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Abstract. This paper describes the fundamental concepts and structure of the distributed operating system,
PEACE, for SUPRENUM. A large scale of distribution is achieved because of consequently encapsulating
typical operating system services by processes. By this way an optimal and application-oriented mapping of the
entire operating system onto the distributed SUPRENUM architecture is made feasible.
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1. Introduction

The GMD research center FIRST at the Technical University of Berlin is associated with
design and implementation of a high-performance multi computer system for numerical
applications. This super computer is called SUPRENUM. Rationale and fundamental concepts
of SUPRENUM are illustrated in [1], and in [6] the SUPRENUM architecture is explained.
SUPRENUM development at GMD FIRST addresses both hardware and software for the
so-called high-performance processor kernel. The main portion of software development is
concerned with the appropriate distributed operating system for the SUPRENUM processor
kernel.

This paper describes a distributed ‘process execution and communication environment’ for
SUPRENUM which is called PEACE. From the software point of view, PEACE follows the
design principle of a family of operating systems as motivated in [10]. The major foundation of
PEACE stems from THOTH [3] and MOOSE/AX [12]. With respect to the distributed
organization of PEACE, the main influences came from V [4] and AMOEBA [9]. Using
processes as building blocks, which encapsulate dedicated functionalities and/or services,
PEACE is qualified as an application-oriented and high-performance distributed operating
system for SUPRENUM.

In the following sections a short overview of the basic PEACE system structure is presented.
In Section 2 the PEACE operating system structure is illustrated and fundamental concepts are
described. Section 3 explains the PEACE communication system and shows by what means the
PEACE message-passing kernel works on a network-oriented hardware architecture, i.e.
SUPRENUM. Some performance measurements are given in Section 4 and a final presentation
of lessons learned during design and implementation of PEACE, given in Section 5, concludes
this paper.
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2. Design aspects

The following subsections are concerned with a brief illustration of fundamental PEACE
concepts which serve as the basis for the implementation of an appropriate process execution
and communication environment for SUPRENUM applications. For this purpose, the PEACE
operating system structure is introduced and an excerpt of the functionality of the different
operating system layers is given.

2.1. Operating system structure

The entire PEACE operating system is structured into ten functional layers. The fundamen-
tal functionalities of the various PEACE operating system layers are summarized in Table 1
and are described in [13], in more detail. With each layer of the PEACE operating system a set
of server processes is associated. These server processes are responsible for the implementation

Table 1
PEACE operating system layering

Layer  Functionality System processes

9 program loading loader

8 file and /or directory file server
management, essentially
extended name services

7 1/0 management for block, disk server, tty server, net-
character and network spe- work server and appropri-
cial devices ate device representatives

(deputies), respectively

6 clock management and sig- clock server and device
naling of alarm clocks deputy

3 signaling of low-level sys- MMU server, panic server,
tem exceptions, such as ad- name replugger
dress space errors, panic
events and naming excep-
tions

4 signal propagation, i.e. signal server, signal propa-
passing user /system excep- gator
tions

3 job management, team server
application-oriented pro-
cess abstraction

2 management of process MEmOry Server, process
and address space objects server

1 naming name server

0 message-pasing and high- ghost and 1/0 server per

volume data transfer on a
network-transparent basis,
as well as process dispatch-
ing and trap/interrupt pro-
pagation

major device
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of dedicated operating system services. The interactions between the different server processes
are implemented using the remote procedure call paradigm of inter-process communication as
described in [2]. With each remote procedure call entry an own service function is associated. A
service invocation is topology and /or network transparent, i.e. the invoking process is unaware
of the service providing process and of the localization of the process.

The fundamental layer 0 system component is the nucleus, providing services for inter-pro-
cess cooperation and communication. The nucleus is the only system component which is not
definitely controlled by a dedicated system process. Its services are not made available by
remote procedure calls but by appropriate local ones. In contrast to the nucleus, the PEACE
message-passing kernel is associated with a dedicated process, the ghost (i.e. process (). The
ghost implements additional low-level services which are interdependent with specific nucleus
and/or message-passing functionalities and which are- accessible by remote procedure calls.
Both, nucleus and ghost share the same address space, so-called nucleus space, which corre-
sponds to supervisor space of the underlying processor. As a consequence, both system
components are required to reside on each node within a PEACE network environment.
Against that, the entire PEACE operating system, excepted layer 0, is executed in user space
and may be distributed over a network, arbitrarily.

The services provided by layer 0 are mandatory for high-level user/system components in
order to cooperate and/or communicate with each other. The services provided by the other
PEACE operating system layers already are considered of being application-dependent. These
services only are provided, i.e. the corresponding server processes only are present, if required
by higher-level user/system components. For example, with respect to the first SUPRENUM
prototype, distributed numerical application programs are available which require layer 0 and
layer 1 services from PEACE, only. These applications, and all corresponding processes,
initially are created by the PEACE bootstrap service, instead of applying appropriate layer 2
services.

2.2, Light-weighted processes

As introduced with THOTH, processes in PEACE are associated with reams. A PEACE
team specifies a common execution and scheduling domain for a certain group of light-weighted
processes. All processes of a team share the same access rights onto PEACE objects, whereby a
PEACE object, for example, represents files, devices, address spaces, teams, processes and so
on. Following the idea of abstract data types, these access rights are controlled by those system
components responsible for the implementation of the respective object. There is no central
access control mechanism in PEACE.

The main portion of PEACE objects are implemented by dedicated server processes and,
therefore, access control onto these objects is directed to server processes, too. Merely the
fundamental access control onto team and process objects is not performed by server processes,
but by the PEACE nucleus. This essentially means the validation of interactions basing on the
PEACE primitives for inter-process cooperation and communication. Having access right onto
a process object, a team is allowed to manipulate the execution state of the process represented
by the respective object, i.e. setting this process ready to run. Having access right onto a team
object, a team is allowed to read from and/or write into the address space of the team
represented by the respective object.

2.3. Synchronous request-response model of communication

The communication environment for PEACE processes is influenced by the team concept
and, with its most elementary functionality, is implemented by the nucleus. According to a
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synchronous request-response model, mechanisms for inter-process communication by message-
passing are available on a send-receive-reply basis. Between peer teams, 64-byte fixed-size
messages are exchanged once a unique client/server inter-relationship on a rendezvous basis
has been established. There are no multicast and /or broadcast mechanisms provided by the
nucleus.

For a server team, which is qualified by the message receiving server process, a rendezvous
actually enables access onto the client process. A a consequence, each process of the server
team, and not only the server process which originally received a message, is allowed to
terminate the rendezvous by replying a message to the client. In a similar fashion access onto
the entire client team is enabled in order to read from and/or write into the client’s address
space. During a rendezvous, separate primitives for high-volume data transfer, movefrom and
moveto, are applicable by any process of the server team.

The data transfer service provided by the PEACE nucleus is based on sending and/or
receiving data items. A data item is the most elementary transfer unit which is processable by
low-level hardware components, for example a specific network interface. In case of byte
stream oriented interfaces, a data item is represented by a single byte. For SUPRENUM,
however, a data item always is 64 bits wide, i.e. it consists of an eight byte fixed-size data block,
a cluster bus word. In addition to this, the data segment is restricted to be data item aligned.

3. Problem-oriented communication system

The following subsections are concerned with a functional description of fundamental
PEACE communication and management protocols, especially the substantial design decisions
are presented. A more complete explanation of these protocols is given in [5].

In PEACE, network communication is based on three main protocol layers. At the top, a
remote procedure call protocol controls the interface to operating system server processes.
Application systems, however, are free to use this protocol for own purposes. The remote
procedure call protocol is implemented on a library package basis and is supported by dedicated
server processes. Basically, this protocol implements duplicate suppression of request and
response messages, authentication of client processes and teams, as well as topology trans-
parency.

The next two lower-level protocol layers are implemented by the PEACE message-passing
kernel, more specifically, by the nucleus. A dispatching protocol regulates remote rendezvous
and controls access onto remote team and process objects. The data transfer protocol actually
handles the transportation of messages on the basis of a datagram service.

3.1. Reducing buffer management overhead

The PEACE message-passing mechanism for network environments is mainly influenced by
the design decision not to use any buffering of messages at the server site. In PEACE, there is
no concept of alien process descriptors as in V, i.e. for remote processes no virtual representa-
tion, on the basis of appropriate state information, in maintained by the nucleus. Rather,
processing of incoming rendezvous request messages is controlled by the means of a dispatching
protocol which is based on CSMA /CD techniques.

Potentially, buffer management is necessary if a client process requests a rendezvous from a
remote server process by applying the send primitive. A receive request message is transmitted
to the remote server’s nucleus and the client blocks until a reply is issued. At the remote site,
buffering within the nucleus would be necessary if the server process is temporarily unable to
accept, i.e. receive, the incoming message. If client and server process both reside on the same
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host, the client process simply is queued in the server’s sender list. This works straightfor-
wardly, because the resource ‘client process’ is known to the nucleus. If both processes reside
on different hosts, either the resource ‘client process’ or ‘server process’ is unknown to the
nucleus, respectively.

If a server is unable to process the incoming message, which may imply buffering, then this
situation is considered as a service collision. The receive request actually is rejected with a
proper indication and the nucleus at the client site is informed about this event. The client
process, on behalf of its nucleus, retries the message transmission later on. In order to reduce
starvation situations, because a number of clients again and again will retry sending the receive
request message to the same remote server, the receive reject indicates the number of service
collisions with the same server process. This collision counter is used by the nucleus at the
client site in order to determine the relative retry delay for a new receive request issued by the
same client. This delay is not global to the entire nucleus but rather specific to the client
process which produced the service collision, respectively. The collision counter is decremented
each time the server blocks because applying receive and it is incremented each time the server
is unable to receive the incoming message.

Obviously, this strategy does not completely solve starvation but merely makes it more
improbable. More specifically, if client state information is not maintained at the remote server
site, starvation is not solvable, at all. The advantage of this strategy is its simplicity. On
principle, this strategy may be considered of being the appropriate one even if buffering at the
server site is done. For example, if the remote buffer pool is exhausted and a client state is not
remembered, then the receive is usually to be rejected, too. In PEACE, the buffer pool at the
server site exactly consists of one buffer for each process.

3.2. The use of server pools

In order to avoid starvation within the dispatching protocol, service collisions must be
avoided, obviously. Consider the situation in which for each client a light-weighted server
process is present. Because a client can only request one rendezvous at a time, no service
collision is given any more. Exactly this idea is accounted with PEACE, following the pattern
of AMOEBA. A server pool of problem-oriented size is maintained by the server team.

Server pool management is a functionality of the PEACE remote procedure call protocol.
During the binding phase, a client initially makes itself known to the server team and a server
process exclusively can be allocated for this client. By this way, a service connection is
established between a PEACE client and server team. As a consequence of this service
connection, service collisions within the dispatching protocol are avoided.

3.3. Inter-connecting peer address spaces

For the design of PEACE communication protocols, three main aspects had been consid-
ered. First, avoidance of redundant and/or not required protocol functionalities on different
layers. For example, there is no need to provide duplicate message suppression by the
lower-level communication system if still accomplished by higher-level application systems [11].
Second, todays transmission media, especially for local area networks, are of high quality and
loss of data packets is not only a problem because of transmission errors. There is also a
significant packet loss because of operating system buffer management problems and network
interface capabilities [7]. Third, the communication network of SUPRENUM is of very high
quality. Transmission errors within the SUPRENUM network are expected with a similar
probability as parity errors do occur during memory-to-memory copies [1].
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The PEACE data transfer protocol follows the principle of a blast protocol [14]. The main
purpose of this protocol is to make high-volume data transfer feasible if different network
interfaces are used and if network boundaries are to be crossed. For example, segmenting and
blocking is not done in order to improve reliability but rather for being able to use frame-ori-
ented network interfaces, such as Ethernet [8], to reduce buffer management problems on
network gateways and to avoid excessive blocking delays because of physical transmission
activities. Reliability is achieved by an application-dependent end-to-end protocol which is
handled either by specific library packages and /or appropriate server complexes. The PEACE
remote procedure call protocol is a typical example for that.

Bulk data transfer by the means of movefrom /moveto distinguishes between inter-cluster
and intra-cluster communication: With intra-cluster communication, direct end-to-end data
transfer is performed without message segmentation. With inter-cluster communication, a store
and forward principle is followed on basis of light-weighted processes acting as representatives
for the original client/server processes. As a consequence, high-performance intra-cluster
communication is applied in order to store message segments on the communication node and
the problem-oriented data transfer protocol regulates flow-control, respectively.

3.4. Identifying peer processes

Processes are addressed by unique process identifiers. A PEACE process identifier is
represented as a low-level pathname and consists of the triple { host, team, task}. Given a
process identifier, the team and host membership of a process can be determined as well as the
per-team task which actually represents the process. As a consequence of this organization, the
PEACE process identifier is a handle how to locate a specific process object within network
environments, absolutely and efficiently.

Abstraction from team and host membership of a process is achieved by the PEACE naming
facility. Basically, this facility associates plain character strings, which represent service names,
with process identifiers. Asking for a service name results in the delivery of the associated
process identifier. This identifier denotes a service access point and not the service encapsulat-
ing process—although in most cases it directly represents the server process, by default.

Names exported by processes constitute the PEACE name space. Actually, this name space
is structured into one or more name planes, according to the SUPRENUM architecture. This
actually means the presence of at least four different name planes. The node name plane
contains all names defined relative to a specific node. The cluster name plane makes names
globally known to all nodes of a cluster and defines cluster-relative names. In a similar fashion,
the hyper-cluster name plane contains names relative to a SUPRENUM row/column of
clusters. And finally, the system name plane contains all names unique within SUPRENUM,
including the UNIX host machines.

Within a name plane all names are definite. In contrast to that, within a name space the
same name may be multiple defined. With each name plane an own name server is associated,
i.e. there is always a one-to-one relationship defined. As a consequence, the PEACE name
space is controlled by several name server processes, dependent on the actual number of name
planes constituting the name space. A specific name plane is addressed by the service access
point of the corresponding name server. This actually means that name planes itself are
identified by name, that is to say according to a service exported by some process.

Applying this naming mechanism, the PEACE name space is hierarchically structured, thus
building a name tree. The leaves of this tree are represented by name servers, i.e. name planes.
The coupling between different subtrees is accomplished by dedicated system processes,
so-called domain server. According to the four SUPRENUM name planes, the PEACE name
tree consists of four layers. In order to locate PEACE services, the domain server applies a
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sequential search strategy, from bottom up, and issues name lookup requests to the various
name server processes.

4. A prototype case study

In order to early provide a process execution and communication environment for distrib-
uted SUPRENUM applications, a minimal software configuration was required. This config-
uration consists of the distributed PEACE kernel. All processes required for this PEACE
configuration, as well as for the application systems, are initially created by the PEACE
bootstrap procedure. On this software basis, the communication performance for local as well
as remote operation was measured. The results stress the high-performance of the PEACE
communication primitives. In the following subsections a brief discussion of some performance
parameters is presented.

4.1. Interface penalty

The most essential aspect of the present message-passing kernel implementation is a
software package which emulates the cluster bus communication coprocessor interface on the
basis of a word transfer protocol. Currently, the low-level word transfer interface of the cluster
bus is made directly accessible by the nucleus network communication system. As a conse-
quence, the entire message transfer is controlled by the central processing unit on a 64-bit
cluster bus word basis without hardware support for direct memory access.

The work transfer protocol is migrated into firmware, i.e. microprogram, once the ap-
propriate hardware features are implemented on a SUPRENUM node. By now, this emulation
package produces an overhead of at least 500 ps if a single dispatching protocol packet is sent to
peer protocol entities, not counted other nucleus management activities as interrupt handling
and synchronization, process/ protocol state observation, context switching and user/nucleus
switching. Presently, this overhead determines the per-node interface penalty of a single message
setup for the transfer of each one of these packets.

Note that this actual interface penalty should always be kept in mind if the communication
performance of the PEACE message-passing kernel is assessed. Avoiding this interface penalty
by a microprogram implementation of the word transfer protocol, it is expected to achieve a
timing for remote operations which is approximately 36% of that of the currently accounted
one. However, for general comparison purposes the actual timing on basis of this emulation
package is valuable, also.

4.2. Message-passing performance

For local operation, message-passing performance differentiates with respect to intra-team
and inter-team communication. For intra-team message-passing 345 ps and for inter-team
message-passing 385 ps is accounted. The difference is due to team selection and dispatch
overhead in order to execute a team switch.

For remote operation, only intra-cluster communication is available, now. A performance of
2.03 ms is accounted, including the additional interface penalty. First analysis show that a
remote rendezvous timing of less than 730 ps is possible on basis of the actual PEACE nucleus
implementation. Using a 10M6 Ethernet instead of the cluster bus prototype, PEACE performs
inter-node message-passing within 1.2 ms.

4.3. High-volume data transfer performance

The PEACE message-passing primitives are applied in order to achieve a direct inter-connec-
tion between peer address spaces on a rendezvous basis, maybe crossing node boundaries.
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During a rendezvous, the primitives movefrom and movero are applicable, actually enabling
end-to-end high-volume data transfer without any need of buffering within the communication
system.

For local operation, the raw overhead of movefrom and moveto, i.e. user /nucleus switch and
rendezvous verification, is about 80 ps. The transfer of 8 bytes, i.e. a single cluster bus unit,
takes 90 ps and 64 bytes are transferred within 105 ps. A page, with a size of 4096 bytes, is
transferred within 950 ps.

For remote operation, the performance of movefrom differentiates from that of moveto. The
reason is one more dispatching protocol packet to be sent for an explicit rendezvous verification
request. With movefrom 1.57 ms and with moveto 2.38 ms raw overhead are accounted. The
transfer of 8 bytes takes 1.61 ms for movefrom and 2.42 ms for moveto, whereas for 64 bytes
1.63/2.44 ms are accounted, respectively. A page is transferred within 2.57 /3.18 ms.

Remote bulk data transfer of 16,/64 kbytes takes 4.85,/12.79 ms for movefrom and
5.67/13.62 ms for moveto, respectively. This timing results in a read transfer rate of 3.2 /4.9
Mbytes and a write transfer rate of 2.7/4.6 Mbytes per second, approximately. Generally,
avoiding the interface penalty, a raw movefrom /to timing less than 565 /856 us is expected,
respectively. More specifically, the transfer rate of single cluster bus units at least is comparable
with that of local direct memory-to-memory transfers.

5. Concluding remarks

The fundamental ideas of PEACE are exclusive application of system processes in order to
encapsulate typical operating system services. Basing on processes for service encapsulation and
following the design principle of a family of operating systems, a very high degree of
decentralization and /or distribution of the PEACE operating system was achieved. There is no
doubt that this design principle significantly promotes project-oriented system development.
Without functional simplicity of the PEACE kernel, running first experiments with
SUPRENUM would not be possible, now. The first message-passing kernel prototype was
completed within 6 month and was capable of supporting a numerical application for a cluster
configuration of 9 nodes. This rapid prototyping was only possible because of a design
philosophy, described in [10], which helps to concentrate on the substantial facts. Most
importantly, the message-passing kernel functionality has not changed since that first prototype
presentation and there is no idea what functionality to remove from and/or add to.

The functionality of network interfaces significantly determines the overall communication

protocol performance. However, it is a sophism that primarily protocol functionalities should
~ be migrated into low-level hardware and firmware components. As right highlighted in [7],
faster hosts are needed. The main performance bottleneck is the network interface and the fact
that, usually, the host is busy because of interrupt handling and synchronization, queuing,
buffering, and so on. Thus, in order to improve communication performance the first step is to
reduce host-bounded operating/communication system activities by a careful system design
and the second step, if at all, might be the migration of protocol functionalities into low-level
hardware. As a consequence, synchronous message-passing and separate mechanisms for
high-volume data transfer found the adequate basis for inter-process communication in
PEACE. Within the operating systems area it is widely accepted that this approach encourages
the implementation of high-performance communication systems. With V [4] an exemplary
system design and implementation has been presented; and PEACE follows this pattern.

Compiler quality has significant effect on the overall performance of SUPRENUM, maybe
this is the most important aspect at all. Dependent on the underlying processor, alignment of
data objects significantly influences the overall system performance. To give an example, the
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local inter-team rendezvous timing of the PEACE nucleus was improved by 13%, from 440 ps
to 385 ps, once proper mc68020 stack pointer alignment, in 32-bit units, was ensured. Ensuring
message buffer alignment, a performance gain of approximately 5% was achieved. In addition
to that, using a compiler providing for embedded register allocation/deallocation features, a
peak performance gain of 43% was achieved for the nucleus implementation. Indeed, it is a
well-known story that system performance rises and falls with compiler and /or programming
language quality. In each case, the PEACE design is optimal for SUPRENUM and reflects the
state of the art in operating systems design. Experiences with the first PEACE prototype show
that performance bottlenecks within the implementation will be especially due to compiler
and /or programming language quality.
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