1989 Interational Conference on Supercomputing (ICS °89)
Zrete, Greeee, Jutie 5 9, 1989

VERY MHIGH-SPEED COMMUNICATION
IN LARGE MIMD SUPERCOMPUTERS

by W.K. Giloi and W. Schroeder-Preikschat

GMD Research Center for Innovative Computer Systems and Technology
at the Technical University of Berlin

Abstract. The next generation of supercomputers will be
largely parallel MIMD architectures, ranging in peak per-
formance from 10 to 100 GFLOPS in the mid nineties to
1000 GFLORPS in the late nineties. Largely parallel means
that such a system will consist of hundreds or thousands of
processing nodes (PN), and each PN will have a peak
performance of several hundred MFLOPS. Obtaining such
an extremely high performance is not only an issue of
appropriate node architecture but requires also a very high
bandwidth interconnection network and an extremely fast
implementation of the inter process communication (IPC)
protocol. The paper deals with an IPC protocol
implementation that reduces the communication startup
time to approximately 20 microseconds, by combining
highly efficient software solutions, given in the form of
lightweight processes, with dedicated hardware, given in
the form of a specific communication processor in each
PN, to perform the rendezvous required between sender and
receiver processes.

1. Introduction

The next generation of supercomputers will be largely
parallel MIMD architectures, ranging in peak performance
from 10 to 100 FLOPS in the mid nineties to 1000
GFLOPS in the late nineties. Largely parallel means that
such a system will consist of several hundreds to thousands
of processing nodes (PN). Each PN will have a peak
performance of several hundred MFLOPS. The
programming paradigm of such system is based on the
partitioning of the application program into a large number
of cooperating processes. To this end there must be an
appropriate, extremely efficient inter process
communication (IPC) protocol hierarchy, based on which
the programmer will be provided with the appropriate
language constructs to implement the IPC and,
consequently, the implicit or explicit synchronization of
the cooperating application tasks.

Performance, safeness, and programmability of a MIMD
system all depend very strongly on the models and mecha-
nisms of inter process cooperation. Various models can be
considered [1]; however, there is no single solution to the
different requirements defined at the different levels [2].
Rather, the optimal solution at each individual level
depends on certain performance parameters and on the
functionality at the hardware level. These issues will be
addressed in the paper: Functionality and performance
requirements are established, and it is shown how these
requirements can be met.

2. General Requirements-

It is safe to state as a general premise concerning the
realization of inter node communication that large MIMD
architectures must be message passing systems. While the
use of shared memory is a most simple and efficient
approach in small multiprocessor systems, it is not the
appropriate solution for large MIMD architectures for
reasons of system manageability, efficiency, and
availability.

Manageability

The IPC policies appropriate for the paradigm of largely
parallel MIMD systems are more straightforwardly and
conveniently implemented by high-level message passing
constructs (e.g., send-receive) than by the lower level
mechanisms for controlling the access to critical regions of
shared memory.

Efficiency

Of course, message passing policies could be implemented
in a shared memory environment; however, it is more
efficient to implement the message-passing IPC protocol
also by message passing mechanisms. In this case the
implementation may readily be by hardware. Furthermore,
the danger of hot spot contention of shared MEMOry access.
is avoided.

Availabilty

Even with the fairly reliable technology available, systems
featuring a very large number of PNs will exhibit a
relatively poor overall MTBF, if no provisions are taken to

make the system immune against failures of the hardware.
Therefore, a sufficient degree of fault tolerance at the
granularity of the PN should be designed into the system.
This is feasible only if the architecture is designed as a
loosely coupled distributed system.

A major design decision concerning the protocol hierarchy
is whether to use synchronous or asynchronous
communication mechanisms [2]. This is strongly
influenced by a number of system parameters such as: the
relative performance of the software and hardware
components, the communication system architecture, and
the application requirements.

In the attempt to optimize the system one is faced with the
dichotomy of programmability versus efficiency.

- Programmability demands that the programmer sees an
abstract machine that hides as much as possible the
difficulties arising in writing, testing, and executing
parallel programs. Hence, the lower level protocols
should be hidden from the user.

- Efficiency demands that the user should be enabled to
deal with the lower level protocols in order to
minimize the communication overhead.

This dichotomy can be resolved by combining software,
given in the form of lightweight processes (LWPs), with
hardware, given in the form of a dedicated communication
processor (CP). Operating system tasks as well as user
tasks will be implemented by teams of LWPs which all
share the same address space. That is, the domain of
protection is the team and not the LWP, thus reducing the
cost of process switches within a team drastically [3].

3. Performance Requirements

Practically, a system with hundreds or thousands of PNs is
realizable only if very highly integrated circuits (VLSIC)
are employed, leading to the use of CMOS or BICMOS
circuits (rather than ECL or GaAs technology). Currently,
the maximum clock frequency of CMOS processors is
about 30 MHz; through the use of BICMOS it can be
increased to 50.....60 MHz. Consequently, it can be
(conservatively) estimated that soon the "natural
processing power of a single-processor PN will be
approximately 50 MIPS and 100 MFLOPS for two

chained operations.! Such a processing rate matches with

- Currently, floating-point processor devices are available that
allows one to realize pipelined vector processors with 80
MFLOPS peak performance [4].

the access bandwidth of static CMOS memory (SRAM) or
even dynamic memory (DRAM).2

However, there exists another parameter limiting the peak
performance of a PN, which is the performance of the IPC.
Thus, as much efforts must be devoted to the realization of
an approriate communication system as to the goal of
obtaining the highest possible performance from the PN,
Simulations have shown that for typical supercomputer
applications, e.g., the solving of partial differential equat-
ions, a node performance of about 100 MFLOPS requires
that the startup time be limited to no more than 40
microseconds [3].

It would be a mistake to view these problems solely as a
question of the design of the physical interconnection net-
work (IN), as have so many authors over the years. What
must be considered carefully is the entire functionality of
the abstract machine level communication model and not
just the physical behavior of the underlying IN hardware.
Therefore it is mandatory to optimize the entire protocol
hierarchy, by employing optimal software solutions
which, in turn, are sufficiently supported by fast protocol
hardware as well as by an adequate bandwidth of the IN.

Note that in a message-passing system the notion of
memory addresses does not exist outside the node memory.
Rather, message passing among PNs is a memory-to-
memory copying process performed by DMA hardware.
For the sake of uniformity, the same mechanism is used
even for message passing between different user tasks
residing in the same PN.

4. Communication Performance Parameters

In the endeavor to optimize the performance of the
communication system in large message based MIMD
architectures, two major levels must be distinguished:

- the physical transmission level
- the IPC level.

The performance at the physical transmission level can be
expressed by the transmission time Tyrang for a message.
Trans can be expressed by the formula:

Tirans = (Tlatency + Lmessage/Rbit) + F(Nhops)

Here, Tlatency is the elapsed time between the issuing of
the send command and the actual start of the bit stream that
is the message. In case the IN is not blocking-free,

2 DRAM requires the use of the static column mode or
videoRAM, in combination with memory interleaving, to obtain
the necessary access bandwidth.

Tiatency includes any wait time caused by blockings. Rpjt
is the effective rate at which the message is transmitted,
measured in bits per second, and Lmessage is the length of
the message, measured in the number of bits.

F(Nhops) is a factor which depends on the number of
stations (the hops) over which the message must travel, In
store-and-forward package switching, F(Nhops) = Nhops-
In other schemes such as wormhole routing, F(Nhops)21
is a function which increases less than linearily.

The overall performance of the message passing system --
hardware and software -- can be measured by the total time
needed to perform a complete IPC exchange:

Tipc = Tstartup + Ttrans

Tstartup is the total time needed to exercise the IPC
protocol. It is assumed that during that time the PN cannot
do anything else. Consequently, the cost of a message
exchange can be expressed in MFLOPS lost. Tstartup
depends on two parameters:

- the protocol functionality and
- the implementation.

From the functionality point of view, what one would like
to have is the capabilities of:

- programming in a multi-tasking environment;

- dynamic process creation and relocation;

- domains of protection (fire walls) at the task level;

- asynchronous communication of objects of arbitrary
size at the programming level [2]

A message passing architecture by which all these demands
are satisfied is the SUPRENUM supercomputer [6]. In
SUPRENUM the communication protocol handling is
performed by the kernel of the distributed PEACE
operating system [7]. PEACE has been optimized to
provide all these functions by a most efficient
implementation. To this end, PEACE is based on the team
concept outlined above (PEACE is one of the fastest
message-based operating system presently existing).

In PEACE the startup time for a message transfer is caused
by the following activities [8]:

7.5 % by supervisor space switches
15.0 % by process dispatching
17.5 % by team isolation
20.0 % by interrupt handling,
40.0 % by the communication routines proper.

That is, nearly two third of the startup time would
disappear if there were only one process running on each
node. Implementations less efficient than PEACE will
exhibit even a much higher overhead caused by process

switches (in most existing message-based systems the
typical startup time is in the order of magnitude of a
millisecond).

5. What Complexity Can Be Sacrificed?

Any reduction of protocol functionality must be paid for
by certain sacrifices. In principle, sacrifices may be made
with respect to:

- system safeness

- convenience of programming
parallelism

- error detection / fault tolerance

System safeness

To provide the desired robustness against programming
errors, fire walls must exist to protect system tasks and
user tasks. System security may be sacrificed only if it can
be guaranteed that the applications programs are largely
free of bugs. Otherwise, tracing and debugging a program
running on a machine with hundreds or thousands of
concurrently PNs could become a nightmare. Another
important issue of system security is the demand for end-
to-end significance of communication [9], meaning that a
communication has been successfully completed only after
the sender task has received an acknowledgement from the
receiver task, signalling that the latter has received the
message correctly. An acknowledgement that signals only
that a message has been buffered at the receiving end has
no end-to-end significance; thus, end-to-end significance
calls for synchronous communication.

Convenience of programming

The overhead caused by interrupt handling and environment
switching could be eliminated by having only one single
process on each PN. However, multiprocessing is
mandatory for reasons of system scalability, load
balancing, and fault tolerance, which all require process
redistribution and, thus, a multiprocessing environment.
System scalability means that a program can be written
regardless of the size (the number of PNs) of the system.
Load balancing is another case that requires a redistribution
of processes, and so is fault tolerance, where the tasks
performed by a failing PN must be redistributed over the
other PNs. An additional bonus of a multitasking
environment is that the user can be provided by the
operating system with server tasks, rather than having to
bind additional software modules for the required
functionalities into the application programs.

Parallelism

Asynchronous communication, as implemented by a non-
blocking send, makes it easier to exploit the potential of
concurrent execution of the application program tasks. On
the other hand, because of the buffer management involved,

it has a considerably higher overhead than synchronous
communication [2], and it makes it difficult to provide the
required end-to-end significance of communication. There
are certain classes of applications where a simple lock-step
synchronization is quite adequate, i.e., a scheme where
communication steps and computation steps alternate; in
this case, communication is synchronous. There exist
important applications, however, where programming
convenience may call for asynchronous communication.

In our opinion, the optimal approach is to employ
synchronous communication as the basic primitive of the
abstract machine. If the user wants a no-wait send, this can
be performed by special server tasks provided as library
functions. The advantage of this approach is that only
those users have to pay for the higher overhead of
asynchronous communication who want it.

For all these reasons, a large, expensive, general-purpose
number cruncher should not be run like a dedicated
machine. Besides, even then could a startup time as low as
20 microseconds never be achieved.

6. The Synchronous IPC Model

In order to implement network-wide IPC a multi-layered
approach is typical. For message-passing MIMD
machines, which offer multi-processing on the individual
PNs, at least two problem-oriented protocol layers are
necessary. The bottom layer deals with inter-node
communication, on top of which the IPC layer is settled.
For high-performance IPC, the fusion of these two layers
becomes a key position. Figure 1 illustrates the two levels
at which the IPC protocol is executed, level 0 and level 1.

IPC
level 0

network

ce EH cs

Figure 1.

At the top level (user level), the transfer of a data stream of
arbitrary size to a receiver process is requested by the sender
process. At the bottom level (level 0) the data transfer is
initiated. The intermediate level (level 1) serves as the

"glue" between the top and the bottom level. Its main
purpose is to provide in cases where the semantics at the
user level differs from that at the hardware level the
necessary mapping of user-level communication requests,
cs_send and cs_receive, onto the corresponding
communication processor primitives, cp_send and
cp_receive (cs stands for communication system, cp stands
for communication processor). Since the mapping overhead
increases with the semantic gap between CS and CE,
keeping this gap as small as possible is a most important
prerequisite for efficiency.

Synchronous communication eliminates the semantic gap
and; therefore, it is the most efficient communication
policy. In the following section, some implementational
details of the synchronous and the asynchronous
communication model are presented.

e Impleme_'nting the IPC Protocol

The IPC protocol must handle the network wide communi-
cation among user processes. In addition to carrying out
data transfers, this task requires process management
capabilities. The horizontal view of IPC in Figure 1 relates
to the data transfer aspect, whereas the vertical view relates
to the PN-bounded IPC protocol activities. As pointed out
above, it is the latter that causes the bulk of the IPC
startup time. Thus, the key to success is IPC protocol
simplicity. Figure 2 illustrates a most fundamental IPC
protocol implementation.

| ep_send —f=

| peer_send peer_receive

T — & cp_receive

peer_movefrom and reply

done HVDT o done

situation a): cp_send (peer_receive) precedes cp_receive

cp_receive

peer_send peer_receive

| cp_send

-

peer_movefrom and reply

done HVDT done

situation b): cp_receive precedes cp_send (peer_receive)
(cp_receive and cp_send are issued at the "same” time)

B ;rocess blocked and descheduled

Figure 2.

The IPC protocol is split into two phases, synchronization
and data transfer. For synchronization short and fixed size
IPC messages are transmitted. The header field of the
messages is mandatory and contains all the information
needed to address both sender and receiver process and to
encode the message type. The parameter field is optional
and carries the descriptor of an arbitrarily sized memory
segment that shall be transferred during the data transfer
phase.

Synchronization is achieved by the processing of peer_send
and peer_receive by the sender CP and receiver CP. A
peer_send is the implementation of the CP primitive
cp_send, whereas peer_receive implements cp_receive. The
invocation of c¢p_send by a sender process leads to the
execution of peer_send by the sender CP, which
immediately blocks the sender process. The effect of
peer_send is the transmission of a high-volume data
transfer (HVDT) request to the receiver CP. This IPC
message contains a user level message descriptor as
parameter field and, arrived at the peer site, causes the
receiver CP to perform the peer_receive, i.e., handle the
interrupt and queue the HVDT request. The receiver process
indicates its readiness to accept a message (HVDT request)
by invoking cp_receive. The process is blocked only if no
HVDT request has been received from the sender CP at the
time cp_receive is executed by the receiver CP, i.e., if
cp_receive precedes peer_receive. As Soon as peer_receive
and cp_receive have been executed by the receiver CP, the
rendezvous between the sender and receiver process is
established, and the data transfer phase can be started.

Data transfer is carried out by the execution of
peer_movefrom by the receiver CP. This leads to the
initialization of the DMA on both sides, in order to "blast"
a complete data segment from the sender to the receiver
address space. For this purpose the peer_movefrom is
encoded in an IPC message and transmitted to the sender
CP. Prior to this, the receiver CP already has set up its
DMA. Arrived at the senders site, peer_movefrom causes
the sender CP to set up its DMA accordingly and, thus,
start the HVDT. Because the sender process has been
descheduled and, therefore, another process may be active at
the sender’s site, interrupt handling is necessary to execute
the peer_movefrom, i.e., to accept the IPC message.

The completion of the HVDT implies process scheduling,
for at least the sender process has been blocked by cp_send.
It may also imply process scheduling at the receiver Ep
namely in cases where the receiver process was blocked for
having called cp_receive before a peer_receive took place.
Once having been rescheduled, sender and receiver will
return from cp_send and cp_receive, respectively. The
rescheduling activities are interrupt-triggert, when the
DMA wansfers have been finished. Thus, the entire IPC
protocol causes two interrupts at each CP. As we will
outline later, the interrupt handling overhead can be reduced

to one interrupt at each site if a dedicated hardware CP is
used.

Note that the rendezvous and, thus, the HVDT is controlled
completely at the receiver site. This enables the receiver
CP to schedule several HVDTs with respect to memory
and processor utilization at the receiver site. Thus, HVDT
requests need not be processed on a first-come-first-serve
basis.

8. Rationale for the Proposed IPC Protocol

The simplicity of this protocol allows for a very straight-
forward implementation, however, at the risk that both
processes involved are descheduled, whenever cp_receive
precedes cp_send. This situation could be avoided by
modifying the IPC protocol such that a HVDT request is
passed not only to the receiver but also to the sender. In
the implementation discussed above, the semantics of
peer_receive is such that, unlike the sender process, the
receiver process needs not be descheduled. Executing
peer_receive at the sender site, i.e., queueing the HVDT
request, has an analog effect: the sender process needs not
be descheduled when cp_receive precedes cp_send, while the
receiver process is always descheduled.

However, such a modification would still not resolve the
problem how to handle the situation where cp_send and
cp_receive are executed at the same time. Such a potential
collision must be resolved by the IPC protocol. Moreover,
this is another case where both processes will be
descheduled, since no side has sufficient knowledge about
the state of its peer.

The desirable mechanism would be to deschedule a process
only if it is not ready for the rendezvous for lack of
resources, e.g., a buffer. However, this can be achieved
only at the cost of a considerable increase in protocol
overhead caused by the extra protocol phase needed for
checking the execution state at the peer site. In our
opinion, it will not pay to spend additional protocol
overhead all the time to avoid a worst case situation that
may occur very seldom. Consequently, the simpler scheme
described above is preferred.

9. Combination of Hardware and Software

The functionality of the IPC protocol is too complex,
however, to be totally "cast into hardware." Rather, the
appropriate solution is to combine hardware and software
functionalities such that:

- the exchange of data objects between two cooperating
tasks is performed by a lightweight server process,

- the underlying communication needed to establish the
rendezvous between sender and receiver is carried out
by dedicated communication hardware,

Of course, it is equally important that the interconnection
network has a very low latency and is capable of
transferring data at a very high rate. These requirements can
be met by a novel, hierarchical interconnection structure
called TICNET (Totally Interconnected Cluster NETwork)
[10]. TICNET is a two-level interconnection network. At
the lower level, groups of PNs are interconnected by high-
speed parallel buses, thus forming a cluszer. The cluster
buses function also as the switching points of a distributed
crossbar which, at the upper level, interconnects the
clusters. Performance figures obtainable with state-of-the-
~art technology are up to 640 MBytes per second for the
parallel bus system and up to 100 Mbytes per second for
the (byte-serial) crossbar links.

Employing a server LWP for the transfer of data objects
from one task to another provides the flexibility of having
different servers for different IPC models such as:

- synchronous communication
- single-buffer asynchronous communication (SBAC)
- asynchronous ("no-wait send") communication.

Synchronous communication is a primitive operation of
the abstract machine which is strongly supported by
hardware. Consequently, no additional server process is
needed. Figure 3 provides a more detailed view of the
synchronous communication mechanism by which objects
of arbitrary size can be transferred from a sender to a
receiver task without intermediate buffering.

I { sender

e
IPC match HLEP
EiFl H[p
| network
|
Figure 3.

The sender process invokes cs_send which, in turn, is
mapped onto a cp_send, passing a message descriptor
(MD) as argument. Subsequently, the sender process is

temporarily blocked to prohibit it from overwriting the
message buffer until the message has been consumed, i.c.,
until HVDT is completed. On the peer's site, cs_receive is
invoked by the receiver process, leading to the execution of
cp_receive, also with a MD as argument. Note that the
mappings, from cs_send to cp_send and cs_receive to
cp_receive, Tespectively, can be performed by the compiler.
The execution of cp_send and cp_receive leads to the
initialization of an IPC packet, i.c., the header (H) is
defined and the MD is copied into the parameter field (P).
As result of cp_send the IPC protocol is started, i.e., the
IPC packet is passed to the receiver CP, where it is
queued. A match between the queued IPC packet and the
IPC packet defined by cp receive indicates that the
rendezvous between sender and receiver process is
established. As outlined above, at this point in time
HVDT will be enabled by the receiver CP,

Single Buffer Asynchronous Communication (SBAC) has
the following semantics. A task can send a data objectto a
buffer at the receiving end by a non-blocking send;
however, it cannot send again until the previously sent
message has been consumed. Therefore, only one buffer per
channel is needed. Buffers can be of arbitrary size; they are
declared by the programmer, created and allocated by the
compiler, and implemented by a LWP as illustrated in
Figure 4,

/{ sender

i
% copy

HVD
b ¥
5o match|EHIER

| 1| P |——— P [H] P

network

ce EH cs

Figure 4.

The major difference to synchronous communication is the
need for an additional message buffer and a LWP. The
purpose of the LWP is to provide a separate thread of
control within the context of the receiver process. The key
idea behind this model is to double and migrate the receiver
process down to level-1. The LWP double then executes
the synchronous communication protocol described above.
The execution state of the LWP determines the state of the
additional message buffer, i.e., whether the buffer is empty
or full. 'LWP ready for HVDT" (after having called
cp_receive) indicates an empty buffer, into which the

sender’s message can be copied. TLWP not ready” indicates
a full buffer, i.e., the previously sent message has not yet
been consumed by the receiver process, and the sender
process must be blocked until the LWP changes its state.
Note, the synchronous IPC protocol implements the
required synchronization between sender process and LWP
and not between sender and receiver process.

Unrestricted asynchronous Communication means that
instances of a data object can be sent blocking-free an arbi-
trary number of times. Since the compiler has no
knowledge as to how often that will happen, sufficient
buffer space must be allocated and managed. There exists
the potential of buffer space overflow and a need for
garbage collection, which both tend to reduce system
performance drastically. Therefore, asynchronous
communication -- if at all -- should be provided as a library
function, so that only those users who want it must pay
the price for it. Nevertheless, if this kind of
communication shall be supported, an additional LWP and
a buffer space is needed in the sender team. The sender
LWP then works for the sender process in a non-blocking
fashion and executes the synchronous IPC protocol with
the receiver LWP,

10. Adding a Communication Processor

From the discussion above it becomes quite clear that the
functionality provided by the CP must include:

- communication primitives

- DMA block transfers

- memory management functions
- process scheduling.

Communication primitives

The CP must be able to perform queuing and dequeuing
primitives as indivisible operations, to implement
peer_send and peer_movefrom efficiently. Performing a
message transfer within 10 microseconds requires that the
message length is fixed and as short as possible. It suffices
to have messages containing the header information:
(sender_id, receiver_id, message_type), which can readily
be represented by 16 bytes (2 words). This rules out that
the message exchange channel provided by the CP might
be used also for the transfer of data.

DMA block transfer

The CP must be able to read in a DMA mode a block of
data from the node memory and send it out on the
interconnection network (IN), or receive a block of data
from the IN and write it into the node memory. This
capability can be refined to include the (structured) access
to data structure objects [11], at the cost of a more
elaborate address generator hardware,

Memory management functions

Since the CP assumes responsibilities of the operating
system, it must be provided with the appropriate
capabilities, including the right to operate with physical
rather than logical memory addresses. Therefore, the CP
must have access to system tables in the supervisor space,
¢.g., the memory segment table. This allows the CP, for
example, to write into the address space of a suspended user
process.

Process scheduling
The CP must have the ability to schedule or deschedule
user processes by inserting them into or taking them out
of the ready queue.

So far, the question is yet unanswered whether the CP is a
dedicated hardware processor or a software processor
running on the node CPU. However, it is obvious that the
limit of 20 microseconds for the startup time can be met
by the node CPU only under the following conditions.

(1) The node CPU encompasses the special communi-
cation functionalities listed above. This means that the
designer must be free to design his own CPU,

(2) The node CPU is a multiple register set machine
which allows the switching between operating system
kernel, interrupt handler, and user process(es), respec-
tively, to be performed in negligible time.

Having one CPU performing both communication and
computation offers the decisive advantage that no interface
-- and no additional overhead encountered with it -- between
CPU and CP is needed. In the case that communication
shall be performed by a dedicated hardware CP, it becomes
extremely important that the communication between node
CPU and CP is as efficient as possible.

If the designer is not free to build up his own CPU, a
compromise is required if a multi-processing mode of
operation shall be efficiently supported. This compromise
consists of a dedicated hardware CP and software CP. The
hardware CP is responsible for performing the low-level
IPC protocol (i.e., queueing and routing the IPC messages)
and HVDT (i.e., initialization of DMAs). The task of the
software CP is to interface the hardware CP to sender and
receiver processes being executed by the node CPU. This
includes process dispatching, scheduling and context
switching. Figure 5 illustrates this configuration, which is
strongly supported by PEACE.

In PEACE, processes are interfaced to the low-level
communication system (COSY) by a network independent
communication executive (NICE). The NICE modul
provides network-wide IPC and differs in the
implementation for single-processing and multi-processing
modes of operation. The interface between software CP and
hardware CP is represented by COSY. From the point of

view of the node CPU, the hardware CP is a device and,
thus, COSY encapsulates the corresponding low-level
device driver routines.

global memory

~ Figure 5.

Each hardware CP executes at least one process, the
courier, whose task is the processing of IPC packets and
the initialization of HVDT. The upper interface to the
courier is represented by COSY and the lower interface
gives direct access to the communication network, i.e.
CLUB (cluster bus).

The interaction between software CP and hardware CP then
works as follows. A HVDT request, carried by an IPC
packet, is passed by both the sender and receiver process
down to the courier. This is accomplished by a cooperation
between NICE and COSY. The sender courier then routes
the IPC packet to the corresponding receiver courier, where
the packet is queued. Under control of the receiver courier
the HVDT is initialized following the IPC protocol
outlined above. Note, the activities of both hardware CPs
(i.e., couriers) are performed in parallel to the activities of
both software CPs (especially NICE). This means that
process dispatching and scheduling is done in parallel to
handling IPC packets and setting up HVDTs, i.e.,
executing the IPC protocol.

As soon as a HVDT has been completed, the node CPU is
interrupted by the CP. There will be only one interrupt
per HVDT at each node CPU. The interrupt indicates that
rescheduling of sender and receiver process can be
performed, which will be done by NICE.

From a software point of view, this configuration is very
closely related to the communication models discussed in

»

the paper. On the one hand, node CPU as well as hardware
CP share the same global address space. On the other hand,
sender (receiver) process and sender (receiver) courier may
be considered as belonging to the same team, both sharing
the team’s address space. In addition to that, the courier is a
LWP that works for the original sender (receiver) process.
Using a dedicated hardware CP for communication
purposes means that a PEACE team can be executed in
parallel, as it would be the case in a traditional shared-
memory multi-processor system environment.

Acknowledgement

The authors whish to express their gratitude to Messrs. Dr.
Ulrich Bruening and Sergio Montenegro for critical reviews
of the paper and valuable discussions.

This work was supported by the European Commission
under the ESPRIT Program, grant no. 2447

References

(1] Liskov B.H.:"Primitives for Distributed Computing",
MIT Laboratory for Computer Science, CSG Memo 175,
May 1979

[2] Behr P.M., Giloi W.K., Schroeder W.:"Synchronous
Versus Asynchronous ~Communication in High
Perform-ance Multicomputer Systems”, Proc. IFIP WG
2.5 Working Conference 5: Aspects of Computation on
Parallel Proces-sorg, Stanford University, August 1988,
187-196

[3] Cheriton D.R.:"Multi-Process Structuring And the
Thoth Operating System, Univ. of Waterloo, UBC Tech.
Report 79-5, 1979

[4] Bruening U., Giloi W.K.:"Architecture of a
Functionally Parallelized Processor With Hardware
Synchronization and Communication", Proc. 1989

Supercomputer Conference, May 1989

[5] Mierendorff H.:"Bounds on the Startup Time for the
GENESIS Node", Internal Paper, GMD-F2.G1 1989

[6] Giloi W.K.:"The SUPRENUM Architecture”, Proc,
CONPAR 88, Part A, British Computer Society 1988, 1-8

[71 Schroeder W.:"The Distributed PEACE Operating
System and Its Suitability for MIMD Message-Passing
Architectures”, Proc. CONPAR 88, Part A, British
Compu-ter Society 1988,17-24

[8] Behr P.M., Schoen F., Schroeder W.:"The PEACE
Message Passing Kernel Family”, Internal Tech. Report,
GMD FIRST 1988

[9] Saltzer J.H., Reed D.P., Clark D.D.:"End-to-End
Arguments in System Design", ACM Trans. on
Compu-ter Systems 2,4 (Nov. 1984), 277-288

[10] Giloi W.K., Montenegro S.:"Super Interconnection

Networks for Supercomputers, Proc. 1989 Supercomputer
Conference, May 1989

[11] Giloi W.K., Berg H.K.:"Introducing the Concept of
Data Structure Architecture”, Proc. Internat. Conf. on

Parallel Processing 1977, IEEE Catalog no. 77CH1253-
4C, 44-51

