293

NAMING IN THE PEACE DISTRIBUTED OPERATING SYSTEM

M. Sander, H. Schmidt, W, Schrider-Preikschat

GMD FIRST
Berlin, FRG

ABSTRACT

The PEACE naming facility distinguishes between low-level
naming, used to address system-wide unique
communication endpoints for message passing activities,
and high-level symbolic naming, used to identify
communicating processes. Symbolic naming in PEACE is
application-oriented, providing name space isolation in case
of different application programs. This introduces security
and avoids the problem of name clashes if a global name
space is shared by different applications. The paper
describes rationale and concepts of the PEACE naming
system.

Keywords: operating system family, message passing,
process structured systems, symbolic naming, system-wide
unique identifiers, application-oriented name spaces, name
space isolation.

1. INTRODUCTION

In order to make distributed systems work, naming and
addressing of distributed objects must be provided in a
flexible, reliable and convenient way. A distributed
application must be enabled to identify its communicating
processes in a network transparent manner. Moreover, the
identification must be application-oriented, to restrict the
communication with processes constituting a different
application and to introduce some means of security in
terms of name space isolation.

Typically, a distributed computer system will be managed
by a distribated operating system. All state-of-the-art
distributed operating systems, V (Ref. 3), AMOEBA
(Ref. 12), MACH (Ref. 25), CHORUS (Ref. 18), etc., itself
can be viewed as a dedicated distributed system
application, constituted by a multitude of system processes.
The distributed operating system must be capable to
identify and address its system processes, leading to a
separate system name space. Following the traditional
model of user and system mode of execution as provided
by todays processors, the system name space is to be

protected and, thus, is to be isolated from name spaces
related to distributed user applications.

Obviously, being based on these types of distributed
operating systems, distributed user applications depend not
only on the availability of user application processes. They
also depend on the presence and availability of system
processes. Consequently, naming is to be used not only to
locate and address user processes, but also to locate and
address system processes which provide dedicated system
services such as file i/o, process management, memory
management, and so on. This necessitates the
communication between different distributed applications
of a computer system, represented by distributed user
application programs and the distributed operating system.
It also implies that different name spaces must be
combined such that user processes are able to identify and
address system processes, which is the absolute
precondition for system service invocation.

Without sacrificing name space isolation to support
communication security, a structured name space is
required. The chosen organization must fulfill at least two
contradictory demands, name space isolation and name
space sharing; whereby the latter mentioned aspect is
related to operating system services which are made
available to application programs. If the shared name
space is structured as well, a model can be realized in
which operating system services are only made available to
specific application programs. Moreover, this includes that
merely those service providing system processes which are
required by the application program need to be present.
Similar to the construction of program families (Ref. 15), a
family of distributed operating systems is made feasible if
the naming system is properly organized. Exactly this idea
is followed by the PEACE® naming facility.

In addition to message passing, naming is the most basic
functionality of PEACE (Ref. 21). Following the pattern of
FAMOS (Ref. 7) and MOOSE (Ref. 20), it provides
fundamental services for the construction of a family of
operating systems. An important aspect was to support
dynamic alterable operating system architectures, such as
DAS (Ref. 11), and to extend these concepts into the area

T

™

294

of process structured and distributed systems. In this
sense, PEACE aimed in the design and development of a
process execution and communication environment for
distributed user/system applications, rather than providing
another distributed operating system. The paper discusses
the PEACE naming approach, giving its rationale and
explaining its concepts. It is shown by what means in
PEACE high-performance message passing, based on
system-wide unique communication endpoint identifiers,
co-operates with symbolic and application-oriented naming,
based on distributed name server.

2. RATIONALE AND CONCEPTS

In addition to provide a basis for a family of distributed
operating systems, naming in PEACE i$ also influenced by a
specific hardware organization. The following subsection
explains this organization and the impacts on the naming
system. Following that, the general concepts of PEACE
naming are illustrated, focusing on different types of
distribution transparency.

2.1 The SUPRENUM System

PEACE was specifically designed for SUPRENUM (Ref. 6), @
largely parallel MIMD (multiple instruction, multiple data)
supercomputer based on a distributed memory architecture.
SUPRENUM is a scalable multiprocessor system, consisting
of up to 16 clusters interconnected by a 125 Mbit/sec

token-ring network. Each cluster groups 20 processors, SO

called nodes, which are interconnected by two 64-bit
parallel cluster busses, each one providing a physical
bandwidth of 160 Mbytes/sec. The nodes are distinguished
into 16 processing nodes, used for numerical processing,
and 4 system nodes, providing services such as disk Vo,
cluster diagnosis, routing, internetworking, and so on. A
20MHz Motorola MC 68020 is used as node CPU,
supported by the paged memory management unit
MC68851. Up to 8 Mbytes local (on-board) memory is
available on the nodes.

Based on this architecture, PEACE is responsible for the
management of up to 320 nodes. However, from the
operating system designer viewpoint, the most important
characteristic of SUPRENUM is the cluster organization
which requires the presence of functional replicated system
services. A typical example in SUPRENUM is the disk
service, which is to be provided only on the disk node of
each cluster and, hence, is local to a cluster. In addition to
that, there are node-relative services such as address space
and process management as well as global system services
such as internetworking and external host access. Thus, in
PEACE, service replication is not primarily a requirement of
fault tolerance, but rather it is enforced by the underlying
SUPRENUM hardware architecture.

Generally, PEACE is concerned with the management of a
functional dedicated and replicated server systein. At the
operating system level, a distinction is to be made between
local system services and global system services. The
SUPRENUM case study especially shows that a two-level
approach is not sufficient, rather one has to distinguish at
least between node services, cluster services and system
services. At the application level, transparency is to be

T Ty

achieved, however without necessarily enforcing
transparency at all. Applications should always have the
opportunity to choose the type, i.e., scope, of service they
want to access. All these aspects significantly influence the
functionality of the naming mechanism, because in PEACE,
operating system services are referred to by .location
independent names.

2.2 Separation of Concerns

For performance reasons, PEACE message passing is non-
buffered, (.e., synchronous) and defined between
processes. A process is associated with an absolute
address which designates the communication endpoint
specified in the message passing primitives. This address
is represented by a numerical value. In order to introduce
different types of transparency, at a higher level a process
is associated with at least one relative address , represented
by a symbolic name. The PEACE naming system then is
used to map relative addresses onto absolute addresses.
Figure 1 illustrates the complete scenario. :

A process is addressed by its system-wide unique identifier
containing a hint on which node the corresponding process
object is located. Obviously, network-wide message
passing requires no time consuming mMapping functions in
order to determine the destination address for a message.
This improves the overall performance of message passing
operations. However, it makes processes dependent on the
actual program distribution, because they will have to
remember system-wide unique identifiers for later message
passing operations. In order to meet the message passing
performance requirements for SUPRENUM (Ref. 9), local
caching of these identifiers is not implemented by the
standard PEACE message passing kernel implementation.

System services are invoked on a remote procedure call
(Ref. 13) basis, which introduces access transparency, 1.6
hides the difference between local and remote operation.
Merely the PEACE message passing primitives are invoked
in the traditional sense of system calls, namely on a trap
handling basis. A procedure name stands for a particular
service function which is associated with a relative address
in PEACE and to be provided by a server process. Usually,
a complete service interface encompasses a Set of service
functions, thus representing a set of relative addresses for
the same server process. Dependent on the type of service,
relative addresses may also be related to argument (i.e.,
object) names. A typical example is the file service, where
each file name is given a relative address in PEACE.

A relative address is represented by a symbolic identifier,
ie., as a symbolic name. All symbolic identifiers together
constitute a global name space. They will be used to
generally identify distributed objects independent of the
nature of the object. That is to say, symbolic names are
used in PEACE to identify devices, nodes, Processes,
functions, data, and so on. This introduces = location
transparency, because the mapping = function defined
between absolute process address and relative process
address, e.g., usually is dynamic. It makes dynamical
reconfiguration feasible and leads to a flexible system
organization, at all.

In PEACE, system services are provided by processes and,

performance
requirements

1 system-wide unique identifier \

access
transparency

l remote procedure calls |
location
transparency

[symbolic identifier I

- | replication
transparency

I structured name space l

scaling
transparency

! application—oriented name space]

programmability

Figure 1: The PEACE Naming Scheme

hence, associated with symbolic names. In case of
réplicated services, such as the disk service located on the
disk node of each SUPRENUM cluster, the same service
name is to be used to address different server processes.
Within a flat name space, this service name potentially is
ambiguous, excepted the node address is encoded within
the name — meaning the creation of an absolute address.
Hence, replication transparency is to be provided. In order
to select the corresponding server process in a convenient
manner, a structured name space is required. Names of
replicated services constitute a specific name space
partition. In general, such a partition guarantees the
uniqueness of names relative to a specific context and is
called a name plane. According to the SUPRENUM
hardware organization, e.g., PEACE name planes containing
local cluster service names are replicated. The sharing of
name planes then gives different processes access to the
same set of system services.

Scalability is one of the most important characteristics of
distributed systems, related both to hardware and software
architecture. From the application program viewpoint,
scaling transparency is desirable such that program
execution works independently of the actual underlying
hardware and software organization. Above all, the
operating system family concept as followed with PEACE
requires a scalable operating system architecture. The idea
is that - dedicated PEACE system processes provide
application-oriented operating system services and that
these ‘processes are loaded at the time the distributed
. application is installed. This leads to an application-
oriented name space, used to isolate distributed
applications and to model the set of system services
available for the given application. It also requires a
hierarchically structured organization of name planes,
building a name domain for a specific set of processes.

3. PROCESS LOCALIZATION AND ADDRESSING

PEACE is faced with two contradictory demands; high-
performance message passing and location transparency.
The former aspect requires an absolute addressing scheme
of processes, whereas the latter aspect calls for some
means of symbolic naming.

3.1 Absolute Addressing

In order to perform message passing, the kernel addresses
processes via port-like system objects. For this purpose,
each process is associated with a gare, which acts as a
communication endpoint without buffering capabilities, but
rather routing capabilities. A communication endpoint is
referrcd to by a system-wide unique identifier, ie., an
absolute address, as illustrated in figure 2.

As shown in the figure, the communication endpoint
address is represented by a low-level path name constituted
by the triple {host,team,lightweight process}. -As with
THOTH (Ref. 2), each process in PEACE is member of a
team. The team concept provides a common execution
domain for several lightweight processes , meaning efficient
support for memory sharing, concurrent program execution,
asynchronous communication, etc.

Giving a PEACE system-wide unique identifier, the team
membership of a lightweight process as well as the host
membership of a team is determined without performance
limiting mapping overhead. This identifier enables fast
low-level localization and addressing of process objects
within a network environment. The host field of this
identifier is used to distinguish between local and remote
message passing and to determine the physical host address
of the corresponding process gate. By means of the ream
field, authentication is enabled; a prérequisite for the
selection of the local process gate table. The lightweight
process field then is used as gate table index, whereby a
single entry refers to the system data structure (i.e., process

296

system-wide unique identifier 77 process gate table i
i lightweight process
host team process control
‘ block
process pate
table entr forward
identifier
host authen— D
selection tication other gate on same
or dilferent host

A
~ Figure 2: Organization of an absolute process address

control block) associated with the addressed lightweight
process. These system data structures are used for
scheduling and contain kernel-relevant process state
information.

Process gates are normally associated in one-to-one
correspondence with processes, i.e., the creation of a
process also results in the creation of a process gate. As a
consequence, the gate identifier will be used in PEACE as a
systen-wide unique process identifier and vice versa.
Gates can also be associated dynamically with processes,
thus allowing dynamic reconfiguration in case of team
migration. There might be several gates associated with
the same process. According to the information stored in
the process gate, the kemel automatically routes an
incoming message to the receiving process. In this sense,
a process gate can be viewed as a forward identifier for a
specific process. In case that the process object is present,
the process gate contains the memory address of the
corresponding process control block. Otherwise, a
system-wide unique identifier refers to the process gate
which is to be used instead of the currently selected one.

3.2 Symbolic Naming

Absolute addressing at the kernel interface implies loss of
location transparency. On the other hand, it implies an
utmost efficient message passing implementation. Location
transparency can be achieved at the kernel level only if
processes deal with relative communication endpoint
identifiers. Concerning PEACE - as well as other
distributed operating systems —, this implies the following:
e different teams must be allowed to use the same
communication endpoint identifier for the
addressing of different processes.

e a team should know only local communication
endpoint identifiers.

On this basis, it will be the task of the kemel to map
team-relative communication endpoint = identifiers onto
system-wide unique process identifiers. A tradeoff between
communication efficiency and scaling transparency exists.
The efficient solution at the kernel level calls for fixed-size
and team-relative mapping tables, which implies scaling
problems in cases where the number of communicating
processes exceeds the number of map table entries. The
scalable solution at the kernel level calls for arbitrary sized
and team-relative hash lists of forwarding identifiers, which
implies resource management problems and loss of

communication efficiency. = Even in this case, the
exceptional situation is to be handled if no more
forwarding identifiers can be allocated because of memory
resource problems. The potential of loss of location
transparency is given, any way. In addition to that, the
replication of cached process gates requires precautions for
cache consistency management at a very low operating
system level. For all these reasons, the functional
specification of PEACE message passing primitives excludes
a guarantee for location transparency.

In order to keep kernel complexity small and achieve
high-speed interprocess communication, location
transparency is not exclusively supported by the kernel, but
rather in co-operation with symbolic naming functions
provided by dedicated system processes, so called name
server. + As with any other PEACE system service, these
naming functions are invoked on a remote procedure call
basis, using PEACE message passing primitives. Obviously,
a name server is to be associated with a system-wide
unique communication endpoint identifier. In PEACE, each
team, and thus each lightweight process of the team, is
bound to a domain identifier which is the system-wide
unique name server identifier. This approach either enables
the sharing of a name domain, in case of identical domain
identifiers for different teams, or leads to a complete
isolation of name domains, in case of different domain
identifiers for different teams.

The domain identifier, i.e., the system-wide unique name
server identifier, of a given team is determined by querying
the kemnel, which always is a node-relative PEACE system
service. This kernel service is provided on a remote
procedure call basis, too. However, the naming service
cannot be applied to locate this kemel service, rather a
fixed and absolute process address is needed. This address
always is associated with the ghost (Ref. 21), bound io the
communication endpoint identifier {host,0,0}.- Note, the
ghost is the only PEACE process with a fixed address.

Symbolic names are used to designate distributed objects
(i.e., processes), which requires the mapping between
relative and absolute addresses. This mapping will be
performed by a name server, however without having any
knowledge of the semantic of the name. Figure 3 shows
the principle mapping function. ‘

Each symbolic name is associated with user-defined
numeric values. This user information consists of three
elements, defined at name creation time. For example,

297

relative address

execution:

design: service

implementation: (server, object, mode) «—————P name

name ___méf,’%_), (server, object, mode)

modeling -~

name

-€

configuration

absolute address

Figure 3: Mapping between relative and absolute addresses

concemning the PEACE remote procedure call system, the
elements are used as follows:

server: To remember the system-wide unique
communication endpoint identifier associated
with the symbolically addressed server process.
object: To remember a server-relative object identifier.
mode: To remember object-specific access modes or
types.
This way, various strategies for the addressing of server
processes are supported. A server process can be
addressed either by a server name, meaning one-to-one
correspondence between relative and absolute identifier, or
by a service/object name, meaning many-to-one
correspondence between relative and absolute identifier.

Creation and destruction of names is dynamic. Typically,
at initialization time, a server process exports its services
by creating corresponding names. Name mapping is done
at run time, too. For example, the first time a system
service is invoked, the corresponding stub routine (on
behalf of the calling process) requests name resolution and
caches the information associated with the name. This
way, system-wide unique server identifiers are cached
within the team context of the calling process. Cache
updates then are to be performed by the processes itself, as
part of handling naming exceptions. The exception handler
(i.e., the process itself) requests name resolution, again.

Usually, name cache updates are to be performed in cases
of process termination, server migration, service migration
and object migration. Cache consistency relies on the
assumption that the per-team exception handler at the
naming library level will perform the update, invisible to
the application team. This strategy may lead to a
temporary cache inconsistency, caused by the latency of
exception propagation. Because all types of migration
exceptions will result in the change of the server value
stored with a name, the process gate associated with the
server process at the kernel level is reconfigured
accordingly, i.e., a forwarding identifier for the process is
established. In addition to that, service and object
migration then is made feasible by temporarily monitoring
all requests directed to the original server process.
Requests referring to either migrated services or migrated
objects are redirected accordingly. If either the caches

have been updated or a timeout -occurs, the forwarding
identifier is destroyed. These activities are controlled by
the reconfiguration management system of PEACE and,
usually, are independent from the naming system.

4. MODELING A NAME SPACE

In addition to support name space isolation, a structured
and application-oriented name space is necessary in order
to manage a functional dedicated server system as well as
a family of operating systems. The global PEACE name
space is implemented by a multitude of name server, each
one controlling a single name plane. The resulting
organization is application-oriented, defining a unique name
domain for each distributed application.

The structure of name domains is influenced by several
aspects. Concerning PEACE and the SUPRENUM
architecture, these aspects comprise:

e the organization of a distributed application;

o the mapping of the application onto the underlying
hardware system;

e the isolation of name spaces for different
applications;

e the operating system services exclusively related to
the application;

e the global operating system services.

It was one of the major requirements in the design and
development of the PEACE naming system to cover all
these aspects with a single mechanism, This mechanism is
based on a generic name server implementation supported
by a dedicated naming library.

4.1 Structured Name Space

On the basis of PEACE naming, replication transparency is
provided in order to arbitrarily map distributed application
programs onto the underlying hardware architecture. In
case of replicated system services, the name space is
arranged such that a team by default selects the most
nearest server process. As illustrated in figure 4, this is
accomplished by a hierarchically structured set of name
server.

In case of SUPRENUM, the PEACE system name space is
tree-structured and shows for several node name server,

298

- mmm v mmm v s e wm— 4

¢ e s mmm s e ¢ e ¢

e for node
local services
Team O

Name Server
for services
known at the
system level

— s e 4 mmm s mms s s e

Name Server

for services
(only) known
at the cluster
level

Name Server

'\ domain

identifier

Figure 4: Modeling a name space for replicated system services

some cluster name server and at least one system name
server. Each type of name server stores names of services
which are available at the given level. In addition to local
service names, the linkage to the next higher name server
is remembered. This linkage, called domain link, is
nothing else than a symbolic name designating another
name server of the tree-structured name space.

Performed by the naming library (i.e., on behalf of the
calling process), the name space is searched for a specific
service name following the pattern of scope rules often
found in block-structured programming languages. If the
name is not yet locally cached by the requesting team, the
search is directed to a name server. In the very first case,
this name server represents the leaf of the name tree and is
addressed by the domain identifier of the requesting team.
In subsequent cases, the system-wide unique name server
identification is obtained from the name space itself.

If a service name was found, it will be cached and
associated user information will be returned. Otherwise,
the currently selected name server is requested to resolve
(i.e., dereference) the domain link. Note, the domain link
may be different for different applications and will always
be interpreted as a name server name. If the domain link
lookup results in a match, the system-wide unique
identification of the associated name server is delivered.
To this name server the original service name lookup
request is issued, again. If there is no domain link match,
the root of the name tree is reached and the requested
service name is declared as unknown, meaning that the
associated service is not available.

This simple name lookup strategy allows for the dynamical
integration of further name server processes. In addition to
that, it enables the definition of name scopes which are not
necessarily associated in one-to-one correspondence with
the underlying hardware organization, such as required for
SUPRENUM. Logical clusters of system services can be

built, supporting the operating system family concept.
Independently of the actual system representation, the
remote procedure call layer applies the user information
returned by a successful name space search to direct a
service request to a server process. In PEACE, a "third
party connect facility" will be used to model the clustering
of system services, without effecting the original
application programs.

4.2 Application-Oriented Name Space

The structured name space discussed so far implements
location and replication transparency for the invocation of
operating system services. In case of supporting the
concurrent execution of distributed applications, 'name
space isolation is required. This aspect is considered in
PEACE to give distributed applications the opportunity for
location transparent addressing of application processes.
However, this addressing scheme must be application-
oriented to avoid the potential of name clashes, if different
applications apply the same name with a different meaning,
and to maintain security, in that intruder processes are
prohibited to join the application. -

In PEACE, an application-oriented name space is
implemented by one or more name server. Basically, the
same naming strategy can be applied by the application
processes as was explained with the lookup of service
names. That is to say, the name space is built by a set of
name server which are interconnected by a unique and
application-dependent ~ domain link = name. Most
importantly, a separation between user names and system
names is to be made. For this purpose, a dedicated name
server is used, the so called domain server. Figure 5
illustrates the integration of the domain server into the
structured PEACE name space.

Following the concept of abstract data types (Ref. 10), the
domain server provides the same interface as the name

- wmm .

domain

N\ ink
N
N

\

lApphcalzoni

! Team
Pl

Application
name space

: name .Fel’vefl

Apphcatmn—related

omam Serve/

Nndes

Name Server
for services
known at the
system level

Name Server
for services
(only) known
at the cluster
level

R

Name Server
for node—
local services

request

Application

Figure 5: Modelﬁg a name space for user-defined names

server, i.e., it actually is a more dedicated name server
implementation, specifically designed for the demands of a
specific distributed application. Its primary purpose is to
merge user name space and system name space, thus
"building the application-oriented name space. Similar to
the object inheritance approach (Ref. 8), the domain server
inherits all the characteristics of a name server and
introduces application-oriented naming functionalities.

As -explained in the previous subsection, name resolution
starts with the name server addressed by the per-team
domain identifier. If for a team an application-oriented
name space is defined, because it shares a name space with
other teams of the same distributed application, this
identifier addresses a domain server, instead of a name
server. Thus, transparently to the naming library, requests
are directed to the domain server of the requesting team.
Having received a request, the domain server executes it
within a specific application-context. The requested name
service function then is applied on an application-oriented
name-tree, instead of a single name plane. For example, in
case of a name lookup request, the application name space
is observed. The result of this request is returned to the
naming library. If a name match was indicated, name
resolution terminates successfully. Otherwise, name

resolution is continued with a name server which is
addressed by a domain link. That is to say, the same name

lookup strategy is performed at the naming library level,
independently whether a name server or a domain server is

requested.

Depending on the configuration, both domain identifier and
domain link may refer either to a name server or to a
domain server. This enables the construction of arbitrary
name space structures. It also enables the transparent
integration of dedicated naming strategies based on
broadcasting or multicasting (Ref. 4). In addition to that,
strategies may be introduced to maintain consistency of
distributed name caches, because the domain server is
related to a specific distributed application and, therefore,
knows all the application teams where a name cache is
present. In case of the necessity of name cache updates,
the domain server raises a naming exception and,
eventually, establishes forwarding identifiers as long as the
update is in progress.

5. NAME SPACE CONSTRUCTION

The construction and definition of an application-oriented
and hierarchically structured PEACE name space is
dynamic. It will be performed at the time where either the
entire system, a server or the distributed application is
installed. In each case, an association between name
server and teams is to be established. This will be done by
a third party , transparently to the selected teams.

5.1 PEACE Domain Installation

At global system initialization time, i.e., after having
finished the bootstrap procedure, the PEACE domain is to
be installed, meaning to create a tree-structured name space
which encompasses the names of initial PEACE system

300

services. Basically, PEACE domain installation is

concerned with the following two problems:

e to find all name server which have been initially
loaded;

e to associate name server with a specific hierarchy
in the system name tree.

Note, a PEACE name server does not depend on any
operating system service, excepted message passing and the
kernel service used for establishing domain identifiers. In
addition to that, all name server are identical and will be
used at the “"mercy" of a third party connect facility to
configure name spaces.

5.1.1 Name server.. Once node bootstrapping has been
finished, all name server residing on the same node chain
up each other. For this purpose, each name server of the
particular node tries to establish the domain identifier of its
own team. In cases where this identifier is not yet
established, the binding between all existing teams of a
node and the requesting name server is performed — the
domain identifier of each team of the particular node
becomes the system-wide unique identifier of the issuing
name server. Thus, if there are further name server present
on the node, domain identifiers of name server teams are
established as well. In cases where the domain identifier
of the issuing name server team is already established, it
merely will be delivered by the kernel and no global
changes are made. This will happen if further requests for
global domain identifier establishment are stated; the first
name server is the winner and will be used as the node
name server .

In those cases where the domain identifier was already
established, a request for name plane interconnection is
directed to the name server which is addressed by that
identifier, as shown in figure 6. Name plane
interconnection is based on a domain link, i.e., it is given a
symbolic name and is associated with a system-wide
unique name server identifier. Each name server which
receives a request for name plane interconnection tries to
create a name entry which represents the domain link. If
the corresponding symbolic name is known, the requesting
server is directed to re-issue the original interconnection
request to the name server which is associated with the
name entry. This way, the request will be relaied to a

name server which is able to create a name entry for the
domain link. The requesting name server then will be
associated with this name entry, thus being appended at the
name server chain.

5.1.2 Tree construction. In order to establish a naming
system for a SUPRENUM cluster, i.e., which spans a set of
nodes, two functions are performed. First, the number of
active nodes is determined, using a broadcast-like system
service which results in the delivery of a system-wide
unique ghost identifier for each active node. Note, at least
the PEACE kernel must have been loaded on an active
node, whereby the remote procedure call interface of the
kernel is provided by a lightweight process, called the
ghost, of the kemnel team (Ref. 21). Second, the node
name server, if any, of a node is determined. This is
accomplished by requesting from the ghost the delivery of
the domain identifier associated with its kemel team. If
undefined, no name server is present on the node of the
addressed ghost. Otherwise, the delivered identifier refers
to a name server and, eventually, represents the head
pointer of a per-node name server chain. Each located
name server then will be connected to a name server which
is selected to represent the cluster name server, leading to
the installation of a two-level name tree. For this purpose,
located node name server are requested to create a PEACE
domain link which refers to the cluster name server.

The next encompassing name server, which is the system
name server in case of SUPRENUM, is installed by first
requesting any node name server of a cluster for the
resolution of the PEACE domain link. As was explained
above, this link refers to the cluster name server. The
selected cluster name server then is requested to create a
PEACE domain link which refers to the system name
server. This procedure is repeated to establish further
name tree hierarchies accordingly.

5.2 Installation of Name Scopes

In case of replicated system services, the name scope of
each service is to be manifested. A service might have
local or global relevance, leading to different scopes of a
particular service. For example, based on SUPRENUM, a
distinction is to be made between services related to a
node, a cluster or the entire system. For each of these

old name
server chain

name server

\ domain
link

interconnecting
request

new name
server chain

Figure 6: Chain up of per-node name server

contexts, a name server is used to keep track of context-
relative services names. The scope of a particular service
then is represented by a proper name server.

Once a server team has been installed, its services are to be
bound to a specific scope. The scope associated with a
server team is managed by a dedicated PEACE system
process, the scope server. For each server team, the scope
server selects a name server which is to be used for
requesting the creation of service names. Both, the new
server team as well as the name server are identified by
symbolic names. Thus, the scope server maps the
symbolic name of the server team, usually the
corresponding program name, onto a symbolic name used
- to designate a name server, i.e., name-tree hierarchy. The
name server name then is located within the name domain
of the new server team. As explained previously, this
follows the default PEACE name lookup strategy being
performed by the naming library.

The name domain of the new server team may correspond
to the PEACE domain, in which case a new global PEACE
system service is introduced. The PEACE domain is
extended by a new system service. In contrast to that, the
name domain may be application-oriented, meaning the
installation of a new application-oriented system service.
The PEACE operating system family is extended by a new
system member.

5.3 The Third Party

The installation of PEACE domain and name scopes is
controlled by dedicated system processes, representing the
third party connect facility. These processes, so called
conductor, are loaded at system bootstrap time.
Dependent on the types of conductor processes, different
name space configurations are established. Thus, for
SUPRENUM there is a dedicated conductor used to establish
_the cluster name space, while another conductor establishes
the system name space. :

Name space configuration is directed by information
obtained from a configuration specification written in a
dedicated system configuration language. This
specification is interpreted by a conductor and executed
accordingly. A low-level bootstrap description specifies
what teams are loaded on what nodes in a distributed
computing environment. This way, conductor processes
are placed on specific nodes. Relative to these nodes, they
construct the name space according to the configuration
specification.

At run time, the loader is not only responsible for placing
teams (i.e., programs) onto nodes, but also for the
establishment of the domain identifier of the teams. In
case of extending a distributed application, a new team will
be bound to the domain identifier of that application,
enabling name space sharing. For this purpose, in addition
to the program file name, the domain identifier of the new
team is passed to the loader too.

6. RELATED WORKS

In addition to introduce certain levels of transparency in a
distributed computing environment, naming is also a
mechanism for synchronization (Ref. 17). For example,
this aspect is of importance for installing the PEACE
domain. The domain identifier state of a kernel team

301

specifies if a node name server has been installed. In a
similar way, the domain link state in a node name server
specifies if a cluster name server has been installed, and so
on. That is to say, these identifiers are used in PEACE to
synchronize on external events, e.g., caused by conductor
processes.

Recently, several works on naming and resource
management in distributed systems have been published.
However, most of these works are concerned with naming
at a very high level of abstraction. For example, in
(Ref. 1,5, 14,16,22,24) naming services are described
which rely on a complete operating system environment.
This is in contrast to PEACE naming, which is designed to
model a family of distributed operating systems and, hence,
will be used to implement fundamental operating system
services,

From its level of abstraction, naming in PEACE will be
comparable to naming required for the construction of
object oriented operating systems (Ref. 19). However,
PEACE does not claim to be an object-oriented operating
systern, although it is constructed following object-oriented
design principles.

Concerning the switching between name domains, PEACE
follows an approach as discussed in (Ref. 23). That is,
from its functionality, the global name service of HCS is
comparable to the PEACE domain server. However, the
naming service introduced there, again, is layered on top of
a complete operating system interface and is specifically
designed to interconnect heterogeneous computer systems.

As an example for a naming approach which supports the
restructuring of operating systems is explained in (Ref. 4).
This approach is based on broadcast techniques and takes
advantage of V group communication. Multicasts are used
to query system services. In case of replicated services,
this results in the delivery of multiple responses and the
client is burdened to choose between one of them. For
performance reasons, this approach is not followed in
PEACE because the SUPRENUM network provides no
broadcast service. Because of the limited number of fixed
multicast addresses (i.e., group identifiers), the construction
of arbitrary structured and application-oriented name spaces
is not well supported.

7. CONCLUDING REMARKS

Aim of the naming approach explained in the paper is to
support an operating system family where members are
represented by server processes. An evaluation of this
approach is in progress, now. Presently, the PEACE
naming system is not used to support a dynamically
alterable operating system structure because system
services which provide team migration, checkpointing and
recovery are still under development. However, PEACE
domain installation as well as the dynamical construction
of application-oriented name spaces works.

In the near future, PEACE activities will focus on
mechanisms for = dynamical configuration and
reconfiguration of distributed applications. Especially, a
message passing kernel family is to be supported, which is
much more ambitious than providing support for a
process-structured operating system family. The members
of the kernel family range from a single-process to a
multi-team mode of operation, each one offering different

302

communication performance parameters. Depending on
distributed SUPRENUM applications, the most efficient
message passing kernel will be loaded along with the
application. This also includes the dynamical restructuring
of a system in cases where a single-process kernel is to be
replaced by a multi-team kernel.

8. ACKNOWLEDGMENTS

The authors wish to express their gratitude to all members
of the SUPRENUM project, above all Peter Behr
Conceming PEACE, we especially would like to thank
Ralph Berg, Lutz Eichler, Jorg Nolte, Bernd Oestmann and
Friedrich Schon for their very high qualified contributions
related to all steps of design and implementation of a
distributed operating system.

This work was supported by the Ministry of Research and
Technology (BMFT) of the German Federal Government
under grant no. ITR 8502 A 2.

® PEACE is a registered symbol of GMD.

9. REFERENCES

1. Birre)l A D, Levin R, Needham R M & Schroeder M
D 1982, Grapevine: An Exercise in Distributed
Computing, Comm. ACM, 25, 4, 260-274

2. Cheriton D R 1979, Multi-Process Structuring and the
Thoth Operating System, UBC Technical Report 79-5,
University of Waterloo

3, Cheriton D R 1984, The V Kemel: A Software Base
for Distributed Systems, I[EEE Software 1, 2, 19-43

4. Cheriton D R & Mann T P 1986, A Decentralized
Naming Facility, Technical Report STAN-CS-86-
1098, Department of Computer Science, Stanford
University

5. Dyer S P 1988, The Hesiod Name Server, Proc.
USENIX Conference, Dallas, Texas

6. Giloi W K 1988, The SUPRENUM Architecture, Proc.
CONPAR 88, Manchester, UK.,

7. Habermann A N, Flon L & Cooprider L 1976,
Modularization and Hierarchy in a Family of
Operating Systems, Comm. ACM, 19, 5, 266-272

8. Halbert D C & O’Brien P D 1987, Using Types and
Inheritance in Object-Oriented Languages, [EEE

~ Software, 9, 71-79

9. Kolp O & Mierendorff H 1987, Performance
estimations for SUPRENUM systems, Parallel
Computing 7, 357-366

10. Liskov B H & Zilles S 1974, Programming with
Abstract Data Types, SIGPLAN Notices, 9, 4

11. Miiller J, Habermann A N & Lohr K P 1980, Address
Space Management in the DAS Operating System,
Technical Report 80-35, TU Berlin

12. Mullender S J & Tanenbaum A S 1986, The Design
~of a Capability-Based Distributed Operating System,
" The Computer Journal, Vol. 29, No. 4
13. 'Nelson B J 1982, Remote Procedure Call, Report
CMU-CS-81-119, Carnegie-Mellon University

14.

15

1.

18.

19,

20.

21,

22;

23

24,

25

Oppen D & Dalal Y 1981, The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a
Distributed Environment, Tech. Rep. OPD-T8103,
Xerox Office Products Div., Palo Alto, Calif.

Parnas D L 1975, On the Design and Development of
Program Families, Report BS I 75/2, TH Darmstadt

Peterson L L 1988, The Profile Naming Service, ACM
Transactions on Computer Systems, 6, 4, 341-364

Reed D P 1978, Naming and Synchronization in a
Decentralized Computer System, Techaical Report
MIT/LCS/TR-205, MIT, Cambridge, Massachusetts

Rozier M et al 1988, CHORUS Distributed Operating
Systems, Computing Systems Journal, Vol. 1, No. 4
Schantz R, Schroeder K & Neves P 1987, Resource
Management in the Cronus Distributed Operating
System, ACM Computer Communication Review, 17,
5, 243-244

Schroder W 1986, Fin Familie von UNIX-dhnlichen
Betriebssystemen — Anwendung von Prozessen und
des Nachrichteniibermittlungskonzeptes beim
strukturierten Betriebssystementwurf, Ph.D. Thesis,
TU Berlin 4

Schréder-Preikschat W 1989, PEACE — A Distributed
Operating System for High-Performance
Multicomputer Systems, to be published in Lecture
Notes in Computer Science, Springer-Verlag,

Schroeder M D, Birrell A D & Needham R M 1984,
Experience with Grapevine: The Growth of a
Distributed System, ACM Transactions on Computer
Systems, 2, 1, 3-23

Schwartz M F 1987, Naming in Large, Heterogeneous
Systems, Technical Report 87-08-01, Department of
Computer Science, University of Washington, Seattle

Skinner G, Wrabetz] M & Schreier L 1987, Resource
Management in a Distributed Internetwork
E:rvironment, ACM Computer Communication Review,
17, 5, 254-258

Young M et al 1987, The Duality of Memory and
Communication in the Implementation of a
Muitiprocessor Operating System, ACM Operating
Systems Review, 21, 5

