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Abstract. MIMD message-passing architectures
are decentralized computer systems. These
systems require a decentralized/distributed
operating system, which has to provide a
runtime environment for the MIMD programs
being processed by the actual machine.
With PEACE, a process execution and
communication environment, which s
particularly designed for message-passing
architectures, is explained in this paper.
This environment is layered on top of
SUPRENUM, an MIMD message-passing super-
computer, and is carefully tuned in order to
make the performance of this system
"direct” available to the application level.

1. Introduction

Today, two major MIMD design principles are
favorized. The one design principle is based on the
traditional idea of inter-connecting multi-processor
systems by shared memory. The other and
modern design principle takes advantage of
network systems and is based on message-passing.
This latter mentioned approach is very close to the
original idea of autonomous processing nodes in an
MIMD architecture. Reason for that is the loosely-
coupled nature of network systems and the natural
constrain to design and implement "true” MIMD
programs whose instructions/operations process
completely different data sets. The major criterion
raised against an application of message-passing
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systems is low system performance when compared
with  traditional shared memory systems.
Achieving high performance is difficult, because
the operating system designer for those machines
has to deal with all conceptual and technical
problems of decentralized/distributed computer
systems [8]. Solutions for these problems generally
imply more software overhead.

Nowadays, progress in designing distributed
systems can be discovered - although it is still a
non-trivial task to build these systems [16]. There
are several experimental/working systems, see [27]
and (2| for an overview, which especially serve as a
basis for making experiences on distributed
programming in the large [18]. These experiences
manifest that network-oriented and message-
passing systems are superior to systems based ou
shared memory, especially with respect fo
availability, scalability, functionality and
reconfiguration. With those systems, loss of
performance is not necessarily the consequence, as
the Cosmic Cube [25] illustrates.

For making distributed systems work, a very
careful operating system design is required (18] and
the slogan must be to keep things as simple as
possible [9]. It is essential to decide what ideas to
exclude from the design and not what
functionalities to include [12]. As introduced a
decade ago, the design principle of a "family of
operating systems", described in [20] and (7| shows
how to correspond to these maxims. The
distributed operating system described in this
paper consequently follows that family concept.
The result is a distributed "process ezecution and
communication environment', PEACE, which makes
the performance of MIMD message-passing
architectures "directly” available to the application
level. The hardware environment for PEACE is



SUPRENUM, an MIMD super-computer based on 3
distributed hardware architecture and following
the principle of message-passing for inter-
connecting different processing nodes (3].

In section 2, the
architecture is explained. Section 3 discusses
operating system requirements specific to
SUPRENUM. The PEACE operating system structure
is explained in section 4. In section 5, some
performance measurements are presented. These
measurements are related to the PEACE message-
passing kernel running on a SUPRENUM prototype.
Related works and concluding remarks are
presented in section 8.

SUPRENUM  hardware

2. The SUPRENUM Hardware Architecture

SUPRENUM is a multi-computer system based on
a distributed hardware architecture. The frst
release of SUPRENUM consists of 320 nodes, whereby
256 application nodes are made available to the
user. The residual 84 nodes are used for system
maintenance purposes. The net performance of
each application node is specified with 4 Mflops.
As a consequence, a net performance of 1 Gflops is
calculated for this SUPRENUM releage.

2.1. Building Blocks

The building block of SUPRENUM is the cluster.
According to the functionality and capacity as
required by the user, a couple of clusters are inter-
connected, thus building a suPRENUM high-
performance processor kernel. Figure 1 depicts the
principal SUPRENUM inter-connection structure.
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Figure 1.

A high-speed bit-serial ring bus, the svPrRENUM
bus, inter-connects the various building blocks on
a row/column basis. The physical bandwidth of
this  transmission media is approximately
16 Mbytes/sec. Each row/column of clusters form
a 3o called hyper-cluster.
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The first release of a SUPRENUM processor kernel
consisting of 18 clusters and connected to 3 host
computers. Each host computer runs a multi-
processor version of UNIX SYSTEM V'), At the one
end, the main functionalities of these hosts are
downloading of SUPRENUM applications, diagnosis
and maintenance of the SUPRENUM processor
kernel. At the other end, SUPRENUM programming
environments are supported and the inter-
connection with public data networks is made
feasible.

2.2. Processing Units

The basic processing unit of SUPRENUM is the
node. Upto 20 nodes constitute a cluster and are
inter-connected by a very high-speed parallel bus,
the cluster bus. The total physical bandwidth of
this bus is 160 Mbytes/sec — each 50 ns clock tick a
64 bit cluster bus word can be transmitted.
Considering a point-to-point connection between
two nodes, 40 Mbytes/sec are specified as the
physical bandwidth. Figure 2 shows the SUPRENUM
cluster structure.
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I:] communication node
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Figure 2.

The nodes of a cluster are partitioned into fve
functional units. From a total of 20 nodes, for the
execution of application programs 16 application
nodes are available. One stand-by node serves for
fault-tolerant purposes. In addition to these
application-oriented nodes, the disk node provides
for disk i/o services and the diagnostic node
provides for maintenance services. And finally, the
inter-connection of different clusters, as well as the
inter-connection to host machines, is made feasible
by the communication node, which actually serves
as a gateway between cluster bus and SUPRENUM
bus.

Y unix is a registered trademark of AT & T
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Each cluster node is equipped with a 20 MHz
Motorola mc68020, mc68851 (PMMU), 8 Mbytes of
main storage (2 wait states) and a communication
coprocessor implementing the cluster bus interface.
Each application node is equipped with a floating-
point coprocessor, whereas the disk node, the
diagnostic node and the communication node, ‘in
each case, is equipped with dedicated hardware
units for its original purpose.

3. Operating System Requirements

In the following subsections several operating
system requirements are discussed. These
requirements are specific to SUPRENUM, as a
representative for MIMD message-passing
architectures, and influenced the entire PEACE
design.

3.1. About Communication Bottlenecks

Because communication performance is essential
for MIMD message-passing architectures, the most
critical hardware resource to be managed by an
operating system seems to be the communication
network. However, the network itself is not the
major bottleneck.

As analyzed in [10] for communication networks
based on ETHERNET (13|, which are of low network
bandwidth when compared with the SUPRENUM
network system, the major communication
bottleneck is the network interface. On the
hardware level, this bottleneck is specified by the
functionality of a network or direct memory access
controller — similar to the legendary "von Neumann
bottleneck” [1]. On the software level, this
bottleneck is specified by network driver
functionalities just as the semantics of inter-
process communication primitives. Between both
levels a strong inter-relationship exists. At the one
end, maximal network utilization depends on
software activities controlled by the central
processing unit, i.e. the host. As an obvious rule
of thumb, the more communication activities are
controlled by a host the less network utilization
will be. At the other end, complexity of network
driver software depends on the network hardware
interface capabilities. From the technical point of
view, the complicated a programming model of a
network interface is the more driver activities are
necessary in order to send/receive a message
onto/from a network interface.

Besides these hardware dependent aspects, there
is also a significant influence on communication
system complexity determined by the semantics of
higher-level communication interfaces. The
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operating system designer is particularly faced
with the problem of mapping higher-level
communication interfaces onto lower-level network
interfaces, and vice versa. Obviously, there is a
semantical gap between these two interfaces and
the optimal situation will arise if this gap is only
of conceptual nature and will not be technically
Present, any more. On principal, the larger this
semantical gap is the more mapping overhead is
accounted within an operating system, ie. the
communication subsystem. As a consequence,
overall communication performance just as
processor utilization for application programs will
drop.

One solution in order to overcome this problem
is to claim that faster hosts are needed. The more
sensible solution is trying to avoid these problems
by a careful system design which is free of those
performance bottlenecks. To give an example
from the early days of operating system design,
performance ~ of paging systems was not
significantly improved on the basis of faster disks,
but new scheduling and paging algorithms and
techniques were responsible for the performance
gain. The same holds for improving performarce
of communication systems. The need for faster
hosts is only justified if the designer is sure that
there is no other way to go around the
performance bottleneck. As a consequence,
hardware requirements should be stated late in
system design.

3.2. Separation of Concerns

Many MIMD application systems are based on
the asynchronous model of inter-process
communication, i.e. the no-watt send [11]. Several
application programmers claim that this model is
more fundamental, more efficient and increases
parallelism [15]. Considering the implementation
of this model in more detail, as done by a system
programmer, one can observe that the aspect of
being fundamental and efficient is no longer valid.
In contrast to a synchronous model, with a remote
invocalion send semantic [11], message buffering is
necessary, which requires additional mermory
management activities. In addition to that,
message buffer often are completely copied instead
of simply exchanging descriptors, in which case
buffer descriptor management is required, only. In
the most cases, reliable communication is expected,
instead of simple datagram services,. which
significantly increases communication costs. All
these activities are executed by the host, steeling
processor cycles for solving the original MIMD
application problem.



Just as application processes, executed by an
MIMD message-passing machine, communicate by
the means of meéssages, processes constituting the
distributed /decentralized operating system will
have to do so. This especially means that
operating system requests are message-encoded. It
is widely accepted to invoke these requests on the

basis of remote procedure calls [19]. This
technique implies remofe invocation send
semantics. Implementing remote procedure calls
on the |basis of no-waif send increases

communication protocol overhead. This is to the
debit of operating system as well as application
system performance. Even worser, this design
decision implies deadlock situations. For example,
sending a message might be the result of a
memory management service request which, in
turn, is the result of queuing a message due to a
no-wast send. In addition to those kinds of
resource  allocation deadlocks [26], hidden
communication deadlocks are of particular
meaning. It is well known that programming on
the basis of asynchronous  inter-process
communication primitives is heavily error-prone
and often leads to an unintelligible program
behaviour. Because of security and reliability
reasons these primitives are not appropriate in
order to implement an operating system interface
for a network environment.

With respect to the semantics of fundamental
primitives for inter-process communication, there

are two different concerns when considering
higher-level distributed MiMD applications and
lower-level  distributed  operating  systems.
Common to both levels is the communication
aspect and the only difference is due to
concurrency. In this situation, separation of
concerns would &mean to  separate the

communication mechanism from the concurrency
mechanism. As noted in [17], it is sensible to
implement concurrency by the means of processes
instead of messages. Nearly all state-of-the-art
operating systems follow this design rule by
implementing the concept of light-weighted
processes sharing the same address space. With
THOTH [4] this

concept was  successfully
implemented for a real-time environment, a
traditional domain for asynchronous

communication mechanisms. One of the most
recent operating system examples is MACH [29],
which supports concurrency within MIMD programs
on the basis of multiple threads.

3.3. Postponement of Design Decisions

As noted in a previous subsection, in order to
avoid a communication bottleneck a careful
operating system design is mandatory. This
design must follow the rule of reducing operating
system complexity, i.e. designing simple low-level
operating system components, only. Dependent on
the functionality of operating system services
required by application systems, multiple entry
points into the operating system must be provided,
whereby each entry point directly interfaces the
application process with the service providing
system component. With this approach, there is
no operating system bottleneck through which all
service requests are threaded.

From the operating system point of view,
consequent modularization i3 required, i.e.
considering each service as a special object just as
building a multi-level hierarchy of these objects.
From the application system point of view, an
application-oriented operating system interface is
built, with the consequence that only those system
components are required which are necessary to
support the application. On the lowest operating
system level, simple system components are
present, only, which serve as a common basis for
all higher-level components.

This design ptinciple of a family of operating

- systems, (20| and (7], removes complexity from
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lower-level system components.
whose consequences are not yet clear, are
postponed and fixed at a higher (more
application-oriented) level in the system hierarchy.
Maybe that these design decisions are not fixed at
all within the operating system kernel, but rather
are fixed directly within the application context,
i.e. process. In each' case, lower-level system
components are more basic and can be used in
various contexts. The most essential aspect for
MIMD message-passing architectures is, that these
components encapsulate less software overhead
and, therefore, potentially consume less execution
time while being active.

Design decisions,

With respect to the discussion performed in the
previous subsection, the most fundamental
operating system component for an MIMD message-
passing architecture will be a simple message-
passing kernel. As a requirement for this kernel, 2
synchronous communication model is appropriate
if dispatching of light-weighted processes is

supported. On  this basis, asynchronous
communication models can be implemented on the
runtime system library level, for example.

Buffering of messages is local to this level, too,



with the consequence that no address space
boundaries are crossed while the message is copied
into the message buffer and that memory resource
allocation problems always are bound to the
application process instead of being fixed within a
central system component. Applications which do
not need a no-wait send semantic for
communication can directly go the fastest possible
way an operating system can provide for in order
to enable inter-process communication. This is the
case for all operating system interactions.

3.4. Actual System Structure

The operating system family concept
presupposes some kind of object-oriented system
design. Service encapsulating system components
are required to reside within an own context and
these components must be addressable in a unique

way. Processes are the appropriate tools for
representing these components. Both
requirements, maintaining a context and

addressing a service, are fulfilled using a single
mechanism. In order to design a
decentralized /distributed operating system, this
aspect is a natural consequence at all.

A process-oriented operating system has many
advantages. It is not only appropriate to support
the design of an application-oriented and
distributed operating system, but also to support a
fault-tolerant system design. As noted in [21], the
actual structure of a system is one important
requirement for making it fault-tolerant.
Especially for SUPRENUM it is, important to
maintain operating system functionality even in
the case of host crashes. Single system services,
represented by autonomous processes, can be
migrated onto other hosts, thus keeping the entire
system working. Furthermore, there. is o
fundamental difference in making application
systems and parts of an operating system fault-
tolerant. See [22] for more detail.

3.5. Communication Protocols

MIMD message-passing architectures are based on
a communication network which inter-connects the
various processing nodes. A communication
system controls the interactions between processes
distributed over these nodes. Generally, this
communication system is constituted by a multi-
level protocol hierarchy.

On the most basic level, simple message/data

transfer functionalities are observed, whereas
another level is responsible for network~wide
process synchronization/dispatching. On top of
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this, a remote procedure call protocol is layered, at
least controlling access to operating system
services. Above that, a naming protocol is settled
in order to address service encapsulating operating
system processes, for example. Observing the
SUPRENUM architecture in some more detail, inter-
networking is required because of two different
communication busses, inter-connected by the
communication node. This makes another
protocol level necessary which has to deal with
SUPRENUM-specific gateway activities, especially
maintaining routing tables up-to-date.

This 5-level example is typical for a machine
like SUPRENUM. Each of these levels implement a
problem-oriented communication protocol. In
order to achieve good communication performance,
i.e. reducing host-relative processing time of a
communication request, traveling through all of
these protocol layers must be avoided with each
application-initiated ~ communication  request.
Following the concept of a family of operating
systems, each protocol levél can be considered of
being a service the communication system
provides. Depending on the functionality requnred
the process decides what communication service to
use, i.e. attaching what protocol level. This means
to provide for problem-oriented communication
services in an application-oriented way.

4. The PEACE Software Architecture

PEACE is a decentralized/distributed process
execution and communication environment based
on a process-oriented system architecture. A
multi-level hierarchy of system processes provides
for operating system services in an application-
oriented way. This section describes by .what
means the PEACE operating system is constructed
and gives an excerpt about the hierarchy of system
processes. In (23|, a detailed discussion of the
PEACE operating system structure can be found.

4.1. Building Blocks

In PEACE, operating system services are
provided by processes. These processes, i.e. the
services, are encapsulated by teams. Following

the pattern of THOTH [4], a PEACE team is the
notion  for  grouping several light- -weighted
processes. These processes is given a common
execution domain which is qualified by the same
access rights onto all objects owned by the team.
Objects are memory segments, files, devices just as
processes and processors, i.e. resources typically
managed by an operating system. In this sense, a
team is the traditional heavy-weighted process



which, for example, is scheduled as a single unit by
an operating system.

In addition to the common execution domain, a
PEACE team serves for two other purposes. First,
it represents the unit of distribution. Second, it is
the building block of the operating system, i.e. it
encapsulates operating system services. As
illustrated with AMOEBA [17|, several light-weighted
processes, encapsulated by the same team, may be
responsible in PEACE for executing services
provided by the team. On this basis, concurrent
execution of services within a single team is
enabled, because with each light-weighted process
a unique thread of control is implemented.
Switching between these processes is extremely
fast. On SUPRENUM, an intra-team user level
process switch, controlled by the PEACE kernel,
takes about 50 psec.

4.2. Inter-Process Communication

According to a remote invocaiion send model of
communication [11], 84 byte fixed-size messages
are exchanged between peer processes on a send-
receive-reply basis. Once a process (the server)
received a message from a peer process (the client)
and has not yet replied to the client, arbitrarily
sized data streams may be transferred between
client and server team. This transfer activity is
controlled by the server team on the basis of
movefrom/moveto primitives. In terms of PEACE,
a high-volume data transfer is performed. Each
message exchange just as data transfer is
network-wide.

As illustrated with v [5], this principle avoids
temporary buffering of message/data streams
within low-level communication systems. This
fact is independent from local or network-wide
communication. With respect to the address
spaces of peer teams, transfer of message/data
streams is always of end-to-end significance.
Buffering of messages is only required if low-level
network hardware interfaces impose certain
alignment restrictions on the data items to be
transferred.

Asynchronous communication principles are
implemented wusing two fundamental PEACE
mechanisms, namely light-weighted processes and
the primitives for message-passing and high-
volume data transfer. The light-weighted
processes are used in order to establish an address
space inter-connection between peer teams.
Technically, a non-terminated rendezvous between
peer light-weigthed processes, encapsulated by
different teams, enables this connection. Because
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high-volume data transfer, on the basis of
movefrom/moveto, is a non-blocking activity in
PEACE, a no-wait send semantic of communication
between peer teams is achieved.

4.3. Message-Passing Kernel

The fundamental PEACE system component is
the  mesgsage-passing  kernel. The major
functionality of this component is to provide for
network-wide inter-process communication and
high-volume data transfer. In addition to this
functionality, dispatching of light-weighted
processes just as scheduling of teams is supported.
Processor multiplexing is always bound to a single
object, which means that with each process an
own dispatching and with each team an own
scheduling strategy can be associated. What
strategies are actually known to the kernel is fixed
at  configuration = time. During  runtime,
dispatching and scheduling strategies may be
dynamically changed for a process and team,
respectively. There is no need in PEACE for a
host-relative, central and overhead-prone
scheduler/dispatcher.

Another aspect considered is low-level device
management. For this purpose, the massage-
passing kernel implements two abstraction
mechanisms, namely:

e trap/interrupt propagation on a message-
passing basis

e device driver interaction on a remote

procedure call basis

The reason for both mechanisms is to propagate
hardware-specific events, which are represented by
traps and interrupts, just as to interact with low-
level device drivers on a network-wide basis.
Remote device access mechanisms are provided in
a uniform way, independent if device management
really is a host-relative activity.

Basically, a device is represented by a process,
thus possessing a system-wide unique process
identifier. This process is called in PEACE device
deputy and is source of a message-passing activity
in case of interrupt propagation. In order to
propagate an interrupt, the device deputy is
requested to send a message to some interrupt-
serving (more application-oriented) system process.

The remote procedure call interface of the
PEACE message-passing kernel is implemented by
at least one light-weighted process, the ghost.
This process is always present on each host and
constitutes the kernel team. Depending on kernel
configuration parameters, additional light-weighted



processes, each one implementing a remote
procedure call interface on jts own, may be
encapsulated by the original kernel team. Each of
these processes is responsible for providing
configuration-dependent kernel services, such ag
host management, low-level address space and
process management, network driver management,
low-level device management, and so on. The
main  functionality of these low-level ‘kernel
services is to provide for an abstraction level from
hardware-specific details, only.

In addition to the remote procedure call
interface(s) of the kernel team, there is a local
interface which is comparable to typical system
call interfaces of procedure-oriented operating
systems. By this local interface, message-passing
just as high-volume data transfer primitives are
accessible. These primitives are provided by the
nucleus of the PEACE message-passing kernel and
are directly accessible by user as well as system
processes. The nucleus is the most basic PEACE
system component whose services are not provided
on the basis of remote procedure calls - these
services are used in order to implement remote
procedure calls. All other PEACE services are
accessible on a remote procedure call basis, only.

4.4. Process Identification and Naming

One of the most critical aspects of distributed
systems is how to identify and address processes.
Identification and addressing mechanisms directly

influence inter-process communication performance -

- and performance is predominant in PEACE. In
the following it is explained by what means
processes are identified and addressed, and on
what level network-transparency is achieved.

4.4.1. Absolute Addressing

Processes are addressed by unique process
identifiers. Following the pattern of v, a PEACE
process identifier is represented as a low-level
pathname and consists of the triple {host, team,
task} , whereby the single members have the
following meaning:

host s a  system-wide unique host
identification, denoting either a physical
or logical host (processor), depending on
the actual system configuration;

team i3  a  host-relative unique  team
identification, denoting a heavy-weighted
process, i.e. a team;

task is g team«reiativ_e unique  task
identification, denoting a light-weighted
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process.

For the ease of handling, a PEACE process identifier
always fits into a single register of the underlying
processor. For SUPRENUM, this means a 32-bit
process identifier, evaluating the triple with the
maximal accounts of (8192, 64, 256} As g
consequence, with this maximal configuration,
PEACE can support upto 2% processes - surely
enough for the support of very massive parallel
programs.

Given a process identifier, the team and host
membership of a process can be directly
determined. As a consequence of this organization,
the PEACE process identifier is a handle how to
locate a specific process object within network
environments, absolutely and efficiently.  All
PEACE message-passing primitives use a process
identifier in order to select the corresponding
communication partner, i

4.4.2. Relative Addressing

Abstraction from team and host membership of
a process is achieved by the PEACE naming facility.
This facility associates symbolic names with
process identifiers.

Names exported by processes constitute the
PEACE name space which is structured into one or
more name planes, according to the SUPRENUM
architecture. This means the presence of at least
four different name plane types:

o the node name plane contains all names
defined relative to a specific node;

* the cluster name plane makes names globally
known to all nodes of a cluster and defines
cluster-relative names;

o the Ayper-cluster name plane contains names
relative to a sSUPRENUM row/column of
clusters;

e the system name plane contains all names
unique within SUPRENUM, including the unx
host machines.

The PEACE naming facility is applied by the
remote procedure call system to name services
provided by processes. Asking for a service name
results in the delivery of the associated process
identifier. The process identifier then denotes a
service access point which is the target of a
message-encoded remote procedure call request.



4.5. Process Hierarchy

The actual structure of PEACE consists of several
system processes, each one providing dedicated
services to  higher-level system/application
processes. A hierarchical and process-oriented
operating system structure is accounted. This

structure identifies 10 functional layers, as shown
in figure 3.

Figure 3.

Interactions between processes are based on remote

procedure calls and, thus, being network-
transparent. The actual structure of PEACE is
expressed in terms of a blocking graph, as

illustrated with the THOTH design. For the ease of
illustration, the inter-relationships to the name
server and the ghost are intimated, only, because
all higher-level PEACE system processes apply level
1 and level 0 system services. In the following, the
functionality of each of these system processes is
explained, short.

-~The ghost assists the PEACE message-passing
kernel in providing a scaled down remote
procedure call interface. Level 0, i.e. the kernel
team, of the PEACE system hierarchy represents the
kernel space, which in turn means privileged
mcB8020 supervisor mode. All other system
processes run in the so called team space, which in
turn means non-privileged mc68020 user mode.

The name server provides basic naming services
and allows for the manipulation of the mapping
between a service name and the corresponding
server. In PEACE this functionality is termed name
replugging and is signaled as a system specific
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exception.  Signaling this exception will be
performed by the name replugger. Both processes
are encapsulated by the same team, thus sharing
the same knowledge.

The process server and address space server

provide low-level and per-node process
management and address space management
functionalities. The MMU server handles MMU

traps, propagated by the kernel, and therefore is
placed side by side with the address space server in
the same team.

The team server represents the interface to the
application level for process and address space
management. The loader does so for loading new
programs or program fragments. Additionally,
this system component controls termination of
processes/teams and signals these events as well as
creation of processes/teams in form of system
specific  exceptions. Both  processes are
encapsulated by the same team.

The panic server catches all non-served traps as
propagated by the message-passing kernel and
initiates the proper distribution of these
exceptional events.

The clock server, the tty server, the net server,
and the disk server are responsible for enhanced
device management. Each of these processes is
assisted by at least one device deputy, thus being

‘able to receive messages, i.e. interrupts, from

devices. The file server implements a UNIX-like file
system interface. It is designed to allow for remote
file access from any node.

The signal server enables propagation of specific
exceptions relative to a UNIX-like process group, i.e.
a job. Just as traps and interrupts are propagated
on a message-passing basis,
propagation/distribution of user/system defined
exceptions, i.e. signals, is handled in the same way.
Because message-passing is network-wide, signal
propagation is also.

5. Performance Measurements

In this section, performance of the PEACE
message-passing kernel is illustrated. Foundation
for the measurements was a SUPRENUM prototype
consisting of 5 nodes. Each node was equipped
with a 18 MHz Motorola mc68020 with 1.5 wait
states for each memory access. In addition to
that, the cluster bus communication coprocessor
interface was software emulated. The following
subsections present the results of benchmark
sequences executed on this SUPRENUM prototype.
In [24] a more detailed analysis of these results is



given.

5.1. Timing

Basically, communication performance of PEACE
is determined by two separate mechanisms, namely
message-passing and high-volume data transfer.
In addition to this, timing parameters must be
considered which are related to general operating
system activities. For example, these parameters
determine the overhead for context switches
between wuser and supervisor mode, argument
passing, interrupt management, process
dispatching/scheduling, and so on.

In PEACE, the nucleus call overhead produced
while switching from user to supervisor space,
including argument passing, is accounted with
25 psec. The same timing holds for the activation
of device driver modules in case of incoming
interrupts. Total interrupt management overhead,
including  synchronization  and propagation
activities and excluding device driver activities,
takes 100psec. A user level process (context)
switch is performed within 50usec. Not
considering the nucleus call overhead, 25 jsec are
accounted for the actual process dispatching
activity within the PEACE nucleus.

A local message-passing activity distinguishes
between intra-team and inter-team inter-process
communication. Exchanging 64 byte fixed-size
messages on a send- receive- reply basis takes
345/385 psec for intra/inter-team communication,

respectively. This timing includes three nucleus’

calls just as two dispatching activities, with a total
overhead of 125 pusec. The 40psec difference
between inter-team and intra-team message-
passing performance is due to team
scheduling/dispatching.

Presently, for remote message-passing activities
two different network interfaces are available with
the SUPRENUM prototype and are supported by
PEACE. A send-receive-reply sequence over
ETHERNET is accounted with 1.2 msec, whereas
2.03 msec are measured for the actual SUPRENUM
cluster bus. That cluster bus communication is of
relative low performance is due to a software
emulation package which virtualizes the cluster
bus communication coprocessor.

Although cluster bus communication presently
is based on a software-emulated and low-level word
transfer  protocol, a net bandwidth of
3.2/4.9 Mbytes/sec for a  movefrom and
2.7/4.6 Mbytes/sec for a moveto is accounted in
case of exchanging 16/84 Kbyte segments over the
cluster bus. The raw remote movefrom/ moveto
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overhead is determined with 1.57/2.38 m sec,
respectively. For a local activity, 80 psec of
overhead is accounted for each of these primitives.

5.2. Analysis

Especially for the assessment of remote
operations, it is important to notice that,
presently, a software emulated word fransfer
protocol interfaces the PEACE nucleus to the

SUPRENUM cluster bus. This protocol is migrated
into firmware, i.e. microprogram, once the
appropriate hardware features are implemented on
a SUPRENUM node. By now, this emulation
package produces an overhead of at least 500 p sec
if a single message-passing kernel packet is sent to
peer protocol entities, not counted interrupt
latency. Presently, this overhead determines the
per-node interface penalty of a single message
setup for a transfer of each one of these packets.

Avoiding the interface penalty by a
microprogram implementation of the word transfer
protocol, it is expected to achieve a timing for
remote operations which is approximately 38 % of
that of the currently accounted one. Considering
the message-passing performance, this would mean
a rendezvous timing of approximately 730 p sec.
In a similar way, the movefrom/moveto setup
timing is expected of being less than 565/856 4 sec,
respectively.,

In the SUPRENUM prototype presented so far,
inter-cluster communication is achieved by a
PEACE message-passing kernel based on ETHERNET.
This kernel performs a remote rendezvous, i.e. a
send - receive - reply sequence, within 1.2 Im sec,
without being carefully tuned on the network
driver level. A comparison of this kernel release
with the fastest message passing kernels (namely v
and AMOEBA) which are based on similar processor
architectures, i.e. various mc68020 host processors
inter-connected by ETHERNET or ETHERNET-like
networks, shows that PEACE is one fo the fastest
message-passing systems [18].

6. Related Works and Cohcluding Remarks

Since the first SUPRENUM prototype, in the
meantime a system configuration consisting of two
clusters, with a total of 17 nodes, was introduced.
In this system, the PEACE message-passing kernel
and name server provides a runtime environment
for an ETHERNET server, UDP server, graphic
server and a distributed application computing
fractale Mandelbrot sets. This application is
structured into a total of 32 computing processes,
distributed over 16 nodes. Each result of these



processes either can be displayed on a graphic
workstation or can be transmitted on a remote file
access basis to UNIX.

Basing on this PEACE release, dynamical process
and address space management services are tested,
now. Following the pattern of (28] and [30], team
migration concepts are developed for PEACE [22],
which provide for a common basis for load
balancing just as checkpointing and recovery. A
hardware/software diagnosis system (8] is designed
for SUPRENUM/PEACE maintenance purposes,
respectively. Based on a similar approach as
illustrated in (14|, 2 monitor system is going to be
developed for making on-line performance analysis,
load balancing, remote procedure call monitoring
and debugging feasible in PEACE. The PEACE
communication system is expanded by inter-
networking functionalities, especially with the
maxim of maintaining network-transparency on a
remote procedure call basis. The naming system is
expanded, too, step-by-step as complexity of
distributed /decentralized user/system applications
will increase. And finally, a UNIX host interface is
integrated into PEACE just as providing a unix-like
gystem call interface.

With its fundamental design aspects, PEACE is
comparable with v [5| and AMOEBA [17). With
respect to its message-passing performance, PEACE
is superior to these systems [18]. Although v as
well as AMOEBA are used within completely
different environments than associated with PEACE,
the fundamental synchronous message-passing
principle common to each of these systems proves
to be the most efficient one in an MIMD message-
passing architecture. In addition to this, at least
with v, just as AMOEBA, experiences have shown
that synchronous rmmessage-passing is more
fundamental and more efficient when compared to
asynchronous message-passing, and that
parallelism should be increased on the basis of
light-weighted processes, instead of overloading a
communication mechanisms. Because all these
experiences, there is no doubt that PEACE is the
appropriate process execution and communication
environment for SUPRENUM.
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