.

The property of being configurable is absolutely necessary to meet the needs for
massively parallel systems. Except in the case of site-dependent managers, a third party
is able to establish configurations based on the individual needs of distributed
applications. That way the parallel machine can be considered as a processor pool that
is exclusively used for the execution of user application processes. Figure 2 illustrates
this approach. :

manager }

processor pool

Figure 2: Functional dedicated system

Nevertheless, managers and user processes might be forced to share the same node if
a temporary deficiency of node resources exists. As soon as nodes become available
again, user processes are preempted to continue execution on their own nodes. The
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buzzword for this functionality is team migration in PEACE.

Another example that calls for configuration by means of a third party is given in the
case of the MANNA node [Giloi 1991]. The idea of this node architecture is to use both
processors, which share the same node, as two dedicated functional units: an AP, the
application processor, for user process execution and a CP, the communication processor,
for system-wide message passing and high-volume data transfers. In fact, distinguishing
between AP and CP, i.e. assigning a communication manager to the CP, then becomes a
matter of configuration, rather than implementation.

3.4. A Case Study — Process Creation

A short example from the area of resource management shall help to clarify how the
PEACE administrator concept works. Surely, the creation of processes may be
considered, one of the most significant services. For this purpose, the PEACE process
admainistratfor is investigated.

The creation of a new process in a distributed environment is characterized by the
questions where the process is to be created, what image shall be loaded and how will it
be loaded. For reasons of simplicity, a fork-like system call is discussed.

The fork semantic requires to replicate the address space of the creating process, the
parent, which then builds the address space for the created process, the child. Thus, the
image to be loaded is a copy of the actual image of the parent team. For efficiency
reasons, loading the image in a distributed environment should be done directly from
parent to child, especially if one keeps in mind that a process manager is not required to
reside with the parent or child in the same node.

This leads to three fundamental functions, namely image transportation, routing of
service requests, and management of system data structures. For safety reasons, only the
system data structure management must be performed by the process manager. The
other two tasks are performed by the process porter on behalf of the parent process.
The complete fork operation then comprises the following activities:

1. The porter requests from its process manager a team map, giving information
about the threads and memory segments allocated by its team. It then requests
from a node manager the allocation of a new node.

2. The porter forwards (i.e. routes) a process creation request that carries the team
map to the process manager related to the selected node.

3. According to the team map, the selected process manager creates a new team,
associating it with an address space cover. In addition, the team of the porter is
given reply access right onto the newly created team.

4. The porter transfers its team image to the new team on the basis of the high-
volume data transfer. Note, the porter team was given proper access right for this
purpose.

5. The porter terminates the rendezvous to the new team, thus starting the child
process. Again, note that the porter was given a reply access right capability.

i



This approach leads to a decentralized control of the process creation activities. Usually,
there is a number of process porter modules, each one encapsuled by a team whose
threads potentially request process creation. In addition, the process manager is
responsible for process management in a number of nodes, for example in cases where all
the nodes are jointly used as a processor bank. Finally, the need for process manager
replication is obvious if one is faced with the management of thousands of nodes.

4. System Organization

In addition to the application, PEACE distinguishes three major system building
blocks. These building blocks realize system-wide inter-process communication, hardware
abstractions and application-oriented system services. They are explained in the

following subsections.

4.1. Nucleus

The nucleus is the most basic PEACE system component accessible by processes and
must reside in each node. The nucleus provides system-wide inter-process communication
and, thus, implements the basic PEACE abstractions. That is, the nucleus implements
objects related to threads, teams and leagues, events, messages and transfers, and gates.
However, these objects are not dynamically allocated by the nucleus. Whatever system
component is responsible for their creation — this, by the way, is exactly the domain of
the PEACE kernel —, the nucleus simply assumes that they are present. Indeed, resource
management is not its job. Rather, the nucleus performs nothing else but the queuing of
existing objects, i.e. interprets some more or less dynamic data structures that take the
form of single-linked or double-linked lists.

4.1.1. Basic Organization

Two major goals stand behind the nucleus development, portability and performance.
The first goal is achieved by means of a problem-oriented structure, as illustrated in
Figure 3. The second goal is achieved by focusing on the substantial facts, namely that
the absolutely minimal subset of system functions support process execution and
communication only.

The top layer of the nucleus is dedicated to NICE, the network independent
communication executive. It serves as the nucleus interface, providing primitives for
system-wide message-passing and high-volume data transfer. There is no other way in
PEACE to communicate excepted by means of NICE. All other system services, even
higher-level communication functions, are implemented by using NICE primitives. Besides
communication, low-level process scheduling is supported as well as intra-team
synchronization by means of events.

The next lower layer is dedicated to COSY, the communication system. COSY
provides inter-node communication and is used by NICE to implement system-wide inter-
process communication. Data transfer primitives provided by COSY work asynchronous,
without copying messages but queuing data transfer requests. Threads actually issuing a

remote communication request are not blocked within COSY, unless a busy waiting
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Figure 3: Nucleus organization

scheme of data transmission is realized.

The basic idea of COSY is to make NICE really independent from network interface
capabilities, thus making the nucleus generally portable. Nevertheless, the COSY interface
is tuned to meet the requirements for massively parallel systems, especially with respect
to performance. For example, this means to implement a highwvolume data transfer
facility that is optimally balanced to the underlying network properties. Either a blast
protocol can be used in cases of synchronous networks or segmenting can be performed
to reduce the potential of blocking.

Segmenting will always be applied by COSY in cases where the network is not capable
to transfer arbitrary sized data streams, as for example Ethernet [Metcalfe, Boggs 1976].
In addition, virtual channels are realized in this case, meaning also to provide multiplex
and demultiplex capabilities. In order to control multiplexing/demultiplexing, segments
belonging to different transfers are tagged with different luss.

The bottom layer is dedicated to CLUB, the cluster bus?. It encapsules the network
interface driver routines and, basically, is not concerned with any kind of network
protocols except for node addressing. Above CLUB, nodes are logically addressed. The
logical node address is represented by the host field which is contained in each lui. As
was outlined previously, a lui is used to address communicating threads, indirectly via
gates. This addressing scheme is applied by NICE. In case of remote communication, the
lui is directly passed-through to CLUB which, in turn, maps the logical host address onto
a physical node address.

A heritage from SUPRENUM, where nodes inside a cluster are interconnected via a bus. In general
PEACE terms, cLUB stands for a club of network hardware interface drivers.
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In downward direction, request queues are used to interface adjacent layers. In
upward direction, upcalls [Clark 1985] are applied to enable the propagation of network
events to the COSY and NICE layers. Usually, these events are related to incoming
messages which, finally, are to be processed by NICE.

4.1.2. Nucleus Family

In order to meet the various communication performance requirements of parallel
applications, a nucleus family is identified in PEACE. The purpose of this family is to
offer different modes of operation for a single node, e.g. to provide optimal support for
either single-tasking or multi-tasking. However, the distinction between single-tasking
and multi-tasking support is too rigid [Schroeder 1991]. The PEACE development for
SUPRENUM demonstrates that a more discriminating approach must be taken. One
reason is that a large class of applications must be optimally supported. A second reason
is that it is much less risky to develop an operating system incrementally rather than
trying to implement the entire system in one shot.

In this sense, a multi-tasking nucleus will begin with supporting static scheduling, to
be extended by preemptive scheduling and address space isolation, by memory protection
and, finally, by multi-user security. The key aspect is that the nucleus design is required
to be complete before implementation starts. All the intermediate steps towards the final
implementation are considered as representing an autonomous member of the nucleus
family in its own right, exhibiting different functionality and performance characteristics.
Figure 4 illustrates this approach by means of a nucleus family tree. As will be
discussed, nucleus functionality increases from left to right and from top to bottom. By
the same amount by which the functionality is increased, the communication

performance drops, i.e. the message startup time increases.

At the root of the family tree, there are two major user requirements, namely single-
tasking and multi-tasking. In case of single-tasking, a distinction is made into single-
threading and multi-threading. Note, a task is a PEACE team and hence may be multi-
threaded. In case that only a single thread of control must be supported on a node, the
nucleus purely implements communication. This is the situation where a one-to-one
mapping between a node and a user task is feasible.

In PEACE, synchronous inter-process communication is considered as the fundamental
communication paradigm, offering the highest possible end-to-end communication
performance. Threading introduces concurrency relative to a common address space,
Multiple threads of control constitute a team, specifying a one-level scheduling domain.
This nucleus representation implements featherweight processes, i.e. extremely lightweight
processes. No mechanisms for security are available at this stage in the family tree.
Thus, featherweight processes can be compared to coroutines which are subject to
lightweight thread scheduling.

Multi-tasking increases only the scalability and does not imply protected address
spaces. Concurrency relative to several teams belonging to the same user application is
supported. Thus, a non-preemptive scheduling strategy is introduced into the nucleus.

This constitutes a switch from one-level to two-level scheduling, i.e. it extends thread
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Figure 4: Nucleus family tree
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In all these cases, the nucleus takes the form of a non-protected shared library that is
directly linked to the application task. In addition, a node controlled by these nucleus
instances is used exclusively for user task execution. Except for the nucleus, no other
PEACE system components are located on these nodes. Application tasks (teams) are
loaded as part of the node bootstrap procedure. Following the pattern of coroutines,
merely dynamic creation/destruction of threads is supported. Since system services are
invoked by means of remote procedure calls, PEACE server teams may reside elsewhere
and are not required to share a single node with the user teams (i.e. tasks).

The requirement for preemptive scheduling implies a complete nucleus isolation.
Now, interrupts must be handled, and the teams are given a limited time quantum for
program execution. Dynamic creation/destruction of teams is introduced. However,
team address spaces are not yet isolated, i.e., protected. In addition, the nucleus must be
invoked through traps, thus introducing more overhead. Consequently, the nucleus as
part of the kernel is executed in privileged supervisor mode and protected against user
mode tasks. Nucleus (kernel) protection may also be a case for single-threading and
multi-threading instances.

Applying address space isolation to user teams completes protection in its traditional
sense. The kernel is extended by services to associate process objects with address
spaces. Except for having explicitly requested segment sharing, teams are prohibited to
directly access and manipulate peer address spaces. This makes the nucleus a true
multi-tasking system, able to support the execution of multiple teams belonging to



different applications. In this nucleus instance, high-volume data transfer, for example,
implies explicit segment validation before accessing a team address space.

If a multi-user mode of execution is to be supported, memory protection alone is not
sufficient for massively parallel systems. Rather, communication firewalls in terms of
leagues must be established such that threads belonging to different user teams are
prohibited to communicate with each other. Thus, the principle of memory protection is
extended into a distributed environment. Precautions for communication security are
necessary. The nucleus is required to enforce integrity of the different distributed user
applications running concurrently on the parallel machine.

4.1.3. Problem Orientation

With respect to different user requirements, different NICE modules are used for
optimal support. Each NICE instance implements a member of the nucleus family.
Different network characteristics are covered by dedicated COSY modules, improving the
portability of NICE by means of isolation from network details. Network hardware
transparency is achieved by CLUB, i.e., there are different CLUB implementations for
different network hardware interfaces. This generally improves portability by means of
isolating nucleus instances from the details of network devices.

The order in which we discussed the members of the nucleus family also defines the
order of increasing system functionality. User-level communication performance
decreases in the same order. Applications which scale well with the given number of
nodes are supported by either of the first two nucleus instances (communication and
threading), depending on whether synchronous or asynchronous inter-process
communication is required. A first step towards multi-tasking is to introduce the
scheduling nucleus. This nucleus represents a compromise between scalability and
protection. It is used for dedicated and mature applications.

A similar compromise can be made concerning nucleus isolation. However, there are
two additional major issues to be addressed by the nucleus. First, dynamic nucleus
reconfiguration must be feasible. Second, multi-tasking must be supported regardless of
the availability of a MMU. This generally enlarges the applicability of the system.

Dynamic nucleus reconfiguration is needed in cases where system availability is the
dominating issue. A single-tasking nucleus is used in all cases where tasks are mapped
one-to-one to nodes. Node crashes, however, may require task redistribution and, thus,
could cause the switching to a multi-user multi-tasking nucleus at some other node. This
also may imply that some nodes are now to be shared between a number of tasks
belonging to different user applications. In this case, the single-tasking nucleus need be
replaced by the multi-tasking nucleus at runtime.

4.1.4. Multiprocessor Support

Some members of the nucleus family are also suitable for shared-memory
multiprocessor execution. In the traditional approach of multiple processors that have
equal rights with respect to shared-memory access, the nucleus is shared accordingly. In
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an approach where functionally dedicated processors are used, as for example in the case
of MANNA, the nucleus is distributed over the processors. Figure 5 gives a rough idea
about a functionally dedicated nucleus representation for a single MANNA node.

nucleus

nucleus

inter—process
T NICE communication > "NICE
GLUE GLUE

high—volume GLUE
data transfer

G

=

Figure 5: Functional dedicated nucleus organization

As illustrated, COSY and CLUB are mapped onto the communication processor (CRY,
whereas NICE remains on the processor that performs the user program execution, the
application processor (AP). Hence, the major part related to communication is off-
loaded.

This approach however requires an additional module, GLUE, to interface to the CP.
Both, NICE and user teams must use GLUE in order to request data transmission by the
CP. Thus, processes are able to interact directly with the CP. They use NICE only in
cases where synchronization is required. Because the COSY interface is non-buffered and
asynchronous, no-wait send semantics of communication [Liskov 1979] can be easily
provided at team library level.

4.2. Kernel

Basically, the kernel serves as a hardware abstraction. It offers services to
dynamically create and destroy process objects and to associate these objects with
address spaces. In addition, it encapsules device drivers and enables higher-level system
processes to be attached to the trap/interrupt vector of the underlying processor. This
way, the kernel converts traps and interrupts into messages and forwards these messages
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to some higher-level system process. :

Each of these services is provided by a dedicated kernel thread, meaning that the
kernel is multi-threaded and invoked by remote procedure calls. There is one
distinguished thread which is called the ghost. This thread always is bound to a well-
defined lu: that only consists of a non-zero host field. Thus, in terms of PEACE, the
ghost is the logical representative of a node.

Besides some basic services to support the PEACE naming system, the ghost initially
creates threads and teams having been booted onto the node. In Figure 6 the kernel

organization in terms of threads is exemplified.

/ traps remote procedure calls

kernel team : nucleus

k3

Figure 6: Kernel organization

Except for the ghost, the presence of a kernel service depends on both the application
and the hardware. Dynamic process creation and destruction must be supported if the
application requires to have multiple teams running on the same node, whereas a disk
driver thread obviously is not required on diskless nodes. An extreme situation arises if
only the single-tasking mode of operation is supported. In this case the ghost effectively
represents the user task, meaning that no other kernel service is provided on that node.

Because of its basic functions it is obvious that, for some configurations, the kernel is
to be executed in privileged supervisor mode of the processor. Dependent on the given
hardware structure, this will be the case if devices are to be managed, e.g. a memory
management unit or a disk. Note, it is not PEACE that demands that device drivers
must be executed in supervisor mode. The kernel, i.e., each kernel thread, depends on
the nucleus and, following the uses relation, is thus layered above the nucleus.
Consequently, if the kernel is subject to supervisor mode execution, the nucleus must
execute in supervisor mode too.
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4.3. System

The third PEACE building block is the distributed operating system whose major
purpose is to provide application-oriented system services. Without exception, the
services provided by this building block always are assumed to be executable in non-
privileged user mode of the underlying processor. In addition, all these services are
considered site-independent. Both properties let the operating system appear as an
arbitrarily configurable building block. Figure 7 illustrates the complete PEACE system
organization, including a building block of distributed applications. -

user mode execution

distributed application

| ; distributed
{ operating system

o o mm s EmS 4 G 6 o m o e s e s s s -

nucleus kernel

| supervisor. mode execution o
Figure 7: System organization

The PEACE operating system is constituted by a multitude of active objects, i.e.,
managers that are combined into administrators, which then are distributed accordingly.
The following basic administrators are defined:

name Provides services to locate objects in a distributed environment.
entity Makes PEACE a dynamically alterable system.

process Performs application oriented process management, i.e. creates/destroys

threads and teams.

memory Allocates and deallocates memory segments and supports virtual memory
as well as virtually shared memory.

signal Implements exception handling by means of message passing and threads
residing within user teams.

fault Catches hardware exceptions that are not properly handled.

clock Introduces some means of time.

il



file Manages files that are distributed over a couple of disks, whereby the disks
usually are attached to dedicated nodes.

uto Provides a uniform input and output interface.
load Performs the loading of teams.

There are further administrators dealing with synchronization, migration, checkpointing,

recovery, debugging and networking.

As is discussed later, the operating system is incrementally loaded, namely when a
process requests a system service the first time. This feature leads to an application
oriented system structure. The application determines at runtime what system services

are assumed to be present.

5. Service Invocation

A prerequisite for service invocation is location fransparency and access transparency.
Location transparency is achieved by means of naming, whereas access transparency is
supported by remote procedure calls. Naming, as well as configuration, addresses a
scheme which is often referred to as "programming in the large” and the remote
procedure call paradigm addresses "programming in the small”". Combined, this provides
a powerful approach to the development of distributed/parallel systems.

5.1. Remote Procedure Calls

A major requirement from the efficiency point of view is to provide fast invocation
protocols, as for example described in [Birrell, Nelson 1984]. This is best accomplished by
a protocol family that meets the individual needs of different service classes. A flexible
service binding scheme is required, to transparently support dynamic alterable system
structures. Another important aspect is that of an interface definition language, enabling
the system designer to specify service interfaces. By means of stub generators, e.g.
[Gibbons 1987] and [van Rossum 1990], system call libraries (i.e. stubs) are automatically
produced.

5.1.1. Protocol Family

Dependent on the type of service, different invocation semantics [Nelson 1982] can be
identified. The two basic semantics being employed in PEACE are:

at-least-once  Request and response messages are not checked for duplicates. This
strategy is used to invoke idempotent services and happens to be the
most efficient one.

eractly-once  Request and response messages are checked for duplicates. This
implies long-term buffering of request message header information and
of complete response messages to execute the duplicate suppression
protocol.

The minimal subset of the protocol family provides at-least-once invocation semantics.
Based on this subset, exactly-once semantics is considered the next minimal extension,
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thus introducing another family member. For reasons of simplicity and efficiency, at-
most-once semantics as proposed by [Liskov et al. 1983] is not included in PEACE.

In addition to the invocation semantics covered by different members of the protocol
family, concurrent invocetion is supported by applying the team concept. Two
approaches are distinguished in PEACE. On the one hand, each service request will be
processed by a separate manager thread called clone. This works independently of the
kind of service, i.e. system call, and is based on a clone pool that is maintained by the
stub of the manager team. On the other hand, for different system call classes different
manager threads are used. Thus, the team concept is applied in conjunction with the
abstract data type concept. In both cases PEACE managers are assumed to be multi-
threaded. Both forms of threading significantly improve overall system performance
because of team-internal concurrency.

5.1.2. Addressing

As was explained with the administrator concept, one task of the porter is to select a
manager that is responsible for executing a given service function. Service invocation is
by means of remote procedure calls, and service addressing (manager selection) is capable
by either of:

function name The name of the service function, i.e. system call, is used to address
the corresponding manager. The function name is required to be
unique within a global name space.

entity name The name of the module and/or manager that exports a given
service function is used for addressing. The entity name is required
to be unique within a global name space.

name domain A separate name space is used for manager addressing. This name
space partition, i.e. name domain, is related to the service requesting
process. Either function name or entity name is required to be
unique within a name domain.

manager gate  The system-wide unique manager identifier is used to address the
manager. That is to say, a lus serves as the manager address.

Addressing by a function name is the most transparent approach, because it reflects the
same addressing scheme as a local procedure call. A similarly transparent scheme is that
of using entity names, whereby in this case a single name stands for a number of service
functions. In effect, both addressing styles are meaningful if a simple load splitting
distribution scheme is used. However, this does not hold for a distributed system with
replicated managers. In the case of identical, replicated managers the potential for name
clashes is given, because each manager provides the same set of service functions and,
therefore, will be addressable by the same set of either function or entity names.

The name domain addressing scheme prevents name clashes, assuming that the global
name space is structured into several name domains. Each system call then is to be
supplied with a domain identifier in order to resolve the manager address issue relative to
a given domain. For example, in case of the PEACE process management service the
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domain identifier is derived from a [ui argument that specifies a thread. Within the
domain of this thread the corresponding process manager can then be located.

With the manager gate addressing scheme, service addressing is made feasible
without any additional mapping overhead. As was outlined previously, a gate is
designated by a luz, which is also a thread identifier. Hence, the manager gate directly
refers to the manager thread responsible for service execution. As in the case of the
name domain addressing scheme, a system call function is to be supplied with the gate
identifier of a manager thread. This addressing scheme is used in PEACE to select name
managers, e.g., during the phase a service is located.

Addressing by means of manager gates introduces some kind of object orientation. In
this case the function invoked deals with an explicitly defined object that helps to
address the proper manager. Both, object and operations on that object are encapsuled
by a single manager thread.

In fact, this scenario is not efficient with respect to process and memory resources if
small and simple objects are only to be managed. But it is efficient when such an object

is, e.g., a file, and several objects are managed by a single file manager team.

Common to all addressing schemes is the same stub functionality in terms of
marshaling and unmarshaling of system call arguments. In addition, the actual
invocation protocol is independent from the addressing schemes discussed.

5.1.3. Interface Definition Language

In order to hide most of the details discussed so far, an interface definition language
and compiler, i.e. stub generator, is required. Given an interface definition, the stub
generator automatically produces stub modules, for client and server site, that encapsule

all the mystics of service invocation in a distributed environment.

In addition to these basic functions, the PEACE interface definition language, PRECISE
[Nolte 1990], reflects the addressing schemes discussed above. Especially object
orientation is supported in a flexible way, because this approach is a convenient solution
for a great variety of problems in the area of distributed and/or parallel computing.

In PRECISE, parameter passing semantics comprise call-by-value, call-by-result and
call-by-value-result. In the absence of virtually shared memory, call-by-reference
semantic is emulated by call-by-value-result and applied to simple data structures such
as strings, arrays, records, etc.

5.2. Service Localization

The previous subsection discussed the way service invocation works in PEACE.
Service localization, however, was not investigated. This function is related to the
naming and addressing of distributed entities [Shoch 1978|. In the following, a short
overview of the PEACE naming approach [Sander et al. 1989] is given.
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5.2.1. On Transparency in PEACE

As was pointed out, a PEACE process is associated with at least one system-wide
unique identifier, a {uz. The lu¢ is represented by an integer and is considered to be the
effective address of a thread. At a higher level a process is associated with at least one
relative address, represented by a symbolic name. The PEACE naming system is then
used to map relative addresses onto effective addresses. Figure 8 illustrates the PEACE

naming scheme.
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Figure 8: The PEACE naming scheme

System services are invoked by a remote procedure call that introduces access
transparency, i.e., hides the difference between local and remote operation. A procedure
name stands for a particular service function which, in turn, is implemented by some
PEACE manager. Usually, a complete service interface encompasses a set of service
functions, thus representing a set of relative addresses for the same manager. Dependent
on the type of service, relative addresses are also related to argument (object) names. A
typical example is the file service, where each file name (file object) is given a relative
address in PEACE.

A symbolic identifier is used to designate a relative address. All symbolic identifiers
together constitute a global name space. They will be used to generally identify
distributed objects independent of the nature of the object. That is, symbolic names are
used in PEACE to identify devices, nodes, processes, functions, data, and so on. This
introduces location transparency. The mapping function defined between effective
process address and relative process address is dynamic. It makes dynamic
reconfiguration feasible and leads to a flexible system organization.
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In case of replicated services the same service name is to be used to address different
manager processes. Within a flat name space, this service name potentially is ambiguous.
Hence, in the absence of object-oriented system interfaces, replication transparency must
be provided by a structured name space. Names of replicated services constitute a
specific name space partition. In general, such a partition guarantees the uniqueness of
names relative to a specific context and is called a name plane. The sharing of name
planes then gives different processes access to the same set of system services.

Scalability is one of the most important characteristics of distributed systems, related
both to hardware and software architecture. From the application program viewpoint,
scaling transparency is desirable such that program execution works independently of
the actual underlying hardware and software organization. Above all, the operating
system family concept as applied in PEACE requires a scalable operating system
architecture. The idea is that dedicated PEACE system processes provide application-
oriented operating system services and that these processes are loaded at the time the
distributed application is installed. This leads to an application-oriented name space,
used to isolate distributed applications and to model the set of system services available
for the given application. It also requires a hierarchically structured organization of

name planes, building a unique name domain for a specific set of processes.

5.2.2. Symbolic Naming

In order to keep the kernel complexity small and achieve high-speed inter-process
communication, location transparency is not exclusively supported by the kernel, but
rather in cooperation with symbolic naming functions provided by dedicated system
processes, so-called name managers. The entire name space consists of a multitude of
name managers, together constituting the name adminisirator. Access to the name space
is by means of dedicated name porter libraries.

As with any other PEACE system service, the naming service is invoked by a remote
procedure call. In PEACE, each team, and, thus, each thread of the team is bound to a
domain identifier which is a system-wide unique name manager identifier, i.e. the lui of a
name manager. This approach either enables the sharing of a name domain, in case of
identical domain identifiers for different teams, or leads to a complete isolation of name
domains, in case of different domain identifiers for different teams.

The domain identifier of a given team is determined by executing a ghost request in
form of a remote procedure call. Obviously, the naming service cannot be applied to
locate this kernel service, rather a fixed, effective process address is needed. In PEACE,
the ghost is always the first active process on a node and, therefore, is referred to by a
system-wide unique identifier which only consists of a non-zero host field, providing the
information in which node the ghost resides. Usually, at the name porter level, this
identifier will be derived from the lui of the requesting thread.

Upon request, name mapping will be performed by a name manager. The manager
does not know the semantics of a symbolic name. Each symbolic name is associated with
an user-definable and variable size data set. Resolving a name means the delivery of the
data set. The content of the data set is transparent to the name manager. [ts
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interpretation is completely up to the user. At the remote procedure call level, for
example, the data set is assumed to contain the following entries:

server The lui of the manager responsible for service execution.
object A manager-relative object and/or function identifier.

Usually, at manager startup time, the manager stub generates a data set for each
exported system function. It then requests from the name manager the creation of a
name and the association of the specified data set with that name. Upon name
resolution, the stub at the client site retrieves the data set. This way, various strategies
of access transparency can be supported by the remote procedure call system. A
manager can be addressed either by a global entity name or by a service/object name.

Creation and destruction of names is dynamic. Typically, at initialization time, a
manager exports its services by creating corresponding names. Name mapping is done at
runtime, too. For example, the first time a system service is invoked, the corresponding
stub routine (on behalf of the requesting thread) requests name resolution from the name
porter that caches the data set associated with the name. Cache updates then are
performed by the team itself, as part of handling naming exceptions. For this purpose,
the name porter is supported by a private thread, which acts as a per-team exception
handler at the naming library level and requests name resolution.

5.2.3. Name Space Organization

The PEACE name space is implemented by a multitude of name managers, each one
controlling a single name plane. A number of name planes constitute a unique name
domain for the distributed application. The structure of name domains is influenced by
several aspects, namely:

e the organization of a distributed application;

e the mapping of the application onto the underlying hardware system;
e the isolation of name spaces for different applications;

e the operating system services exclusively related to the application;

e the global operating system services.

It was one of the major requirements in the design and development of the PEACE
naming system to cover all these aspects with a single mechanism. Basically, the name
administrator defines a structured name space, whereby name managers, i.e. name planes,
are arranged in a tree-like fashion. The interconnection between different name planes is
by means of names. Upon name resolution, the name porter then observes the name
space by traversing name plane links. Thus, the way the name space is observed is
defined by the linkage structure of the various name planes.

The construction of a name space itself is a dynamic activity and depends mainly on
the system services encapsulated by manager processes. Name managers are created on
demand, namely when a new service (e.g., file manager) that assumes the presence of a
specific name plane is integrated into the system. This also implies that name space
editing must be performed. A name manager is placed into the name space by updating



the name plane linkage structure accordingly.

6. Getting Started

Getting the complete operating system over hundreds or thousands of nodes
instantaneously distributed is not only utopia, but will also significantly slow down the
entire system startup time. It will neither be desirable from the system point of view nor
will it be necessary from the application point of view. What is to be guaranteed is that
system services are available at the time they are used by some process. That is, loading
system services at least should be postponed until processes that depend on these services
are loaded.

Nevertheless a bootstrap facility is indispensable. However, the only purpose of this
facility is to load those system services which implement an incremental load procedure.
This way a minimal subset of system functions is initially distributed over a massively
parallel system. As will be discussed, it turns out that the majority of nodes are not
bootstraped anyway — incremental loading encompasses incremental bootstrapping.

6.1. Instantaneous Loading

In PEACE, instantaneous loading is closely related to the bootstrapping of nodes with
a number of teams. In its simplest form node bootstrapping means the transfer of
program images from disk into main memory of the node — in terms of PEACE, a
program image is represented by a feam image. However, in a massively parallel system
the majority of nodes is diskless. These nodes must be bootstraped via the network.
Therefore they are required to provide low-level boot interfaces that are attached to the
network, rather than to a disk.

After having been reset or switched on, a node initializes its boot interface and
subsequently is ready to accept one or more team images. In the following these nodes,
each one called slave, play the passive role in the bootstrapping procedure. The active
role is dedicated to nodes having direct disk access. Each node playing the active role is
termed master.

The master reads team images from disk and transfers these images over the network
to a slave. Team images in addition with some control information together constitute a
boot tmage. A boot image is interpreted by a slave to determine the number of teams
being bootstrapped on its node.

As long as no boot image is received from the master, slaves remain passive, i.e.
inactive with respect to process execution. This approach avoids that the network is
flooded by bootstrap requests issued by the slaves. Dependent on the master, it also
enables that only a minimal subset of nodes are bootstrapped. Furthermore, the slaves
are not required to know any master, meaning that becoming a master is a matter of
configuration.

The first team being bootstrapped on a node is the kernel, which at least consists of
the nucleus. Once having finished the bootstrap procedure, a slave bootstrap module
passes control over to the kernel, i.e. the ghost, which in turn creates a root thread object
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for each loaded team. Additional threads then are created by the teams itself. Note,
this way a multi-tasking mode of operation can be supported although it might be the
case that scaled down kernels do not offer any process creation services. The tasks (i.e.
teams) simply are created at bootstrapping time.

6.2. Incremental Loading

The basic idea in PEACE is to perform on-demand loading of system services. That
is, system services are only loaded at the time when they are really needed. This is
comparable to the ¢rap-on-use property of Multics [Organick 1972]. Obviously, there is
the need for some low level services, i.e., "trap handlers”, such that incremental loading
of additional system services is possible [Schmidt 1991]. The following subsections
describe these low-level services and their inter-relationships.

6.2.1. Entity Faults

On-demand loading of services at runtime can be accomplished either explicitly, by
using dedicated system calls, or implicitly, during service invocation if the corresponding
manager does not yet exist. The latter approach requires close cooperation with the
remote procedure call level. If service addressing fails, a server fault is raised, similar to
a page fault in virtual memory systems. Handling a server fault results in the loading of
the requested service, i.e. the proper manager team is created and given a program for
execution.

Any kind of service that can be loaded on demand is in no way distinguished from an
application process. Thus, incremental loading works for both user and system
applications. The general term entity is used for teams that belong to either of these
application classes. In this sense, the server fault actually means an entity fault.

Entity faults are propagated to a system process called entity manager. Basically,
this means that, once having determined that the entity is not yet available, a stub
routine requests entity loading by instructing the entity administrator accordingly. The
stub passes the load request to the entity porter which then takes charge of all activities
related to the loading of the specified entity. Note, the entity porter takes the form of a
system library and belongs to the team of the thread that caused the entity fault. As
long as fault handling is in progress, the thread is blocked on the entity manager,
waiting for loading to be completed.

The entity manager maps entity names onto file names, i.e. associates with entities a
file that describes the team image to be loaded. With each entity name several attributes
are stored. For example, the file may describe either a plain team image or a complete
boot image and, hence, is to be classified accordingly. In case of site-dependent
managers, the node addresses are stored with the entity name. In addition, a name scope
may be explicitly associated with the new entity. A distinction between the single-
tasking or multi-tasking mode of operation for the entity is also made.
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6.2.2. Name Manager Faults

For being addressable, managers are required to export symbolic names into a
structured name space. These names are imported from the name space when they are
used for the first time. For example, the remote procedure call level executes this
procedures in order to achieve dynamic manager binding. In PEACE, a structured name
space is formed by a multitude of name managers, interconnected by well-defined
symbolic names.

In case of a tree-structured representation, different tree nodes represent different
system scopes and are, likewise, implemented by a name manager. Hence, a manager
that is related to a specific scope is forced to export its names into that name manager
that implements this scope. It is not guaranteed that the scope is already defined, i.e.
that the corresponding name manager is present. Note, a scope is only required if related
processes are already present. Hence, the potential for a name manager fault during the

name export sequence executed by a manager is given.

Because of the nature of naming in PEACE, a name manager cannot be loaded as a
consequence of an entity fault. This would assume that name manager services are
dynamically resolved at the remote procedure call level. However, this will not work
because exactly these services are used for entity localization during the binding phase of
a remote procedure call. As a rule of thumb, name manager services are never resolved
dynamically, rather they are addressed by means of name manager gates, e.g. the per-
team domain identifier or some other identifier (i.e. luz) that is directly obtained from the
name space.

A name manager fault is handled by a dedicated system manager, the name usher.
This manager may be loaded dynamically by means of an entity fault. Note, in order to
determine its scope a manager initially queries the entity manager. Upon success, the
delivered name of a name manager is trying to be resolved. In case of a miss, the
creation and installation of a new name manager is requested from the name usher. The
name usher then performs name space editing to define a new scope.

6.2.3. Basic Requirements

Basically, incremental loading is controlled by two system processes, the entity
manager and the name usher. These PEACE processes are required to reside in some
node. For simplicity reasons, both fundamental managers share a single node called
radical node. In fact, the radical node is the only one which is to be bootstrapped when
the distributed/parallel machine is switched on — it serves as the origin of "life".

6.2.3.1. Minimal Subset of Services

The minimal subset of system functions required for incremental loading are shown in
Figure 9. Obviously, at least one name manager, name, is required that implements a
single, flat name space. This name space contains names of system services which
constitute the minimal subset of system functions. From this subset, the following
services are required not only to support incremental loading, but also to provide
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dynamic process management on a single node:

thread A kernel manager thread to create processes, i.e. thread and team objects.

uto A generic manager that provides basic and uniform i/o services. In this
case the manager performs disk i/o. As was outlined, entity images are held
in files. ‘

core A generic manager thread that provides memory allocation and deallocation
services.

Figure 9: The radical node

These services are used by the load manager, load, to get entities running. The load
manager is capable to dynamically relocate entity images, which is required if multi-
tasking is to be supported without being based on a memory management unit that
performs address translation.

In addition to the load manager, a boot manager, boot, is added to the minimal
subset. This manager controls the bootstrapping procedure for a node. Thus, it acts as
the master which directs slave nodes to initially load boot images. In situations where
entities are to be loaded on passive nodes, either instantaneous or incremental loading is
performed. In the former case, the entity and the kernel for that node are bootstrapped.
In the latter case, the boot manager first performs the bootstrapping task to get the
kernel running. Subsequently, the entity manager loads the entity by means of the load
manager into that node. Bootstrapping only the kernel into a node is performed in
configurations where the bootstrapped node is required to run a multi-tasking mode of
_operation. Note, the boot manager can be dynamically loaded at the time the boot
services are required to switch nodes from passive to active.
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6.2.3.2. Configuration Descriptions

Basically, the entity manager interprets a configuration specification [Kramer, Magee
1985 that is contained in a data base. The data base is stored in a file. Upon startup,
the entity manager inputs this file via uio.

The data base is automatically generated by compiling a configuration description
written in the PEACE system configuration language. This language provides high level
constructs to specify the distributed application in terms of entities and defines the
distribution of the entities over the nodes. A logical description of the distributed
applications is produced. For any type of entities, the following basic specifications are
given:

e a file name for each entity, which is going to be loaded as part of the

configuration;
e an export configuration, to direct the name export procedure;
e a target node definition, for site-dependent entities;
e any environment data, which is passed through to the entity;

e special attributes, to distinguish for example between the single-task and multi-
task mode of operation for a given node.

Besides this logical description of a distributed application, a physical description of the
actual architecture of the distributed/parallel machine may be specified as well. Based
on this physical description, the initial mapping of distributed applications onto the
machine is performed.

7. -Object Mobility

PEACE supports mobility of active and passive objects. The former case means
migration of teams consisting of a number of threads, which also may be caused by
recovery from a node crash after having made a team checkpoint. The latter case
involves virtual memory and virtually shared memory, and concerns the mobility of
memory pages. The following subsections describe the basic PEACE approaches.

7.1. Migration

Migration is a method to transfer processes between nodes in a distributed
environment, as for example realized by DEMOS/MP [Powell, Miller 1983] and Sprite
[Douglis 1987]. In PEACE, migration is based on teams and is a basic mechanism for load
balancing. It is also closely related to fault tolerant issues based on checkpointing and
recovery. In fact, team migration can be viewed as an atomic sequence of team
checkpointing, immediately followed by team recovery, whereby the team is recovered at
a different node.

In this sense the basic approach of object (team) consistency and synchronization is
the same for migration and checkpointing/recovery in PEACE. The major distinction
between both types of object mobility is the granularity of synchronization. Usually,
migration only requires synchronization related to a single team. In contrast,

T



checkpointing/recovery is related to a number of teams, jointly constituting a distributed
application. Hence, synchronization is concerned with a team group.

Besides synchronization, the second major issue of migration is the transfer of the
complete team context to another node. This context includes the address space, the
threads, and all dependencies to external objects such as files, devices, teams and threads.
Transparency for both the migrated team and threads/teams that interact with the

migrated team is maintained.

Context transfer is to be performed in a consistent state, which requires to freeze the
current team activities by means of synchronization. This state means that threads of
other teams are stopped if they tend to communicate with the frozen team. Because
PEACE supports only synchronous message passing, stopping these threads works
implicitly. Non-blocking high-volume data transfers are temporarily inhibited.

Following the pattern of [Zayas 1987] in order to improve migration performance and
throughput, the freezing state is shortened by shifting activities out of the period during
which the team is frozen. The PEACE approach is to basically let the team migrate itself.
By applying the administrator concept, a migration porter is capsuled by the team being
migrated. The porter then controls the migration of its team, i.e., performs team
preparation, issues a team migration request, and takes charge of team reconstruction.
Similar to the process manager, a migration manager is only responsible for system data
structure manipulation - team migration is realized as a fork crossing node boundaries
with implicit termination of the parent.

Team reconstruction means to re-establish the original team context once transfer has
been completed. For example, the migration porter flushes name caches, thus canceling
any existing service connection. As soon as the threads of the migrated team call stub
routines, service rebinding is performed relative to the new team location. In case of
shared services, the same connection is re-established. However, in case of local services

as, e.g., provided by the kernel, new connections are installed.

7.2. Checkpointing and Recovery

In contrast to migration, checkpointing and recovery in PEACE is related to a
distributed application consisting of a multitude of teams. This requires a different
synchronization scheme [Koo et al. 1987] which forces a group of teams into a consistent
state. Nevertheless, the same approach as with team migration is used, namely to
consequently apply the PEACE administrator concept.

In order to enforce synchronmization, a sift manager (software implemented fault
tolerance) preempts the teams belonging to the application that is subject to
checkpointing/recovery. For this purpose, the sift porter of each team is assisted by a
private thread that receives synchronization requests from its sift manager. Being
synchronized, the sift porter either checkpoints or recovers its own team context.

Because of the absence of true synchronism - not only in the scope of massively
parallel systems — a virtual snapshot of a distributed application is made. After having
synchronized all the teams, this snapshot encompasses the address space (memory
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segments) and activity space (threads) of each team involved in checkpointing. It is a
distributed snapshot, because each team capsules its own runtime context. The team
checkpoint includes a complete description of the team context at snapshot time. This
checkpoint then is written by the sift porter to secondary storage in a special loadable
format. Migration means to transfer the checkpoint to another node.

As in the case of migration, by having teams to freeze and write their own
checkpoint, performance limiting bottlenecks are avoided. In addition, because the teams
may be related to different disk I/O scopes, writing the distributed checkpoint in parallel
is made feasible. The same is true for recovery, i.e. reading a previously written
checkpoint. Thus, by means of the PEACE sift administrator a true distributed approach
for checkpointing and recovery is realized.

Checkpoint writing is by means of a two-phase commit protocol [Kohler 1981] and
thus represents an atomic transaction. A log structured file system, e.g. [Finlayson,
Cheriton 1987, is used to store checkpoints. This guarantees the highest performance in
writing and reading a team checkpoint. In conjunction with multiple disks and a team
distribution scheme that enables parallel disk I/O, a powerful checkpointing and recovery
facility is supported by PEACE.

A request for checkpointing is either issued by the application itself or by the system.
The latter case means a timer-based approach. In any case, the same system function is
invoked - the sift administrator simply receives a proper request from some other entity.
In a similar way the request for recovery is triggered. Based on the diagnosis
administrator, which controls the functioning of the massively parallel system, the
recovery procedure for crashed nodes will be started automatically. This might also
include a complete reboot of nodes.

7.3. Virtual Memory

The objectives of memory management in general are relocation, protection, logical
organization and physical organization [Peterson, Silberschatz 1985]. To realize these
objectives the PEACE concept uses paged segmentation, including the demand fetch policy
for paging.

Paging as described below is a realization of a one-level store [Lister 1979]. It creates
the extension of main memory with secondary memory, typically exclusively using a
specific device or file for paging. The files on the other devices or just the other files have
to be used via a separate file system interface. To create a "real” one-level-store, the
PEACE operating system allows the whole secondary memory to be mapped into main
memory, leading to memory mapped files as introduced by Multics [Organick 1972|. The

main memory then can be viewed as the cache for secondary memory objects [Tevanian
1987)%.

9 Explicit file buffering is no longer needed since the segments the files are mapped to function as
"buffers”.
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Following the pattern of [Nelson, Ousterhout 1988], copy-on-write and
copy — on — reference mechanisms are included into the PEACE virtual memory system.
These mechanisms are used to support high-volume data transfer, team migration, and
the creation of processes by means of fork. Both mechanisms work system-wide, crossing
node boundaries. Basically, migration and fork are very similar in PEACE except for the
difference that in case of migration pages are moved (move-mapping), whereas a fork

leads to the copying of pages on-demand (copy-mapping).

It is also possible to share segments. Physically sharing memory is well-known but
can be done only in memory accessible by all sharing processes. Since PEACE is designed
for a distributed architecture with local memory, the virtually shared memory [Giloi et al.
1991] mechanism to logically share memory was included. The share mechanism even
across node boundaries opens a range of uses. For example, sharing of a memory
mapped file now means the sharing of the segment the file is mapped to Y and shared
libraries become a part of the system. This shows how the different virtual memory
mechanisms influence each other in improving the system efficiency.

7.3.1. Page Faults

The PEACE virtual memory system is part of the memory administrator and, hence,
realized in a distributed fashion. Page faults first are caught by the page porter, i.e. a
trap handler residing at each node where virtual memory is supported. The page porter
is part of the kernel and tries to handle the fault locally. In cases where additional
support is required, the page porter forwards the page fault to its page manager by
applying nucleus primitives. Thus, a page fault trap is converted into a message and
sent to some other system process for further processing. This works system-wide in
PEACE and usually addresses a page manager that is subject to user mode execution.
Among other things, the page manager encapsules global page replacement strategies.

The page porter is executed on behalf of the faulting process, meaning that sending
the trap message blocks this process. A rendezvous is established, and the page manager
receives a page fault request. Having completed page fault handling, the page manager
simply replies to the faulting process, resulting in the reactivation of the page porter at
that site. The reply message contains porter control information. Before process restart
is carried out, the page porter performs some local housekeeping, e.g., updating the per-
process page table.

7.4. Virtually Shared Memory

Sharing of memory is a widely used scheme. The appearance of massively parallel
systems with only local memory introduces requirements far beyond the simple technique
of physically sharing global memory. In contrast to limited scalable memory systems like
Memnet [Delp 1988], PEACE provides a way for logically sharing distributed memory.
Thus, wvirtually shared memory is established as part of the memory system offering a

*) The secondary memory consistency gets guaranteed by the mutual consistency protocol of the vir-
tually shared memory.

agge



location transparent application view of virtual memory in the distributed system.

7.4.1. Synchronization and Mutual Consistency

With regard to the distributed memory parts, replication and distribution of shared
pages over the nodes is an important aspect for a virtually shared memory system in
order to ensure efficient memory access time. This raises the problem of ensuring the
consistency for all copies of a memory item. The mutual conststency protocol maintains
this task through data access synchronization. While logically sharing within a single
node with respect to data access synchronization is satisfied by mutual exclusion, e.g.
semaphores, general sharing requires a different way to ensure the correctness of a
(parallel) program.

Unlike other attempts, e.g. [Li 1986], the PEACE approach favors weakening
consistency in addition to strong consistency. Strong consistency has the significance
that a read of some location of shared memory returns the same value as had the most
recent write to the same location. This causes a large amount of interactions between
the participating nodes.

In order to minimize the overhead of keeping the distributed units of main memory
consistent, an application specific definition of consistency is supported. Beyond the
default mechanism of strong consistency, a weakening of the consistency condition is the
essence of the mutual consistency protocol. This ensures more independence between the
parallel operating processes, the key aspect [Hutto, Ahamad 1990| for achieving an
efficient virtually shared memory system.

7.4.2. Strong Consistency

The strongly consistent virtually shared memory management in PEACE is built on
top of standard paging mechanisms as used for virtual memory with demand paging.
The basis mechanism is paged segmentation. Segmentation provides the logical
organization of the address space, and paging creates the physical division of memory,
representing local accessible data or references to remote data. Page fault handling
works as in the usual virtual memory case, except that the page manager additionally
encapsules virtually shared memory consistency strategies.

The main design issues for strong memory consistency protocols are the strategies
used by the respective page manager. These strategies consist of a page synchronization
method and a page ownership strategy. There are two basic page synchronization
methods: invalidation and writeback. Both work on page granularity to keep the memory
consistent. Evaluation results [Li, Hudak 1989] show that only the use of page
invalidation yield acceptable performance. Furthermore, in the light of massively parallel
systems consisting of several hundreds to thousands of nodes, only the (fixed/dynamic)
distributed manager approach for page ownership is feasible.

In the PEACE virtually shared memory, the invalidation approach is based on a single
page owner. The owner may be granted read or write access rights on the page [Giloi et
al. 1991]. In the case of a replicated page, each sharing process, even the owner, merely
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is granted the read access right on that page.

defined page descriptors.

intends to manipulate a shared page.

Integrity is then ensured by properly

Page invalidation will take place if a wrife fault occurs, meaning that a process

Basically, all page descriptors referring to the

replicated page are invalidated and the read access right of corresponding processes are

revoked. Furthermore, the faulting process becomes owner of the page and, if not yet
available, the page will be copied into local memory. In case of a read fault, the process
acting as page owner has revoked its write access right, while read access is still granted.
The faulting process gains read access right and the corresponding page is copied into
local memory. Figure 10 illustrates this protocol, which follows the dynamic page

ownership approach.

remote
share
e —

page invalidation

read
access (2)

{ process, ?

site

write
access (2)

Figure 10: Page invalidation synchronization

As was shown, with this strategy page ownership changes as the page is written to.

This can be managed either by a centralized manager or by a distributed manager. The

centralized version has the advantage that management synchronization is easy since

there is only one manager handling the pages. On the other hand, the overall

communication overhead is large because of long network distances. Furthermore, the

manager process (and the processing node it resides on) constitute a bottleneck when

page fault rates are high. The decentralized/distributed version offers two variations: the

fixed and the dynamic. Fixed distributed managers work like the centralized manager

except that the pages to be managed are devided between several managers instead of

one.
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similar communication overhead. In the dynamically distributed manager approach, the
manager is the owner site of the page. Thus, it changes too when the page gets write-
accessed by another site. This policy adopts itself well to application programs which
show unpredictable locality.

All the strategies described above show better or lesser performance depending on the
application running on the virtually shared memory system. Therefore, the PEACE
approach allows for any of these policies. The memory management is designed to
support page manager which implement any of the existing (and we hope also most
future) strategies. By means of configuration of system servers, the memory
management system may be adopted to fit a particular application.

7.4.3. Weak Consistency

Strong consistency protocols include the problem to deal with frequent updates of a
shared page used by multiple sites. These frequent write-accesses might easily cause
thrashing [Li 1986]. In the Mirage system a strong consistency protocol is realized
including a clock mechanism to keep the ownership of a page at a site for a certain
amount of time [Fleisch, Popek 1989]. The efficiency of this scheme strongly depends
upon the write-access rate, the number of processes write-accessing that page, and the
time the page ownership is forced to stay at a site.

Another idea to avoid thrashing is weak consistency. It allows multiple writes into
different locations of the same page [Bisiani et al. 1989]. Weak consistency clearly needs
some compiler support to ensure that the processes use disjoint parts of a page. The
advantage of weak consistency is its significantly lower page traffic, paid for by the
disadvantage of loosing the transparency of the strong consistency protocols.

The PEACE design includes a novel approach. A weak consistency scheme is build on
top of the strong consistency protocol [Giloi et al. 1991]. It is also possible that strong
consistency and weak consistency coexist for a replicated page.

By default, the strong consistency protocol is used for each shared page. As shown in
Figure 11, a process is able to leave strong consistency by indicating its entrance into a
weak block. On demand, the involved pages are replicated into local memory and marked
as copy-on-write. In case of a write access, a reference copy of the respective page is
retained in local memory. Inside the weak block the process can modify the shared pages
in local memory without transferring them upon write-accesses by other processes. The
end of a weak block is again indicated by the process and triggers a procedure by which
a difference set of the reference page and the modified page is built. This difference set
then gets merged into the strongly consistent shared page by virtue of the strong
consistency mechanism. As described in [Giloi et al. 1991], merging a number of
difference set pages can be accomplished in a pipeline mode of operation.

In this decentralized (i.e., distributed) scheme, each process involved determines the
changes and uses the strong consistency protocol to merge the different copies back into
one page. This avoids the bottleneck of a centralized weak consistency protocol, where
the merge is done by the page owner that was known at the time the weak block was
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Figure 11: Weak consistency coexisting with strong consistency

entered. The decentralized solution furthers scalability, meaning that at runtime any
number of processes can enter into weak consistency — they may even be dynamically
created. That way the autonomy of a process also supports the use of specific
synchronization mechanisms between processes that can be generated by tools or

compilers, instead of global synchronization mechanisms as used by human programmers

8. Concluding Remarks
The buzzword "microkernel” pertains to state-of-the-art operating system design.

One of the most favorite systems falling into this category is Mach, i.e., the version
known as the OSF/1 operating system [OSF 1990|. In the microkernel approach, the
bulk of operating system services is executed in non-privileged user mode. Only a small
set of services is subject to privileged supervisor mode execution. This organization
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supports a fault tolerant, scalable and application-oriented system structure. It hence
seems to be the appropriate basis for all fields of application. This is true for distributed
systems, but does not hold entirely for massively parallel systems being based on a
distributed memory architecture.

Even the microkernel is too complex and too overhead-prone if the very hard
performance requirements of massively parallel systems are taken into account. The
recently released Mach 3.0 microkernel is an implement of about 100.000 lines of C code
(with comments excluded). This is in contradiction to what is really meant by a
microkernel. The new PEACE kernel for MANNA supports the execution of
parallel /distributed programs, being an implement of about 8.000 lines of C++ code
(with comments included). Of course, even the PEACE kernel will become much more
complex if, e.g., virtual memory gets to be included. However, this kernel then
represents a different member of the PEACE operating system family. The PEACE user
has the choice between several kernel representations and, as it is the case with Mach, is
not confronted with a single solution only. Note, in order to support massively parallel
systems, it clearly does not suffice to simply provide some sort of server system. The key
question is not what should be included into a microkernel, rather one has to answer the
question of how the entire operating system structure shall look like, so that a true
microkernel is feasible.

The PEACE nucleus family approach overcomes the microkernel problem. What is
really needed for massively parallel systems is a "nanokernel”, which provides only a
minimal subset of services actually required by a given application. Additional
system /kernel services then are loaded on demand, at the time when initially requested
by the application. This also means that a microkernel is built by minimal extensions to
the nanokernel, the minimal extensions being incrementally loaded. Operating system
scalability is generally improved.

While the microkernel approach only promotes a scalable system organization for
distributed systems, the nanokernel does so for massively parallel systems too - it
promotes a scalable kernel architecture. Hence, a nanokernel bridges the gap between
massively parallel systems and distributed systems. [t makes it feasible that design
principles of distributed systems can be applied to massively parallel systems.

The paper describes PEACE concepts for making massively parallel systems work.
Although the elaboration of these concepts is focussed on massively parallel systems, they
are general enough to make distributed systems work as well. The distinction between
both types of system architectures basically is made at the nucleus level, especially by
means of a family of NICE modules. As often required by the user community, support
for parallel systems in general means to make the naked machine available to the parallel
application program. Exactly this is realized in PEACE by having nucleus
implementations that take simply the form of a communication library. The key aspect
with the PEACE approach is, that even in this extreme situation there is no loss of
scalability — due to the family concept, which is not only applied to the nucleus but also
to the entire operating system.
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Most of the issues addressed in the paper are based on experiences made with the
first PEACE implementation for SUPRENUM. Since then, PEACE has undergone several
redesign phases. For example, the nucleus family and especially on-demand loading of
entities are brand-new features of the forthcoming PEACE system for MANNA. Another
aspect is virtually shared memory, which still is to be integrated in PEACE. Moreover, a
redesign of the current PEACE stub generator is necessary to meet the needs for a more
flexible and powerful interface definition language. The same holds for the configuration
language so far used. On-demand loading requires some more sophisticated constructs.

PEACE aims to be a high-performance process execution and communication
environment especially for massively parallel systems. Thus, the primary goal is not
(yet) to provide a complete timesharing and program development environment for any
kind of user program. A host operating system is still required. As illustrated in
[Schroeder, Gien 1989], the cooperation between PEACE and a state-of-the-art distributed
host operating system like Chorus can be accomplished in a most efficient way. One
important reason is that nearly all operating systems designed to date follow the same
fundamental design concepts. That is, they are in some means process-structured and
are based on a message-passing kernel. In the case of Chorus, for example, the PEACE
nucleus would be a dedicated network manager implementation. In a similar way,
cooperation with Mach could be achieved.

Last but not least, it should be mentioned that, for reasons of acceptance, the PEACE
programming interface is related to that of UNIX . All UNIX system functions are
provided by means of a compatibility library. To be more precise, they are realized by
the UNIX administrator. Nevertheless, achieving full UNIX compatibility was not the
primary goal of PEACE.

Finally, the basic PEACE design decisions proved to be successful in as much as that
they made a most efficient implementation of a multi-tasking message-passing kernel
feasible [Schroeder 1991|. PEACE outperforms Amoeba, which claims to be the world’s
fastest distributed operating system [van Renesse et al. 1988]. Again, the family concept
as realized in the PEACE approach was the key to success [Lennon 1969)].
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