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ABSTRACT

Simplicity is the slogan in order to design and implement high-
performance communication systems. [t is almost a natural consequence
that simplicity in system design promotes a flexible and/or application-
oriented operating system implementation, too. With PEACE, a process
execution and communication environment is explained in this paper
which consequently follows the maxim of keeping things as simple as pos-

sible.

1. Introduction

Up to now, the application of distributed operating systems is limited to a very small
area, at least when compared with classic non-distributed operating systems. Basically,
this is a consequence from two contrary situations as right highlighted in [Mullender
1986/, namely the "lack of truly distributed applications” and that "performance is wrong'.
The drawback of many operating systems is the fact that they provide too many services
and, most importantly, that they are designed to do so, i.e. not primarily following the
maxim “what ideas to exclude from the design” [Liskov 1981] and to "keep things as simple
as possible” [Lampson 1983]. The consequence is low system performance for dedicated
application systems. With communication systems exactly the same problem exists and
work is in progress in order to find appropriate solutions. On principle, in [Saltzer et al.
1984] rules are presented how to design a hierarchically structured communication system
and in [Zwaenepoel 1985] problem-oriented protocol implementations are favorized. A
specific structuring and implementation strategy is proposed in ‘Clark 1985/ and one of
the latest analysis, addressing the aspect of how to improve communication system
performance, is presented in 'Watson, Mamrak 1987. The common tenor of these works
is that operating system and communication system are required to consequently support
each other in order to give an optimal basis for distributed application systems. In
‘Tanenbaum, van Renesse 1985 and [Balter et al. 1986/ exemplary distributed operating

systems are named.
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As introduced a decade before now, the design principle of a "family of operating
systems”, described in Parnas 1975| and Habermann et al. 1976], shows how to avoid
many drawbacks of presently existing operating systems. Following this application-
oriented design principle, a distributed “process ezecution and communication
environment’, PEACE, is described in this paper, which serves as a basis for a family of
distributed /non-distributed operating systems. From the hardware point of view, the
architectural framework for PEACE is SUPRENUM, a super-computer for high-performance
numerical applications based on a distributed hardware architecture. In Behr et al.
1986] the rationale and concepts of SUPRENUM are described in detail. It is exactly this
framework which mainly influenced the design of PEACE in order to fulfil the strong
performance requirements given with SUPRENUM. From the software design point of
view, the major foundation of PEACE stems from THOTH [Cheriton 1979] and MOOSE/AX
[Schroeder 1986]. With respect to the distributed organization of PEACE, the main
influences came from V [Cheriton, Zwaenepoel 1983] and AMOEBA [Mullender, Tanenbaum
1986].

The major goal in the design of PEACE was making SUPRENUM performance directly
available to the application system. At the one end, simplicity and performance was the
slogan for design and implementation of lower-level PEACE system components. At the
other end, flexbility and network transparency was required, from the operating as well
as application system. These contrary design aspects result in a consequent separation of
a problem-oriented from an application-oriented runtime environment for SUPRENUM
application systems. The problem-oriented runtime environment is represented by the
PEACE kernel and merely provides message-passing and naming functionalities. This
environment is 'PEACE’ and it has been particularly tuned for network applications. The
application-oriented environment is composed by several system processes running on top
of the PEACE kernel and is intended for distribution over SUPRENUM.

In the following sections a short overview of the basic PEACE system structure is
presented. Actually, the functionality of the PEACE kernel is described. In section 2 the
fundamental design decisions for the PEACE kernel are discussed and the functionality of
the message-passing kernel is explained. In section 3 it is illustrated how this kernel
works on a network-oriented hardware architecture. Section 4 describes how PEACE
services are named and identified in a distributed system. A case study for SUPRENUM is
discussed in section 5, analyzing the performance of the first PEACE prototype
implementation. The conclusion, section 6, is concerned with the illustration of
experiences made during the design and implementation of PEACE.

2. Fundamental Design Aspects of PEACE

The following subsections are concerned with a brief illustration of fundamental
PEACE concepts. For this purpose, the PEACE operating system structure is introduced
and an excerpt of the functionality of the different operating system layers is given. The
major concern, however, is to focus on basic functionalities provided by the PEACE
message-passing kernel.



2.1. Application-Oriented Operating System Structure

The entire PEACE operating system is structured into ten functional layers.

The

fundamental functionalities of the various PEACE operating system layers are summarized

in table 2.1.
layer functionality system processes

g program loading loader

8 file and/or directory file server
management, essentially
extended name services

7 i/o management for block, disk server, tty server, net-
character and network spe- work server and appropri-
cial devices ate device representatives

(deputies), respectively

6 clock management and sig- clock server and device
naling of alarm clocks deputy

5 signaling of low-level sys- MMU server, panic server,
tem exceptions, such as ad- name replugger
dress space errors, panic
events and naming excep-
tions

4 signal  propagation i.e. signal server, signal propa-
passing user/system excep- gator
tions

3 job management, team server
application-ocriented  pro-
cess abstraction

2 management of process memory Server, process
and address space objects server

1 naming name server

0 message-passing and high- ghost and ifo server per
volume data transfer on a major device
network-transparent basis,
as well as process dispatch-
ing and trap,interrupt pro-
pagation

Table 2.1: PEACE Operating System Layering

With each layer of the PEACE operating system a set of server processes is associated.

These server processes are responsible for the implementation of dedicated operating

system services. The interactions between the different server processes are implemented

using the remote procedure call paradigm of inter-process communication as described in

Birrell, Nelson 1984|. With each remote procedure call entry an own service function is

associated. According to the server’'s service interface specification, represented by a

MODULA-2 definition module, the user and server stubs are automatically created. For



that purpose, a stub generator utility is available in PEACE. A service invocation is
topology and/or network transparent, i.e. the invoking process is unaware of the service

providing process and of the localization of the process.

The PEACE communication kernel embraces layer 0 and layer 1, i.e. basic inter-
process cooperation/communication and naming. The fundamental layer 0 system
component is the nucleus, providing services for inter-process cooperation and
communication. The nucleus is the only system component which is not definitely
controlled by a dedicated system process. Its services are not made available by remote
procedure calls but by appropriate local ones. In contrast to the nucleus, the PEACE
message-passing kernel is associated with a dedicated process, the ghost (i.e. process 0).
The ghost implements additional low-level services which are interdependent with specific
nucleus and/or message-passing functionalities and which are accessible by remote
procedure calls. Both, nucleus and ghost share the same address space, so called nucleus
space, which corresponds to supervisor space of the underlying processor. As a
consequence, both system components are required to reside on each node of a PEACE
network environment. Against that, the entire PEACE operating system, excepted layer
0, is executed in user space and may be distributed over a network, arbitrarily.

The services provided by layer 0 are mandatory for higher-level user/system
components in order to cooperate and/or communicate with each other. The services
provided by the other PEACE operating system layers already are considered of being
application-dependent. These services only are provided, i.e. the corresponding server
processes only are present, if required by higher-level user/system components. For
example, with respect to the first SUPRENUM prototype, distributed numerical application
programs are available which require layer 0 and layer 1 services from PEACE, only.
These applications, and all corresponding processes, initially are created by the PEACE
bootstrap service, instead of applying appropriate layer 2 services. Thus, for a specific
class of SUPRENUM applications merely a process execution and communication
environment is required in order to run distributed/decentralized programs.

2.2. Process Execution Environment

As introduced with THOTH, processes in PEACE are associated with feams. A PEACE
team specifies a common execution domain for a certain group of light-weighted processes.
All processes of a team share the same access rights onto PEACE objects, whereby a
PEACE object, for example, represents files, devices, address spaces, teams, processes and
so on. Following the idea of abstract data types, these access rights are controlled by
those system components responsible for the implementation of the respective object.
There is no central access control mechanism in PEACE.

The main portion of PEACE objects are implemented by dedicated server processes
and, therefore, access control onto these objects is directed to server processes, too.
Merely the fundamental access control onto team and process objects is not performed by
server processes, but by the PEACE nucleus. This essentially means the validation of
interactions basing on the PEACE primitives for inter-process cooperation and

communication. Having access right onto a process object, a team is allowed to



manipulate the execution state of the process represented by the respective object, i.e.
setting this process ready to run. Having access right onto a team object, a team is
allowed to read from and/or write into the address space of the team represented by the

respective object.

Besides the team concept, the way scheduling and dispatching works is an important
aspect in PEACE. Basically, with each process an own dispatch strategy is associated.
This strategy is activated each time the execution state of the respective process changes.
Such changes typically occur when a process blocks or is set ready. In a similar fashion,
with each team an own schedule strategy and timeslice entry is associated. This strategy
is activated each time the per-team’s timeslice elapses. The per-team and per-process
schedule/dispatch strategies may be combined in order to realize team specific scheduling
at process block/ready intervals. In a similar fashion as a team defines a common
execution domain for processes, a common scheduling domain for a group of teams may
be constructed. For this purpose, the same schedule strategy is associated with all teams
of interest. As a consequence of this mechanism, problem-oriented strategies are made
feasible on a process/team basis without the need of a central scheduler/dispatcher.

2.3. Process Communication Environment

In PEACE, the communication environment for processes mainly is influenced by the
team concept and, with its most elementary functionality, is implemented by the nucleus.
According to a synchronous request- response model, mechanisms for inter-process
communication by message-passing are available on a send-receive-reply basis.
Between peer teams, 64 byte fixed-size messages are exchanged once a unique client/server
inter-relationship on a rendezvous basis has been established. There are no multicast
and/or broadcast mechanisms provided by the nucleus.

For a server team, which is qualified by the message receiving server process, a
rendezvous actually enables access onto the client process. As a consequence, each
process of the server team, and not only the server process which originally received a
message, is allowed to terminate the rendezvous by replying a message to the client. In a
similar fashion access onto the entire client team is enabled in order to read from and/or
write into the client’s address space. During a rendezvous, separate primitives for high-
volume data transfer, movefrom and moveto, are applicable by any process of the server
team.

The data transfer service provided by the PEACE nucleus is based on sending and/or
receiving data items. A data item is the most elementary transfer unit which is
processable by low-level hardware components, for example a specific network interface.
In case of byte stream oriented interfaces, a data item is represented by a single byte.
For SUPRENUM, however, a data item always is 64 bits wide, i.e. it consists of an eight
byte fixed-size data block. In addition to this, the data segment is restricted to be data
item aligned.

Besides the general message-passing and data transfer functionality, there are specific
facilities in PEACE concerning the management of traps and interrupts. Basically, traps

and interrupts are represented by messages and, if propagation is requested, passed to



dedicated system processes for further processing.

3. Message-Passing within a Network Environment

In the following subsections the functionality of fundamental PEACE communication
and management protocols is described, especially the substantial design decisions are
presented. A more complete description of these protocols is given in [Eichler et al.
1987].

3.1. Problem-Oriented Communication System

In PEACE, network communication is based on three main protocol layers. At the
top, a remote procedure call protocol controls the interface to operating system server
processes. Application systems, however, are free to use this protocol for own purposes.
The remote procedure call protocol is implemented on a library package basis and is
supported by dedicated server processes. Basically, this protocol implements duplicate
suppression of request and response messages, authentication of client processes and
teams, as well as topology transparency.

The next two lower-level protocol layers are implemented by the PEACE message-
passing kernel, more specifically, by the nucleus. A dispatching protocol regulates remote
rendezvous and controls access onto remote team and process objects. The data transfer
protocol actually handles the transportation of messages on the basis of a datagram

service.

3.2. Renunciation on Buffer Management

The PEACE message-passing mechanism for network environments is mainly
influenced by the design decision not to use any buffering of messages at the server site.
In PEACE, there is no concept of alien process descriptors as in V, that is to say for
remote processes no virtual representation, on the basis of appropriate state information,
is maintained by the nucleus. Rather, processing of incoming rendezvous request
messages is controlled by the means of a dispatching protocol which is based on CSMA/CD
techniques.

If a server is unable to process the incoming message, which may imply buffering,
then this situation is considered as a service collision. The receive request actually is
rejected with a proper indication and the nucleus at the client site is informed about this
event. The client process, on behalf of its nucleus, retries the message transmission later
on. In order to reduce starvation situations, the receive reject indicates the number of
service collisions with the same server process. This collision counter is used by the
nucleus at the client site in order to determine the relative retry delay for a new receive
request issued by the same client. The retry delay is not global to the entire nucleus but
rather specific to the client process which produced the service collision, respectively.
The collision counter is decremented each time the server blocks because applying receive

and it is incremented each time the server is unable to receive the incoming message.



Obviously, this strategy does not completely solve starvation but merely makes it
more improbable. More specifically, if client state information is not maintained at the
remote server site, starvation is not solvable, at all. The advantage of this strategy is its
simplicity. On principle, this strategy may be considered of being the appropriate one
even if buffering at the server site is done. For example, if the remote buffer pool
exhausted and a client state is not remembered then the receive request is usually to be
rejected, too. In PEACE, the buffer pool at the server site exactly consists of one buffer
for each process.

3.3. Recommendation of Server Pools

In order to avoid starvation within the dispatching protocol, service collisions must be
avoided, obviously. Consider the situation in which for each client a light-weighted
server process is present. Because a client can only request one rendezvous at a time, no
service collision is given any more. Exactly this idea is accounted with PEACE, following
the pattern of AMOEBA. A server pool of problem-oriented size is maintained by the

server team.

Server pool management is a functionality of the PEACE remote procedure call
protocol. During the binding phase, a client initially makes itself known to the server
team and a server process is allocated for this client. By this way, a service connection is
established between a PEACE client and server team. As a consequence of this service
connection, service collisions within the dispatching protocol are avoided.

3.4. Renunciation on Perfect Communication

For the design of PEACE communication protocols, three main aspects had been
considered. First, avoidance of redundant and/or not required protocol functionalities on
different layers. For example, there is no need to provide duplicate message suppression
by the lower-level communication system if still accomplished by higher-level application
systems [Saltzer et al. 1984]. Second, todays transmission media, especially for local area
networks, are of high quality and lost of data packets is not only a problem because of
transmission errors. There is also a significant packet lost because of operating system
buffer management problems and network interface capabilities [Lantz et al. 1985].
Third, the communication network of SUPRENUM is of very high quality. Transmission
errors within the SUPRENUM network are expected with a similar probability as parity
errors do occur during memory-to-memory copies Behr et al. 1986].

Considering the protocols of the PEACE nucleus, the dispatching protocol is concerned
with management activities, only. These activities mainly are checking access rights onto
remote residing team and process objects. Actually, this means the validation of certain
rendezvous inter-relationships between the client process and the server team. This

validation procedure merely introduces some means of security instead of reliability.

The data transfer protocol follows the principle of a blast protocol Zwaenepoel 1985].
The main purpose of this PEACE protocol is to make high-volume data transfer feasible if
different network interfaces are used and if network boundaries are to be crossed. For
example, segmenting and blocking is not done in order to improve reliability but rather



for being able to use frame-oriented network interfaces, such as ETHERNET  Metcalfe,
Boggs 1976], to reduce buffer management problems on network gateways and to avoid
excessive blocking d;aiay-s because of physical transmission activities. Reliability is
achieved by an application-dependent end-to-end protocol which is handled either by
specific library packages and/or appropriate server complexes. The PEACE remote
procedure call protocol is a typical example for that.

4. Naming and Identification of Services

The previous sections were concerned with the description of fundamental PEACE
ideas. The purpose of this section, now, is to show by what means processes are
addressed and on what level topology transparency is achieved in PEACE.

Processes are addressed by unique process identifiers. A PEACE process identifier is
represented as a low-level pathname and consists of the triple |host, team, task}. Given
a process identifier, the team and host membership of a process can be determined as
well as the per-team task which actually represents the process. As a consequence of this
organization, the PEACE process identifier is a handle how to locate a specific process
object within network environments, absolutely and efficiently. Abstraction from team
and host membership of a process is achieved by the PEACE naming facility, as described
below.

4.1. Service Access Points

Services in PEACE are considered of being any functionality provided by a process.
This process is termed the "server" and processes invoking a specific service are termed
“client”. Services are explicitly made known by server processes applying the PEACE
naming facility. Basically, this facility associates plain character strings, which represent
service names, with process identifiers. Asking for a service name results in the delivery
of the associated process identifier. This identifier denotes a service access point (SAP)
and not the service encapsulating process —although in most cases it directly represents
the server process, by default. Figure 4.1 illustrates this functionality.

"getppid”

team
server

Figure 4.1: Application of Service Access Points

The application of the PEACE naming facility stays in correlation with remote
procedure call protocol activities and is controlled on a runtime library package basis



supported by appropriate server processes. If a service connection is going to be
established, because the client initially issues a service request, a service access point
according to the service name is requested from the naming facility. Applying the
fundamental nucleus primitive send, to this service access point the actual service request
is sent and, actually, a remote procedure call is invoked.

4.2. Name Planes

Names exported by processes constitute the PEACE name space. Actually, this name
space is structured into one or more name planes. Within a name plane all names are

definite. In contrast to that, within a name space the same name may be multiple
defined.

With each name plane an own name server is associated, i.e. there is always a one-
to-one relationship defined. As a consequence, the PEACE name space may be controlled
by several name server processes, dependent on the actual number of name planes
constituting the name space. A specific name plane is addressed by the service access
point of the corresponding name server. This actually means that name planes itself are
identified by name, that is to say according to a service exported by some process.

Applying this naming mechanism, the PEACE name space may be hierarchically
structured, thus building a name tree. Figure 4.2 depicts this, briefly.

name plane

Figure 4.2: A PEACE Name Tree

The leaves of this tree are represented by name servers, more specifically name planes.

The coupling between different subtrees is accomplished by dedicated system processes.

4.3. Name Domains

In PEACE, with each team an own name domain is associated. A name domain
basically is an excerpt from the entire PEACE name space and contains a directory of

services which are directly accessible by the specific team. This directory is represented



by a specific set of name planes. The name domain itself is controlled by a dedicated
server process, the domain server. This process may be identical with a name server if

the management of a single name plane is required, only.

As with the per-team schedule strategies, there is no strong one-to-one relationship
between a team and its domain server. A group of teams, maybe constituting a
distributed application, can be associated with the same domain server. In this situation
these teams share the same name space excerpt. Generally, teams associated with
different applications are bound to different domain servers. With this principle, an
application is made self-contained with respect to identification and addressing of

processes and/or teams.

Without a domain server linkage, a process/team is unable to request an operating
system service unless the service access point is already known, statically. In PEACE,
there is only one such service access point which always is represented by the ghost. The
most important services the ghost provides are requesting the domain of a team (domain)
and directing a team by a specific domain server (direct). The latter mentioned ghost
service, direct, is used for the establishment of a domain server linkage for a team. For
each successful request, the ghost returns the process identifier of the previously linked
domain server. By this way, a hierarchy of domain servers, and thus of name domains,
is created in PEACE. More specifically, in order to establish a name tree the domain
server accomplishes the coupling between different subtrees. Figure 4.3 illustrates the

inter-relationship between teams and domain server, i.e. name server.

application X

: application Y

Figure 4.3: Applricabion—Oriented Name Sp-ace ;

There is at least one name domain which is constituted by the fundamental PEACE
server processes. From this PEACE domain the currently known operating system
services can be ascertained. If a system team is created, it is associated with the PEACE
domain. The same holds for all teams initially created by the PEACE bootstrap. If a user
team is created, it is associated with a default user domain. As a consequence, a user
application is unable to intrude upon the system in creating service names which are
identical with PEACE service names. Solely the application itself is affected.



4.4, Name Scopes

The scope of a service name depends on the functionality of the domain server. The
name space observation starts with a search through the per-team name domain. Simple
sequential strategies may be considered as well as strategies basing on some kind of
multicasting as described in [Cheriton, Mann 1986]. In the same fashion, the domain
server decides how to proceed in case of a service name mismatch. By default, the client
team terminates if a service name mismatch is indicated. Alternatively, the domain
server might try to enforce the existence of the requested service function. This actually
means the creation of an appropriate server team.

Generally, the PEACE naming facility provides for a domain relative name resolution,
starting from the per-team name domain server. If a service name is made known, i.e.
created, this domain server is used, too. It is the responsibility of the domain server to
ensure that the service name is unique within the corresponding name domain —a name
server merely ensures the uniqueness within a single name plane.

The per-team domain server linkage is of importance if teams are migrated.
Independently onto what host a team is migrated its domain server does not change.
Thus, for the migrated team the scope of its name domain remains unchanged. The
same holds for all other teams belonging to the same application, i.e. sharing a common
domain server. Independently of the distribution of this application, the name scope
always remains identical.

5. SUPRENUM Case Study

The purpose of the foregoing sections was to illustrate fundamental PEACE design
decisions and concepts, briefly. In this section a SUPRENUM case study is discussed by
the means of a PEACE prototype implementation and its performance. For that purpose,
the SUPRENUM hardware architecture is explained and the PEACE message-passing kernel
performance is analyzed.

The GMD research center FIRST at the Technical University of Berlin is associated
with design and implementation of a high-performance multi-computer system for
numerical applications. This super-computer is called SUPRENUM and its fundamental
concepts are illustrated in [Behr et al. 1986/, in more detail.

The SUPRENUM development at GMD FIRST addresses both hardware and software
for the so called high-performance processor kernel. The main portion of software
development is concerned with PEACE, the distributed operating system for the
SUPRENUM processor kernel. Besides these fundamental project activities, several other
areas are covered. A backup file system is developed just as compiler for MIMD
FORTRAN and MODULA-2, diagnostic utilities, performance analysis mechanisms,
distributed programming environments, process mapping tools, UNIX interfaces, dedicated
application programs, and so on. Additionally, the adaptation of UNIX is considered, too.
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5.1. Hardware Configuration

SUPRENUM is a multi-computer system, based on a distributed hardware architecture.
The building block of SUPRENUM is the cluster. According to the functionality and
capacity as required by the user, a couple of clusters are inter-connected, thus building a
SUPRENUM processor kernel. The inter-connection is accomplished by a high-speed bit-
serial slotted-ring bus, the SUPRENUM bus, on a row/column basis. The physical
bandwidth of this transmission media is approximately 20 Mbytes/sec, Each row and/or
column of clusters form a so called hyper-cluster. Figure 5.1 depicts the principal
SUPRENUM inter-connection structure.

ey

cluster  § SUPRENUM bus

Figure 5.1: SUPRENUM Inter-Connection Structure

This example shows the SUPRENUM processor kernel consisting of 16 clusters and
connected to 3 host computers. Each host computer runs a multi-processor version of
UNIX SYSTEM V. At the one end, the main functionalities of these hosts are downloading
of SUPRENUM applications, diagnostic and maintenance of the SUPRENUM processor
kernel. At the other end, SUPRENUM programming environments are supported and the
inter-connection with public data networks is made feasible.

The basic processing unit of SUPRENUM is the node. Upto 20 nodes constitute a
cluster and are inter-connected by a very high-speed parallel bus, the cluster bus. The
physical bandwidth of this bus is approximately 128 Mbytes/sec — each 50 ns clock tick a
64 bit cluster bus word can be transmitted. The cluster bus is doubled, thus a total
bandwidth of 256 Mbytes/sec is specified, physically.

The nodes of a cluster are partitioned into five functional units. From a total of 20
nodes, for the execution of application programs 16 application nodes are available. One
stand-by node serves for fault-tolerant purposes. In addition to these application-
oriented nodes, the disk node provides for disk i/o services and the diagnostic node
provides for maintenance services. And finally, the inter-connection of different clusters,
as well as the inter-connection to host machines, is made feasible by the communication
node, which actually serves as a gateway between cluster bus and SUPRENUM bus.
Figure 5.2 shows the SUPRENUM cluster structure. Each cluster node is equipped with a
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Figure 5.2: SUPRENUM Cluster Structure

20 MHz Motorola mc68020, mc68851 (PMMU), 8 Mbytes of main storage (2 wait states)
and a communication coprocessor implementing the cluster bus interface. Each
application node is equipped with a floating-point coprocessor, whereas the disk node, the
diagnostic node and the communication node, in each case, is equipped with dedicated
hardware units for its original purpose.

The first release of SUPRENUM is qualified with a 4 X 4 cluster matrix. This version
consists of 320 nodes, whereby 256 application nodes are made available to the user. The
net performance of each application node is specified with 4 Mflops. As a consequence, a
net performance of 1 Gflops is calculated for this SUPRENUM release.

5.2. Software Configuration

In order to early provide a process execution and communication environment for a
distributed SUPRENUM application, a minimal software configuration was required. This
configuration consists of the distributed PEACE kernel. All processes required for this
PEACE configuration as well as for the application systems are initially created by the
PEACE bootstrap procedure.

5.2.1. Message-Passing Kernel

The actual implementation of the PEACE message-passing kernel addresses all topics
discussed previously. This especially means providing mechanisms for network-wide
basic inter-process cooperation, by send and reply, as well as basic inter-team
communication, by movefrom and moveto. Additionally, send and reply operations can
be routed, locally as well as remotely, which is used in PEACE for the integration of relay
processes in order to forward messages for migrated processes. Processor utilization is
measured on a per-process and/or per-team basis. For this purpose appropriate dispatch
and schedule strategies are associated with processes and teams, respectively.

Given a process identifier, the PEACE message-passing kernel distinguishes between
local and remote residing process objects. The host member of the process identifier is
used for that purpose. Following the pattern of THOTH, access onto local process objects



is directly achieved on the basis of mapping tables. For remote access, first the
dispatching protocol is used and then the mapping tables of the remote nucleus are
applied. Monitoring of communication activities is achieved by the manipulation of
mapping table entries, which are forced to address a monitor process.

Bulk data transfer by the means of movefrom/moveto distinguishes between inter-
cluster and intra-cluster communication. With intra-cluster communication, direct end-
to-end data transfer is performed without message segmentation. With inter-cluster
communication, a store and forward principle is followed on basis of light-weighted
processes acting as representatives for the original client/server processes. As a
consequence, high-performance intra-cluster communication is applied in order to store
message segments on the communication node and the problem-oriented data transfer

protocol regulates flow-control, respectively.

The most essential aspect of the present message-passing kernel implementation is a
software package which emulates the cluster bus communication coprocessor interface on
the basis of a word transfer protocol. Currently, the low-level word transfer interface of
the cluster bus is made directly accessible by the nucleus network driver. As a
consequence, the entire message transfer is controlled by the central processing unit on a
64 bit cluster bus word basis without hardware support for direct memory access.

5.2.2. Name Server

The PEACE name space is structured according to the SUPRENUM architecture. With
respect to the operating system, this actually means the presence of at least four different
name planes. The node name plane contains all names defined relative to a specific node.
The cluster name plane makes names globally known to all nodes of a cluster and defines
cluster-relative names. In a similar fashion, the hyper-cluster name plane contains names
relative to a SUPRENUM row/column of clusters. And finally, the system name plane
contains all names unique within SUPRENUM, including the UNIX host machines.

As illustrated in figure 5.3, the PEACE name space is hierarchically structured into
four layers.

"~ name plane T system
hyper-cluster

cluster

node

Figure 5.3: The PEACE Name Space for SUPRENUM

In order to locate PEACE services, the search strategy is from bottom up. The PEACE

domain server is aware of this hierarchy and, properly, issues name lookup requests to



the various name servers. A sequential request strategy is followed.

5.2.3. Prototype System Structure

Actually, a SUPRENUM cluster consisting of 5 nodes represents the hardware
environment for the PEACE kernel. Basing on this hardware facility, the message-passing
kernel, more specifically nucleus and ghost, is replicated on each of these nodes.

Because of a limited application environment, the installation of a single name server
was required, only. This name server implements the cluster name plane and is directly
associated with the domain server linkage of all teams of this cluster. On the basis of
remote procedure calls, the name services are made directly available inside the cluster.

The name server stub does not implement a server pool.

5.3. Performance Measurements

The SUPRENUM system configuration, which serves as the basis for the performance
measurements, was introduced in the previous section. The components of this PEACE
configuration were implemented in C. The actual hardware configuration consisted of 5
nodes, each one equipped with an 16 MHz Motorola mc68020, only, and the main storage
was accessed with 1.5 wait states. In addition to that, the cluster bus communication
coprocessor interface was software emulated.

The following measurements result from running dedicated benchmark sequences.
Each sequence was executed 100.000 times. For each run, the elapsed time interval was
determined by reading the actual start and stop clock tick value. A clock tick was
represented by a 50 ms timeslice and the clock tick interval was expressed in terms of

microseconds.

A benchmark sequence consists of one or more nucleus operations, dependent on what
measurement was requested. Basically, three different sequences had been considered.
For each of these sequences the cluster was exclusively allocated to the benchmark suite.
The following subsections present the results of these benchmark sequences.

5.3.1. Fundamental Parameters

The fundamental performance parameters determine the general overhead associated
with nucleus and/or message-passing kernel calls, interrupt handling and context
switching. Table 5.1 summarizes the benchmark results.

In order to determine the nucleus call overhead, i.e. the delay for switching from user
to nucleus space and vice versa, gefpid was applied. This call simply returns the process
identifier of the calling process without any management overhead within the nucleus. In
a similar fashion the overhead for remote procedure calls to the message-passing kernel,
i.e. the ghost, was measured. In this case, relinquish was applied, a ghost call which
executes the per-process block and ready strategies. This simply is achieved because of
requesting and terminating a rendezvous between user process and ghost.

In order to determine interrupt handling overhead, a dedicated nucleus version was
generated. In PEACE, interrupt management is partitioned into three phases. The



action time (;/ sec.)

user/nucleus switch 25
user/ kernel switch 375
task 28
context switch
team 28
prologue 36
interrupt phase | synchronization 35
eptlogue 29

Table 5.1: Fundamental Performance Parameters

prologue phase directly is started with each interrupt request and is executed
asynchronous, i.e. non-synchronized, to all other operating system activities. In contrast
to that, the epilogue phase is executed synchronous, i.e. synchronized, and enables
interrupt propagation on a message-passing basis to higher-level system processes. The
synchronization phase serves as the coupling between interrupt prologue and epilogue.
This phase is only entered if requested by an interrupt handler.

The context switch overhead was determined on basis of a special purpose nucleus
version, too. A specific nucleus call was introduced, which simply forces the calling
process to perform a context switch to itself.

5.3.2. Message-Passing

The message-passing performance of the PEACE nucleus was measured for local as
well as for remote operation, in each case with a different process pool size. Additionally,
the local operation distinguishes between inter-team and intra-team communication. For
each case, a send- receive- reply sequence was applied. The corresponding results are
given in table 5.2,

Dependent on a local or remote operation, the process pool serves for two different
purposes. In the local case, the process pool is maintained within the client team and
consists of client processes sending to the same server process. In this situation the
influence of the server’s sender queue size on the overall rendezvous timing is determined.
[n the remote case, the process pool is maintained within the client and server team, each
one residing on different nodes. For each client exactly one server is available. As a
consequence, the measured rendezvous timing reflects the message-passing performance in
case of no service collisions at the server site,



time (;/ sec.) !

pool local {n-to-1)
remote (n-to-n)
intra-team | inter-team .
1 345 385 2030
b 630 675 3205
4 1195 1245 6375
8 2305 2375 120705
16 4590 4645 25560

Table 5.2: Message-Passing Performance

5.3.3. High-Volume Data Transfer

As done with the message-passing primitives, the performance of high-volume data
transfer was measured for local as well as remote operation. For each case, different

transfer sizes had been considered. In table 5.3 the results are represented.

time (/ sec.)

size (bytes) local remote

movefrom/to | movefrom | moveto

0 80 1570 2380

8 90 1615 2420

64 105 1635 2435

512 200 1735 2540

1024 305 1860 2660

4096 950 2570 3185

Table 5.3: High-Volume Data Transfer Performance

A transfer size of 0 was used in order to determine the raw management overhead
required for the verification of the rendezvous inter-relationship between server and
client. The transfer size of 8 bytes determines the minimal overhead for the delivery of a
single cluster bus word, whereas the transfer size of 64 bytes does so for the delivery of a
single send/reply message. The transfer sizes of 512, 1024 and 4096 bytes had been used
in order to determine the expected file i/o performance at the client/server interface.
Especially, the timing for a transfer size of 4096 bytes indicates the minimal overhead in



case of network-wide paging.

5.4. Performance Analysis

According to the measurements presented in the previous section, a discussion of the

results and a general performance assessment is given in the following.

5.4.1. Fundamental Parameters

The fundamental timing parameters of the PEACE nucleus stress the high-
performance implementation. These parameters generally influence the performance of
each nucleus primitive. Context switching takes place at least once for each rendezvous,
in addition to 2 and/or 3 nucleus calls. In case of remote operations, interrupt handling
is required. Considering a send, reply and movefrom, the worst case is 2 interrupts per
remote operation because of a request and response packet produced and processed by
the dispatching protocol, not counted interrupt handling because of segmented data
transfer. In case of moveto, at least one more interrupt is accounted.

Especially for the assessment of remote operations, it is important to notice that,
presently, a software emulated word transfer protocol interfaces the PEACE nucleus to the
SUPRENUM cluster bus. This protocol is migrated into firmware, i.e. microprogram, once
the appropriate hardware features are implemented on a SUPRENUM node. By now, this
emulation package produces an overhead of at least 500 rsec if a single dispatching
protocol packet is sent to peer protocol entities, not counted interrupt latency.
Presently, this overhead determines the per-node interface penaity of a single message
setup for a transfer of each one of these packets. Avoiding the interface penalty by a
microprogram implementation of the word fransfer protocol, it is expected to achieve a
timing for remote operations which is approximately 36 % of that of the currently

accounted one.

5.4.2. Message-Passing

The dispaiching protocol is responsible for the control of remote message-passing
operations. Each packet corresponds to a nucleus message-passing primitive, for example
send, reply and relay. Basing on the word transfer protocol emulation package, a single
remote rendezvous, l.e. a send-receive - reply sequence, takes 2.03 ms, including the
additional interface penalty because of the send and reply packets issued by the
dispatching protocol. First analysis show, that a remote rendezvous timing of less than

730 jt sec is possible on basis of the actual PEACE nucleus implementation.

The local rendezvous timing stresses the quality of the PEACE nucleus with respect to
high-performance message-passing. An additional performance gain of 30 usec is
achieved, which actually means an improvement of 11% for intra-team and 8% for
inter-team communication, by combining receive and reply to a single nucleus call. In
PEACE, this call, replace, is applied by a server in order to process remote procedure
calls, i.e. replacing a rendezvous by another one.



Considering the measurements for different process pool sizes, as illustrated by figure
5.4, a deviation (dark line) from the theoretically expected linear increase (light line) in

overall rendezvous timing is obvious.
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Figure 5.4: Message-Passing Comparison

With local rendezvous, this is due to a non-empty per-server sender queue. In this
situation the server will not block because calling receive. As a consequence, no per-
server dispatch strategy and, thus, no context switch is executed. A general performance
gain between 8% (12%) and 15% (25%) is noticed for intra-team (inter-team)
rendezvous. With remote rendezvous, the per-server sender queue is always empty,
because for each remote client exactly one light-weighted server exists. The deviation of
the rendezvous timing in this case is reasonable because of interrupt-driven protocol
activities. Once started, the PEACE network driver, more specifically the word transfer
protocol, is capable of receiving a sequence of messages, without being interrupted by
further network events and without returning to the dispatching protocol each time a
message has been received, thus reducing protocol switching overhead. This results in a
general performance gain of approximately 21 %.

Further analysis of the general performance gain, for local as well as remote
rendezvous, shows that the effective per-rendezvous performance gain is inverse
proportional to an increase of the process pool size. As a matter of fact, large sender
queues and server pools do not significantly improve the timing for a single rendezvous
but rather improve the overall communication system performance in case of large
system loads.

5.4.3. High-Volume Data Transfer

As with message-passing, the dispatching proiocol controls remote movefrom/moveto
sequences. On the one hand, these sequences are only applicable during a rendezvous
and, thus, verification of the rendezvous relationship between client and server is



required. On the other hand, at the receiving site announcement of the arrival of an
arbitrary sized data stream is sensible. This aspect is essential in PEACE, because it
makes a true end-to-end data transfer between peer address spaces, each one residing on
different SUPRENUM nodes, feasible without the need of buffering. The announcement of
high-volume data means to setup a separate physical data transfer channel at the
receiving site, actually programming the direct memory access controller of a SUPRENUM

node.

Considering the measured performance of a remote high-volume data transfer, the
interface penalty for a single dispafching protocol packet is the most limiting factor,
again. In figure 5.5 a comparison of local and remote high-volume data transfer
performance is given.
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Figure 5.5: High-Volume Data Transfer Comparison

A remote movefrom accounts at least two setup times, namely issuing the movefrom
request packet to the client site and processing this request as well as starting the data
transfer at the client site. A remote movefo accounts one more setup time, because of an
explicit rendezvous verification request packet sent to the client site. Approximately a
total of 322 yrsec is consumed for general nucleus management activities. Not counting
the emulation overhead, the dispatching protocol processes a movefrom/to in less than
248 it sec, respectively. This timing reflects general nucleus overhead associated with
protocol  state observation, service collision detection, protocol switching,
argument/object passing between protocol layers and checking for local/remote residing
process objects. For message-passing, this timing is effective, too.

Remote bulk data transfer of 16/64 Kbytes rakes 4.85/12.79 ms for movefrom and
5.67/13.62 ms for moveto, respectively. This timing results in a read transfer rate of
3.2/4.9Mbytes and a write transfer rate of 2.7/4.6 Mbytes per second, approximately.
Avoliding the interface penalty, it is expected to achieve a movefrom/to timing of less

than 565/856 yisec, respectively. More specifically, in this situation the transfer rate of



single cluster bus units at least is comparable with that of local memory-to-memory
copies.

8. Concluding Remarks

This paper introduced a process execution and communication environment, PEACE,
for support of distributed application programs which are suited for the SUPRENUM
super-computer. In the following subsections the lessons learned from design and
implementation of PEACE are summarized. The conclusion is concerned with a status quo
overview of SUPRENUM and PEACE.

6.1. Postponement of Design Decisions

The fundamental ideas of PEACE are exclusive application of system processes in
order to encapsulate typical operating system services. Basing on processes for service
encapsulation and following the design principle of a family of operating systems,
decentralization and/or distribution of the PEACE operating system was achieved in a
large scale. There is no doubt that this design principle significantly promotes project-
oriented system development.

Without functional relief of the PEACE kernel, running first experiments with
SUPRENUM would not be possible now. The first message-passing kernel prototype was
completed within 6 month and was capable of supporting a numerical application for a
cluster configuration of 9 nodes. This rapid prototyping was only possible because of a
design philosophy, according to |[Parnas 1975], which helps to concentrate on the
substantial facts. Most importantly, the message-passing kernel functionality has not
changed since that first prototype presentation and there is no idea what functionality to
remove from and/or add to.

6.2. About Programming Languages and Compilers

The official programming language for SUPRENUM system programs is MODULA-2.
Therefore, the first implementation of the PEACE message-passing kernel was done in
MODULA-2. For comparison purposes with other message-passing kernels, such as Vv, a
re-implementation in C followed. With this version a peak performance gain of 43 % was
achieved.

This large performance gain solely was achieved because C explicitly knows "register”
as a storage class designator for plain data objects. The nucleus implementation heavily
uses this language feature. Surely, a MODULA-2 compiler with embedded register
allocation /deallocation techniques will produce comparable results. However, the overall
system performance and/or functionality of PEACE depends on the availability of such a
compiler. For an operating system designer,/programmer, this kind of dependence is not
acceptable.

Besides the requirement of specific and valuable language features for operating
system implementation, there is another important aspect concerning the quality of a
compiler. More specifically, dependent on the underlying processor, alignment of data



objects may significantly influence the overall system performance. To give an example,
the local inter-team rendezvous timing of the PEACE nucleus was improved by 13 %, from
440 /1 sec to 385 i sec, once proper mc68020 stack pointer alignment, in 32 bit units, was
ensured. In addition to that, ensuring message buffer alignment result in a performance

gain of approximately 5% per rendezvous.

6.3. Use of Large Teams

The team concept of PEACE influenced the entire operating system design in every
respect. This holds not only for the actual operating system but also for the application
system, more specifically the system library.

Mechanisms for asynchronous inter-process communication are provided on a library
basis using light-weighted processes. In a similar fashion, propagation of system
exceptions is supported, even within a network environment. The remote procedure call
system applies light-weighted processes at the server site in order to maintain service
connections and to significantly improve the invocation delay of remote procedure calls.
The interrupt system does so in order to represent devices as processes and, thus,
logically enabling a device to send a message to some, maybe remote residing, server
process. A process can be represented as a sandwich [Parnas 1976] in order to avoid
deadlock situations which will occur in PEACE if processes use each other by
appropriately requesting rendezvous.

All these examples show that there may be a large number of light-weighted processes
inside a single team. However, this is not considered as a drawback. The essential
aspect is that these process resources, especially the different runtime stacks, are bound
to the team and that the team is subject for access control and/or scheduling of
resources allocated by the single processes. The operating system, essentially the nucleus,
only is concerned with a large process table which, actually, makes no harm. Presently,
PEACE supports upto 256 processes and 64 teams per node and this actually suffices.

6.4. About Network Transparency

Especially with distributed systems, in which, for example, process migration
introduces a significant aspect of system dynamic, the process identification mechanism
has to provide some means of network-transparency. However, what the meaning of
transparency actually is, depends on higher-level system/user application functionalities.
For instance, if a decentralized /distributed application expects a specific process mapping
for the underlying network architecture then migrating a process out of this
interdependent environment may have a drawback on the overall application
performance. The communication delay may become worser and, thus, even in the case
that process identifiers implement some kind of location independence, real network
and/or topology transparency is not achieved. Using forwarding addresses as in
DEMOS/MP [Powell, Miller 1983] or relay processes in order to continuously reach the
original process can be a temporarily solution, only. Rather the dynamical events within
an interdependent and dedicated application environment should be considered as
exceptional conditions and, thus, appropriately signaled by the operating system.



A similar example, which potentially may introduce loss of transparency on the
application level, is given with network communication systems, especially if the
capabilities of low-level network interfaces are considered. The essential design decision
in this conjunction is what basic data transfer unit specification to use at the message-
passing interface. For example, basing on a byte stream oriented interface a SUPRENUM
user would realize that his distributed application performs better if 64 bit aligned data
segments are exchanged instead of byte aligned ones. This will be due to temporarily
buffering of a portion of the data segment in order to enforce alignment within the
message-passing kernel. Thus, loss of transparency will be deliberately accepted by the
user in order to achieve a general communication performance gain. The stream i/o
library of UNIX is another typical example of this situation. As already pointed out in
'Parnas, Siewiorek 1972, such transparency considerations are of significant importance

when specifying the functionality of and/or designing a service interface.

With this respect, designing more intelligence and/or functionality into the message-
passing kernel would not really solve the transparency problem. Rather, postponement
of the critical design decisions is necessary. An application system should have the
chance to define transparency according to its own demands. For example, it is a simple
affair either by higher-level user/system components or by runtime libraries or by a
compiler and/or linker to ensure proper alignment for communication data segments. In
the case of process and/or service migration, handling of signaled migration exceptions
may result in rebinding a service access point, i.e. applying the naming facility, again.

6.5. Network Interfaces

The functionality of network interfaces significantly determines the overall
communication protocol performance. However, it is a sophism that primarily protocol
functionalities should be migrated into low-level hardware and firmware components. As
right highlighted in [Lantz et al. 1985], network bandwidth is rendered virtually
insignificant and/or faster hosts are needed. The main performance bottleneck is the
network interface and the fact that, usually, the host is busy because of interrupt
handling, synchronization, queuing, buffering, and so on. Thus, in order to improve
communication  performance the first step is to reduce host-bounded
operating/communication system activities and the second step, if at all, might be the
migration of protocol functionalities into low-level hardware.

Lessons learned from the PEACE communication system design show that a high-
performance network interface, above all, should be supported by a clever direct memory
access controller. From the communication system point of view the controller should
provide for three main services. First, a set of segment descriptors, each one designating
possibly variable sized message segments, should be manageable. Second, a
differentiation between system channel and user channel should be made feasible. Third,
some means of multiplexing/demultiplexing of a single physical transfer channel should
be possible, using logical channel numbers generated on behalf of the communication
system. The controller merely should consider a channel number as a hash-key in order

to locate a specific segment descriptor at the receiving site. The announcement of the



hash-key at the receiving site again is a functionality of the higher-level communication

system.

Generally, the main functionality of a network interface controller should be to
significantly reduce message-transfer setup times and to enable end-to-end data transfer
between address spaces residing on different nodes. Thus, primarily management aspects
should be addressed instead of communication protocol aspects.

6.6. About Communication Reliability

Although communication performance is significantly limited by the interface penalty
of the low-level word transfer protocol, basing on a software emulation was highly
informative. In fact, intra-cluster communication is highly reliable and there is little to
improve by higher-level communication protocols.

Considering the fact that a future microprogram implementation will not lower
communication reliability, directly interfacing the dispatching protocol to the cluster bus
interface is the adequate solution for SUPRENUM. The data transfer protocol will be used
for inter-cluster communication, only. Thus, consequently separating different concerns
—namely transportation of messages and access control of remote process/team objects -
by different protocol layers, was the right design principle in order to implement a high-
performance communication system for SUPRENUM, above all.

6.7. Status Quo

Basing on the distributed PEACE kernel, the PEACE operating system is going to be
completed, step by step. Presently, layer 0 and 1 are running and layer 2 upto layer 6
have been implemented. Integration and testing of these layers is done from bottom up,
now. Additionally, the development of mechanisms for remote file access from UNIX is in
progress. Program loading, i.e. layer 9, is made feasible as far as the file i/o interface has
been implemented.

With respect to hardware, the completion of the cluster bus communication interface
is in progress and the communication node is going to be equipped with an ETHERNET
controller. A second SUPRENUM prototype, consisting of two clusters and a UNIX host
inter-connected by ETHERNET, is planed to be completed by fall of this year (1987). For
this purpose, gateway functionalities are integrated into PEACE, now.
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