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ABSTRACT

Massively parallel systems are distributed memory architectures of a
very large number of autonomously operating, interconnected nodes.
The nodes cooperate through message passing via a high-speed
interconnection network. The critical issue in such systems is
communication latency. A major component of communication latency
is the message startup time, i.e., the time it takes to execute the
appropriate operating system kernel function for message passing. One
of the necessary system optimizations therefore concerns the startup
time minimization. Our approach to this problem is to provide different
versions of the kernel for different modes of operation of the system.
All versions have the same interface to the other modules of the
distributed operating system and, thus, are interchangeable. This is
accomplished by representing the message-passing kernel as an abstract
data type.

1. Introduction

Massively parallel systems are distributed memory architectures consisting of a
very large number of autonomously operating, interconnected nodes. The nodes
cooperate through message passing via a high-speed interconnection network.
Consequently, the operating system of such a machine is a distributed operating system
[Tanenbaum, van Renesse 1985], [Schroeder, Gien 1989]. One of the features of a
distributed operating system is distribution transparency, needed to reference objects
(system entities as well as user tasks) "in a consistent manner regardless of such
factors as access, location, migration and replication” [Herbert, Monk 1987].

The most important requirement for such a system is efficiency. The system may
offer all the desired benefits such as resource sharing, parallelism, scalability, and fault
tolerance, and yet it will not be acceptable if it fails on the side of performance.

One of the most crucial performance parameters is the message startup time.
Future massively parallel systems must be capable of executing a message startup
sequence — preparing, issuing, accepting and queuing of data transfer requests, along
with interrupt handling, context switching and process scheduling — in the order of
magnitude of 10 usec [Mierendorff 1989].
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This paper deals with design aspects of message-passing kernels for high-
performance, massively parallel distributed memory architectures. It presents first
experiences made with the PEACE distributed operating system [Schroeder 1988].
PEACE extended well-established operating systems principles [Habermann et al. 1976]
into the area of highly parallel distributed memory systems. The notion of program
families [Parnas 1979] provided the framework for a system that caters to a variety of
user requirements. Members of the PEACE operating system family consist of
dedicated server processes that provide application-oriented services.

Basically, the PEACE approach is to use a small and efficient message passing
kernel as foundation for all higher level system activities. In that respect PEACE is
comparable to V [Cheriton 1984] and Amoeba [Mullender, Tanenbaum 1986], for
example. However, it differs from the systems mentioned by a design that meets the
needs of massively parallel systems. Highest consideration is given to the efficient
implementation of the family of PEACE nuclei. All members have the same
communication interface but different functionality and performance. The proper
nucleus is then selected according to the application requirements.

The need for a message-passing nucleus family is evidenced by a case study that
shows the potential disproportion between multi-tasking and communication. First, the
case study hardware environment is briefly presented. Following a short PEACE
performance analysis, the nucleus family is discussed. After that, the internal nucleus
structure that conforms to the family approach is described. Finally it is explained
how the PEACE nucleus optimally supports the GENESIS node architecture [Giloi
19901, achieving a symbiosis between hardware and software.

2. Case Study Environment

PEACE has been developed for SUPRENUM [Giloi 1988], a large scale MIMD
supercomputer for numerical applications. A brief overview of the SUPRENUM
architecture clarifies the hardware platform used for the PEACE kernel analysis. This is
followed by a short description of major PEACE concepts and components referred to
in the paper.

2.1. SUPRENUM

One of the unique features of SUPRENUM is its two-level structure consisting of
clusters and nodes. A cluster consists of 16 processing nodes (PNs) and up to 4
service nodes (SNs), interconnected by a parallel bus system with a transmission rate
of 320 Mbytes per second. The clusters form the lower level of the hierarchy. At the
higher level, up to 16 clusters are interconnected by a torus (4-cube) structure. Figure
1 illustrates this architecture.

Designed primarily for double-precision, floating-point array processing, the PN
features in addition to the Motorola MC68020-based CPU a vector processor with a
peak performance of 20MFLOPS for two chained operations and the Motorola
MC68882 floating point unit. A well-matched memory structure, consisting of
8 Mbytes of DRAM (controlled by the Motorola paged memory management unit
MC68851) and two 64Kbyte vector registers, results in a high sustained vector
performance for sufficiently long vectors. Reflecting the state of technology in 1986,
the scalar performance, however, is rather weak. The MC68020 has little over
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Figure 1: The SUPRENUM Architecture

2MIPS. Random access to main memory has 3 wait states on read and 4 wait states
on write. While this does not affect much the array processing performance of the
node (in this case, the main memory works in the static column mode), it leads to
relatively long execution times of sequential code (e.g., operating system routines).

Each cluster comprises two communication nodes (CNs) for interconnection with
other clusters. Duplicating the CN in a cluster doubles the transmission bandwidth and
makes the interconnection fault tolerant. Each CN has two physical links, a link being
a 125Mbits per second bit-serial token ring connection. The physical peak transfer
rate between a pair communicating nodes is 40Mbytes per second. Inter-cluster
communication via the parallel bus system and intra-cluster communication via the
links use the same fault tolerant protocol that is similar to the worm whole routing
protocol. The fact that the inter-cluster interconnection has a lesser bandwidth than
intra-cluster interconnection favors to some extend cluster locality of the application
algorithms.

2.2. PEACE

PEACE has been designed to manage the SUPRENUM core system. The PEACE
process model distinguishes between lightweight processes (threads) and heavyweight
processes (tasks). Multiple threads of control that share the same address space and
scheduling domain are called feams. Teams are used to implement user tasks and
system services.

As indicated in figure 2, PEACE consists of three major building blocks. A more
detailed system description can be found in [Berg et al. 1990].

Most of PEACE is executed in non-privileged user mode and defines an
application-oriented distributed operating system. This component is constituted by a
multitude of server teams that are site-independent and, thus, may be arbitrarily
distributed over the parallel machine. The collection of teams provides typical services
like naming, file handling, process management, memory management, exception
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handling, inter-networking, loading, etc.

The distributed operating system is based on a kernel that implements an abstract
PEACE machine. The kemel encapsulates all hardware-dependent functionalities.
Thus, it contains device drivers, the MMU driver, and the trap and interrupt handler.
In addition, the kernel provides services such as creating processes dynamically and
associate them with system-wide unique identifiers and address spaces. Because of its
proximity to the hardware, the kernel executes in supervisor mode. Internally, the
kernel is represented as a multi-threaded team.

Services provided by the kernel and the distributed operating system are invoked
by remote procedure calls [Nelson 1982]. This supports a system configuration that
manages the parallel machine as a processor bank, thus associating individual nodes
exclusively to user tasks.

The most basic component is the nucleus, whose sole function is to enable
system-wide communication between tasks (teams or threads). Services of the nucleus
are also invoked by remote procedure calls, which are handled in the usual way of
system calls, namely as a local trap. The nucleus is also directly used by
communicating tasks of the distributed application.

3. Rationale for the Family Concept

The primary requirement of massively parallel systems is very fast, system-wide
inter-process communication. As pointed out in [Lantz et al. 1985], communication
performance is less a problem of limited network bandwidth. Rather, it is a problem
of system software overhead caused by node-bounded activities such as interrupt
handling, buffering, context switching, scheduling and so on. A detailed analysis of
typical message-passing kernels such as PEACE reveals that these activities are not
necessarily required to support communication in a distributed environment. Rather,

they are only required if one extends traditional multi-tasking into the distributed
environment.



In addition to improving processor utilization in general, multi-tasking is a
functionality that introduces scaling transparency into parallel, distributed applications.
However, in cases where the application scales well with the actual number of nodes,
it introduces nothing else but overhead and, thus, slows down overall application
performance. Therefore, the main problem in the design and development of operating
systems for massively parallel systems is to avoid that "artificial” bottleneck, without
sacrificing multi-tasking altogether. Whether multi-tasking is really needed depends on
the application and on the actual number of nodes available for execution. As a
general guideline, applications should be structured so that there is exactly one task per
node. This constitutes the majority of parallel (numerical) programs.

3.1. PEACE Nucleus Benchmarking

A multi-tasking PEACE nucleus has been benchmarked in a scenario where each
node executes only a single task. Two versions of the nucleus were tested: one with
non-protected and one with protected address spaces. All benchmarks were executed
100000 times; from this the time for a single benchmark operation was computed.

Internal functions of the multi-tasking nucleus have been isolated and individually
benchmarked to determine pure multi-tasking overhead. These functions will not be
present in a single-tasking nucleus. They typically deal with process scheduling and
dispatching and interrupt handling.

A SUPRENUM hardware platform consisting of two PNs has been employed for
benchmarking. Both PNs resided in the same cluster. Note that multi-tasking implies
node-bounded activities. This makes it irrelevant whether to use PNs from the same
or from different clusters. In either case the same physical network interface, the same
protocol and, hence, the same low-level communication software is used in
SUPRENUM.

3.1.1. Rendezvous Time Parameters

Usually, a PEACE rendezvous means the exchange of a send —receive —reply
sequence between a client and a server. In order to support remote procedure calls
most efficiently, the PEACE nucleus provides an alternative interface for servers. This
interface combines the corresponding receive and reply into a single operation
replace, meaning to replace a rendezvous (remote procedure call) with another one.
The mechanization first issues a reply and immediately afterwards performs a receive .
Table 1 lists the timing for PEACE rendezvous based on send —replace sequences.

time (1L sec.)
configuration local remoie (with MMU)
without MMU | with MMU | phy. DMA | log. DMA
I—to—1 360 420 784 867
2—to-1 312 361 537 566
4—to-1 284 331 525 554
8—to-1 270 315 525 554
16—to—1 262 305 525 562

Table 1: Rendezvous Time Parameters

Since the inter-process communication of PEACE is based on transferring fixed-size
message packets of 64 bytes, 128 bytes are exchanged with each rendezvous. These
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packets are buffered by the nucleus, resulting in two copy operations both at the client
and the server site (a copy in/out with each send and replace).

The transfer of arbitrary sized messages is supported by a separate mechanism
called high-volume data transfer. This mechanism allows for the system-wide
exchange of memory segments without intermediate buffering. It is supported by
"intelligent" DMA hardware in each node. Once having established the rendezvous,
high-volume data transfer takes place. The critical factor for a user-level message
startup time therefore consists in the rendezvous.

For the case of the local rendezvous, the performance figures of a nucleus with and
without address space protection are shown. Address space protection is by means of
a memory management unit (MMU). The different timing parameters show the MMU
overhead in the process of copying data (arguments and message packets) between
nucleus and user space. The same overhead exists in the case of remote rendezvous.
Note that no task context switches took place, for only a single task was executed on a
node.

For the case of the remote rendezvous, a SUPRENUM-specific aspect could be
evaluated, namely the performance difference between logical and physical DMA
during network-wide message transfers. Logical DMA means to perform MMU
address translation with each data item (a 64 bit unit) being sent or received. In
physical DMA mode, MMU address translation is usually done only once for the
entire message packet before it will be sent or received. This hardware feature implies
no additional software overhead, rather it must be either enabled or disabled at
bootstrap time.

A many—to—one relation between client and server has been investigated. Up to
16 client threads issued a rendezvous request to a single server. Hence, the amount of
overhead caused by server scheduling/dispatching and interrupt handling at the server
site was revealed. Situations with more than one client were represented by a multi-
threaded client team, whereas the server team always was single-threaded. In the case
of having n>1 client threads requesting simultaneously a rendezvous, the resulting
benchmark performance was divided by n. Hence, timing measurements for each
configuration have been normalized to a single rendezvous.

3.1.2. Basic Time Consumed

For benchmarking multi-tasking overhead, dedicated nucleus instances were
generated. The nucleus call interface was excluded. Table 2 shows the results.

Nucleus call overhead simply is the time it takes to request and deliver the process
identification of the calling thread. It encompasses trap handling, monitor
locking/unlocking, and argument passing between user space and supervisor (nucleus)
space.

Segment validation is performed only as part of high-volume data transfers. This
means to verify the validity of a given logical address with respect to the team address
space that is involved in the data transfer. SUPRENUM housekeeping pertains to the
locking and unlocking of the vector floating point unit in the case of task switching,



: time (L sec.)
i with MMU_|_without MMU

nucleus call 21 19
message buffering 49 43
segment validation 255 0
SUPRENUM housekeeping 32 32
interrupt latency 88 86
team scheduling 68 68
. : thread 38 38
dispatching team 56 56
s thread 21 21
Switching team 40 25

Table 2: Basic Time Consumed

Team scheduling only takes place if several teams (tasks) need be executed by the
node. Preemptive and timer-driven scheduling is performed. The time listed
encompasses team switching, i.e. a complete context (address space) switch. Thread
switching is concerned only with swapping CPU register sets. The difference between
the times for team scheduling and team switching indicates the raw team scheduler
overhead. Thread and team dispatching gives the raw overhead needed for ready list
manipulation. Two operations are involved in a single dispatching activity, viz. setting
a thread/team ready to run and selecting the next thread/team for execution.

Interrupt latency is the time needed to propagate hardware interrupts to threads. It
encompasses the saving and restoring of CPU registers, interrupt handler invocation
and return, and synchronization. The complete sequence is executed for remote thread
communication.

3.1.3. Analysis

A remote PEACE rendezvous between two tasks based on send-replace sequences
implies at least two nucleus calls, four message buffering activities, two team
dispatchings, and two SUPRENUM housekeeping activities. In this model, team
switching, i.e., complete task context switches, are omitted because only a single task
was executed per node. If a task required to block, it enters the nucleus idle loop and
starts polling on external events such as incoming messages.

In a /-to—1 rendezvous the interrupt latency caused by the receive of (send and
reply) messages is encountered twice. Thus, a total of 502pusec with MMU and
472 usec  without MMU has been encounted for the individual rendezvous.
Considering the entire rendezvous time of 784 usec (867 psec), approximately 64 (54)
percent of it are caused by node-bounded activities. It should be noted that this
portion means pure overhead for applications which have only a single task executed
by the multi-tasking PEACE nucleus. None of the basic parameters considered above
will be relevant for a single-tasking nucleus.

In a 2-t0-1 rendezvous, a performance gain of 247 usec (301 psec) has been
obtained for the physical (logical) DMA mode of operation. With higher load at the
server site, i.e., with an increasing number of clients that are sending to the same
server, a speed-up of the individual rendezvous was observed. In this scenario, the
server always is busy because of pending client messages, i.e., its message queue will
never be empty. Therefore, the server does not block on replace, which would



happen in the case of an empty message queue. This means that neither
scheduling/dispatching nor SUPRENUM housekeeping activities must be performed, and
that the server never enters the idle loop. Similar considerations hold for the case of
local rendezvous.

3.2. Lessons Learned

The analysis confirms our conjecture [Schroeder 1987] that an increase of network
bandwidth and interface hardware performance alone is not the answer to the
performance bottleneck problem. It shows also, that the need for faster hosts [Lantz et
al. 1985] is not the ultima ratio either. Rather, devising more efficient software
solutions is as important as the speed-up of communication hardware.

The PEACE performance figures discussed above are very impressive, especially
when comparing them with Amoeba [van Renesse et al. 1988], which also protects
address spaces. Nevertheless, the performance is not good enough for massively
parallel systems. Multi-tasking functionality creates an unnecessary performance
bottleneck in all cases where applications do not require it.

In the scope of parallel computing there often are applications which scale well
with the actual number of nodes and, thus, make multi-tasking superfluous. On the
other hand, for reasons of fault tolerance and multi-user support, multi-tasking should
not be totally sacrificed either. Rather, a solution must be found that lets the
application pay only for those functions that are really required.

3.2.1. The Family Approach

Basically, the program family concept [Parnas 1979] means to identify a minimal
subset as well as minimal extensions of system functions during the software design
process. The minimal subset constitutes a common abstraction to all higher-level
software modules. Ideally, it encapsulates solely mechanisms and not the policies .
Policies should be introduced as minimal extensions. This leads to the step-wise
functional enrichment of the system. Remarkably, this bottom—up construction is
controlled in a fop—down fashion: lower-level modules are introduced only when
required by higher-level modules. Applying this approach recursively leads to a
hierarchical system organization. The uses relation [Parnas 1979] between the
modules then is an important instrument for associating modules to levels in the
hierarchical system. Consequently, this leads to a pure application-oriented system
structure, in which only those system functions (i.e., modules) are defined that are
required by a given application.

Originally, this concept has been devised to improve maintainability of very large
and complex software systems, e.g., operating systems. A program family design
naturally results in a highly modular system structure, with each module being an
abstract data type [Liskov, Zilles 1974]. It helps to concentrate on the pertinent facts
during system development while providing a flexible framework for incremental
construction, selective adaptation, and future extension of any kind of software.



3.2.2. Consequences for PEACE

The family concept is used in PEACE to realize an application-oriented distributed
operating system. Teams represent abstract data types which implement system
services. They are loaded on demand, when the application needing these services is
loaded, more specifically, when the services are invoked for the first time.

The application-oriented family concept is to be applied to the nucleus design, in
order to provide a well-defined framework for different instances of the nucleus.
Presently, the nucleus family of PEACE consists only of the two nucleus instances
discussed so far. This is because scaling transparency was considered the governing
user requirement in SUPRENUM. As demonstrated by the case study, however, a more
sophisticated family organization is required. There is a need for members ranging
from a single-threaded communication library to a complete multi-tasking and multi-
user implementation.

In this sense, the PEACE nucleus then provides the minimal subset of system
functions, whereas kernel and distributed operating system provide minimal extensions.
The difference between kernel and distributed operating system is that the kernel adds
mostly mechanisms, whereas the distributed operating system introduces policies. The
purpose of having a nucleus family is to have the minimal subset of system functions
represented in an optimal fashion.

4. The Nucleus Family

For the design of a nucleus family for massively parallel systems, the distinction
between single-tasking and multi-tasking support is too rigid. The PEACE development
for SUPRENUM demonstrates that a more discriminating approach must be taken. One
reason is that a large class of applications must be optimally supported. A second
reason is that it is much less risky to develop an operating system incrementally rather
than trying to implement the entire system in one shot.

In this sense, a multi-tasking nucleus will begin with supporting static scheduling,
to be extended by preemptive scheduling and address space isolation, by memory
protection and, finally, by multi-user security. The key aspect is that the nucleus
design is required to be complete before implementation starts. All the intermediate
steps towards the final implementation are considered of representing an autonomous
member of the nucleus family in its own right, exhibiting different functionality and
performance characteristics. Figure 3 illustrates this approach by means of a nucleus
family tree.

As is discussed below, nucleus functionality increases from left to right and from

top to bottom. By the same amount by which functionality is increased, the
communication performance drops, i.e. the message startup time increases.

4.1. The Family Tree

At the root of the family tree, there are two major user requirements, namely
single-tasking and multi-tasking. In case of single-tasking, a distinction is made into
single-threading and multi-threading. Note, a task is a PEACE team and hence may be
multi-threaded. In case that only a single thread of control must be supported on a
node, the nucleus purely implements communication. This is the situation where a
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Figure 3: PEACE Nucleus Family Tree

one-to-one mapping between a node and a user task is feasible.

In PEACE, synchronous inter-process communication is considered as the
fundamental communication paradigm, offering the highest possible end-to-end
communication performance. Threading introduces concurrency relative to a common
address space, Multiple threads of control constitute a team, specifying a one-level
scheduling domain.

The need for multi-tasking at this stage increase only scalability and does not
imply protected address spaces. Concurrency relative to several teams belonging to
the same user application is supported. Thus, a non-preemptive scheduling strategy is
introduced into the nucleus. This constitutes a switch from one-level to two-level
scheduling, i.e. it extends thread scheduling by team scheduling.

In all these cases, the nucleus takes the form of a non-protected shared library that
is directly linked to the application task. In addition, a node controlled by these
nucleus instances is used exclusively for user task execution. Except for the nucleus,
no other PEACE system components are located on these nodes. Application tasks
(teams) are loaded as part of the node bootstrap procedure. Following the pattern of
coroutines, merely dynamic creation/destruction of threads is supported. Since system
services are invoked by means of remote procedure calls, PEACE server teams may
reside elsewhere and are not required to share a single node with the user teams (ie.
tasks).

The requirement for preemptive scheduling implies a complete nucleus isolation .
Now, interrupts must be handled, and the teams are given a limited time quantum for
program execution. Dynamic creation/destruction of teams is introduced. However,
team address spaces are not yet isolated, i.e., protected. In addition, the nucleus must
be invoked through traps, thus introducing more overhead. Consequently, the nucleus
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as part of the kernel is executed in privileged supervisor mode and protected against
user mode tasks. Nucleus (kernel) protection may also be a case for the single-
threading and multi-threading instances.

Applying address space isolation to user teams completes protection in its
traditional sense. The kernel is extended by services to associate process objects with
address spaces. Excepted of having explicitly requested segment sharing, teams are
prohibited to directly access and manipulate peer address spaces. This makes the
nucleus a true multi-tasking system, able to support the execution of multiple teams
belonging to different applications. In this nucleus instance, high-volume data transfer,
for example, implies explicit segment validation before accessing a team address space.

If a multi-user mode of execution is to be supported, memory protection alone is
not sufficient for massively parallel systems. Rather, communication firewalls must be
established such that threads belonging to different user teams are prohibited to
communicate with each other. Thus, the principle of memory protection is extended
into a distributed environment. Precautions for communication security are necessary.
The nucleus is required to enforce integrity of the different distributed user
applications running concurrently on the parallel machine.

4.2. Problem QOrientation

The order in which we discussed the members of the nucleus family also defines
the order of increasing system functionality. In the same order user-level
communication performance drops. Applications which scale well with the given
number of nodes are supported by either of the first two nucleus instances
(communication and threading), depending on whether synchronous or asynchronous
inter-process communication is required. A first step towards multi-tasking is to
introduce the scheduling nucleus. This nucleus represents a compromise between
scalability and protection. It is used for dedicated and mature applications.

A similar compromise can be made concerning nucleus isolation. However, there
are two additional major issues to be addressed by the nucleus. First, dynamic nucleus
reconfiguration must be feasible. Second, multi-tasking must be supported regardless
of the availability of a MMU. This generally enlarges the applicability of the system.

Dynamic nucleus reconfiguration is needed in cases where system availability is the
dominating issue. A single-tasking nucleus is used in all cases where tasks are
mapped one-to-one to nodes. Node crashes, however, may require task redistribution
and, thus, could cause the switching to a multi-user multi-tasking nucleus at some
other node. This also may imply that some nodes are now to be shared between a
number of tasks belonging to different user applications. In this case, the single-
tasking nucleus need be replaced by the multi-tasking nucleus at run time.

5. Internal Nucleus Structure

Common to all nucleus instances discussed above is the communication aspect.
Additional minimal subset of communication system functions. The actual structure of
a nucleus instance reflects this aspect. How the internal organization of the PEACE
nucleus looks like is illustrated in figure 4. This organization also supports a novel
hardware architecture for massively parallel systems which is described in the
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Figure 4: Nucleus Organization

following section.

At the top, we have a network independent communication executive, called NICE .
This module implements system-wide synchronous inter-process communication, while
asynchronous communication is supported by means of threads. The module
encapsulates the different functions of the nucleus and manages rendezvous, threads,
teams, and so on. That is, the nucleus family actually is a NICE family, and all
members of this family inherit the same NICE interface. The two layers below NICE
form the communication system, whose purpose is to exchange data streams between
nodes in the most efficient manner. Rather than addressing processes (i.e. threads and
teams), address space segments serve as origin and target for the message transfer.

The major task of the communication system (COSY) is to execute the proper
communication protocol that copes with the problems given by the underlying network
system. For example, depending on the type of network it performs
segmenting/blocking of messages and introduces the view of virtual channels. The
interface between NICE and COSY is asynchronous. In the downward direction it uses
request queues, whereas the upward direction is implemented by upcalls [Clark 1985].

In order to keep most of the nucleus portable, a CLUB layer introduces an
abstraction of the physical network interfaces. The CLUB layer encapsulates the low-
level device drivers that control the network interface. It maps logical node addresses
associated with threads onto physical node addresses as required by the hardware.
Generally, it combines a group of related nodes into a club of homogeneous network
hardware interfaces.

Again, the interface between COSY and CLUB is asynchronous, implemented by a
request queue in the downward direction and upcalls in the upward direction. The
CLUB hardware interface is assumed to be interrupt driven. Upcalls (to COSY and
NICE) may be directly triggered by hardware interrupts.
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With respect to different user requirements, different NICE modules are used for
optimal support. Different network characteristics are covered by dedicated COSY
modules, improving the portability of NICE by means of isolation from network details.
Network hardware transparency is achieved by CLUB, i.e., there are different CLUB
implementations for different network hardware interfaces. This generally improves
portability by means of isolating nucleus instances from the details of network devices.

6. Symbiosis between Hardware and Software

So far, a pure software solution to the communication performance bottleneck
problem of massively parallel systems has been discussed. Further improvements may
come from dedicated support hardware. A stand-alone hardware solution is not
feasible: rather a symbiosis between software and hardware solutions is required. This
symbiosis will exist in GENESIS [Giloi 1990] by combining the PEACE nucleus family
approach and a novel node hardware architecture into a powerful multicomputer
system.

In the course of discussing the software/hardware symbiosis we consider a node
that consists of at least of two CPUs that communicate by means of shared memory.
The upper limit of the number of CPUs that makes technically sense for being plugged
onto a node is a function of physical parameters such as CPU speed, memory speed
and total memory bandwidth. There are no software constraints.

A GENESIS node will be configured with up to 4 CPUs. The node architecture is
symmetrical, i.e., all CPUs have equal access to the physical network interface.
Depending on the distribution of nucleus modules over the CPUs, different node
configurations with different modes of operation are provided. The software
configurations specify the node organization of being either functional dedicated or
symmetrical.

6.1. Functional Dedicated Organization

A functional dedicated node configuration employs one CPU as application
processor (AP) and a second CPU as communication processer (CP). The AP
executes application tasks, while the CP is responsible for global inter-task
communication, '

With a GENESIS node consisting of 4 CPUs we will, for example, have two logical
nodes on a single physical node. Each logical node consists of two CPUs, AP and
CP. Both CPs then share the same physical network interface. Another scenario could
be to configure the physical node with three APs and one CP.

In the following, we identify three different node representations, distinguishing
between single-threaded and multi-threaded task execution. Two node configurations
are provided in the case of multi-threaded tasks. In both configurations each thread is
executed by a separate CPU, which results in the parallel execution of a task (team).

6.1.1. Functional Distributed Nucleus

The basic idea is to have COSY and CLUB completely executed by a dedicated
processor, the CP. The processing of NICE is shared by both processors. This is based
on the fact, that NICE knows about tasks (in the form of teams) and, therefore, is
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responsible for exchanging the AP register set on performing a task context switch.
The manipulation of ready lists for scheduling purposes, however, is done jointly by
both the AP and the CP. In the case of incoming messages, for example, the CP
directly dispatches the target thread by placing it onto the AP ready list. This way,
interrupt overhead at the AP site caused by message-passing is avoided. Figure 5

shows this representation.
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Figure 5: Functional Distributed Nucleus

In order to interface AP and CP, a GLUE layer is required for interconnecting NICE
and COSY properly. By means of GLUE, user tasks then are directly interfaced to the
CP without the need to trap via NICE. Because of the two distinguished processors,
communication and computation of the same task can be performed in parallel,
whereas overlapping by means of threading would always require AP multiplexing.

Typically, upon issuing a message-passing operation, the PEACE nucleus (on behalf
of NICE) queues new data transfer requests into the COSY interface. Using GLUE, this
queuing functionality is made available to user tasks. Hence, asynchronous
communication is directly supported by hardware. Upon processing the requests, the
CP (on behalf of COSY) performs high-volume data transfer between peer AP (team)
address spaces.

The additional overhead implied by the GLUE layers is determined by the
complexity of queue operations in a shared-memory multi-processor system. In the
case of a GENESIS node being equipped with a 33 MHz Intel i860 [Intel 1989], the
indivisible (high-level) queuing operation then performs approximately in less than
3 usec (assuming 0 wait states memory).

The CP must be capable to support various types of applications with different
communication styles, rather than supporting a single application only. Therefore, this
configuration can only be a compromise and will be the appropriate one in cases where
cither tasks are mapped one-to-one onto nodes or where simple communication
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patterns are given.

6.1.2. Threading within a Common Address Space

This configuration shows for two local NICE modules, one for the AP and another
one for the CP. The CP is also configured with COSY and CLUB, thus it is configured
with a complete nucleus that performs system-wide inter-process communication and
high-volume data transfer. Figure 6 shows the resulting node organization.

{ common address space
computation

" nucleus |
|

thread

nucleus

NICE

COSY

dispatching

CLUB

Figure 6: Threading within a Common Address Space

In contrast to the functional distributed nucleus, ready list manipulation is not
jointly done by AP and CP. Each processor executes only threads of a specific type,
either computing threads or communicating threads. In this model, the CP is
responsible for the scheduling of communicating threads, and the task of the AP is to
schedule computing threads. Both threads implicitly share a common address space.
When the computing thread needs to communicate, it instructs its communicating
thread to perform message passing instead. Overlapping of computation and
communication of a task is achieved.

Typically, both threads are connected by two queues. The first (send) queue stores
descriptors of outgoing messages, while the second (receive) queue stores descriptors
of messages that have been already received. Thus, a mailbox-type of communication
service is implemented. The computing thread is able to perform non-blocking sends,
which may result in a local copy of each object being sent (dependent on the
communication semantics). To receive a message, the computing thread inspects the
receive queue. It may decide to block when the queue is empty. Queue
synchronization is straightforward and performed in a task-related manner.

When the computing thread decides to block on a message to be received, it will
be unblocked later on behalf of the communicating thread when the proper message
arrives. For this purpose, the NICE at the CP site instructs its peer at the AP site to set
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the computing thread ready to run. Vice versa, if the communicating thread decides to
block because of an empty send queue, it will be unblocked later on behalf of the
computing thread when the next send requested is issued.

The advantage of this configuration is that application-oriented mailbox
implementations are optimally supported. This was not the case with the previously
discussed configuration. Moreover, the degree of overlapping computation and
communication is increased. This is because the complete user-level mailbox now is
executed by the CP and not by the AP. The message startup time is significantly
reduced by the fact that the computing thread does no longer execute any mailbox-
specific code. Rather it merely notifies its communicating thread to generate a
message that may be constituted by several user-level objects. This may imply
memory management and the copying of user-level data objects. While these tasks are
performed by the communicating thread, the computing thread continues execution and
may poll on the event that a previously issued message has been sent out off the node.

6.1.3. Multi-Threaded Team

A single NICE module is shared by both the AP and the CP. Thus, the application
task (team) as well as NICE are processed in parallel by two CPUs. Figure 7 depicts
this model.

communicationf

computation

nucleus CLUB

I

Figure 7: Multi-Threaded Team

There are no changes concerning the computing thread and the communicating
thread at task (team) level. Changes only are dedicated to NICE, namely the
manipulation of ready lists now is jointly performed by the AP and the CP. In the
case of unblocking either of both threads, no explicit cooperation between two NICE
instances is necessary. While a synchronized dispatch request queue is needed in the
previous model, synchronized multi-processor scheduling is required now. The former
model results in a shorter critical section during which the memory bus is locked when
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Figure 8: Local Scheduling

Access to the common network interface is by means of a dedicated CLUB module
that is shared by all CPUs of the node. In this model, the CLUB module also performs
multi-processor synchronization. However, the model still implements a sinole.

The model just presented is the appropriate one for a single-threaded mode of
operation, and when the thread needs only synchronous communication. As was
mentioned, the PEACE nucleus implements synchronous communication and supports
asynchronous communication on a threads-basis. Asynchronous communication is still
feasible with this model, however implies addjtiona_l overhead caused _hv._.CPI]
muStrated in higure 9, the entire nucleus is shared by all CPUs of the GENESIS node.

.



nucleus

Figure 9: Global Scheduling

This model supports a mode of operation where a CPU executes any thread,
independently of its vocation. While the functional dedicated organization associates
computing threads with the AP and communicating threads with the CP, the
symmetrical organization tries to keep the CPUs busy all the time. A much better
node utilization is achieved and task throughput is increased. In the course of
execution, threads change their location on behalf of NICE. As in the local scheduling
model, CLUB is responsible for synchronizing access to the shared network device. In
the global scheduling model it is the additional task of NICE to synchronize access to
the ready list.

7. Concluding Remarks

As often required by the user community, support for massively parallel systems in
general means to make the naked machine available to the parallel application program
in order to obtain maximum performance. In contrast to that, distribution transparency
often is required too. Both aspects significantly influenced the PEACE development
and led to the idea of a nucleus family. The family approach was chosen because
there cannot be a single solution for a couple of user requirements if the utmost
communication performance is to be guaranteed.

For SUPRENUM, scaling transparency was a major user requirement. This led to
the implementation of a nucleus family having only two members, providing protected
and non-protected address spaces. Both members provide multi-tasking and were
subject to benchmarking. The results show that a more sophisticated family design is
required — address space protection is not the cause of communication performance
problems but multi-tasking. In GENESIS, single-tasking mode of operation is a major
user requirement, without sacrificing scaling transparency in general. Therefore, one
must clearly distinguish between a single-tasking and a multi-tasking environment, and
the nucleus family must reflect this.
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