CONPAR 88
UMIST, Manchester, UK, September 12-16, 1988

The Distributed PEACE Operating System and its -
Suitability for MIMD Message-Passing Architectures

Wolfgang Schroder

German National Research Center for Computer Science
GMD FIRST, Berlin, FRG

1. Introduction

Excellent communication performance of highly parallel MIMD multi-computer systems is
predominant. These systems are by definition message-based and distributed systems. In order
to make distributed systems work, a very careful and modular operating system design is
required [10]. In addition to that, unless good performance is achieved, the resulting system
will not be used. Therefore, a successful operating system design for large MIMD multi-
computer systems —i.e. for distributed computer systems, in general— has to reflect both
aspects.

The distributed operating system described in this paper consequently follows the concept
of a "family of operating systems", as described in [14]. The result is a distributed "process
execution and communication environment", PEACE, which makes the performance of MIMD
message-passing architectures "directly” available to the application level. The hardware
environment for PEACE is SUPRENUM, a MIMD message-passing super-computer based on a
distributed hardware architecture [1].

The purpose of this paper is to explain the fundamental PEACE design concepts and to give
an excerpt of the overall PEACE operating system structure. As a supplement to the scope of
this paper, a general overview of the SUPRENUM architecture is given in [5] and the illustration
of SUPRENUM hardware building blocks is presented in [2].

2. Fundamental PEACE Concepts

In the following subsections a rationale for fundamental PEACE concepts is given. For this
purpose, several operating system requirements are discussed which are specific to SUPRENUM.

2.1. Reduction of Software Overhead by a Careful System Design

As analyzed in [6] for communication networks based on ETHERNET [8], which are of low
network bandwidth when compared with the SUPRENUM network system, the major
communication bottleneck is the network interface. On the hardware level, this bottleneck is

" This work was supported by the Ministry of Research and Technology (BMFT) of the German Federal
Government under Grant No. ITR 8502 A 2.



specified by the functionality of a network or direct memory access controller. On the
software level, this bottleneck is specified by network driver functionalities just as the
semantics of inter-process communication primitives.

The operating system designer is particularly faced with the problem of mapping higher-
level communication interfaces onto lower-level network interfaces, and vice versa. Obviously,
there is a semantical gap between these two interfaces and the optimal situation will arise if
this gap is only of conceptual nature and will not be technically present, any more. On
principal, the larger this semantical gap is the more mapping overhead is accounted within an
operating system, i.e. the communication subsystem. As a consequence, overall
communication performance just as processor utilization for application programs will drop.

One solution in order to overcome this problem is to claim that faster hosts are needed.
The more sensible solution, which is followed with the PEACE design, is trying to avoid these
problems by a careful system design which is free of those performance bottlenecks. To give
an example from the early days of operating system design, performance of paging systems
was not significantly improved on the basis of faster disks, but new scheduling and paging
algorithms and techniques were responsible for the performance gain. The same holds for
improving performance of communication systems. The need for faster hosts is only justified
if the designer is sure that there is no other way to go around the performance bottleneck. In
this sense, hardware requirements should be stated late in software system design.

2.2. A Family of Operating Systems

Reducing overall operating system software overhead is the major goal to improve
communication performance for MIMD message-passing architectures. First of all, this
overhead is a question of the actual operating system structure. Tuning the implementation of
a specific system module is of secondary importance, because only in case of a well defined
system structure, selective tuning (i.e. re-implementation) is possible.

The design principle of a family of operating systems shows how to build an operating
system in which the most common and frequently used system modules are by definition free
of software overhead. In PEACE, design decisions, whose consequences are not yet clear, are
postponed and fixed at a higher (more application-oriented) level in the system hierarchy.
Maybe that these design decisions are not fixed at all within the operating system kernel, but
rather are fixed directly within the application context, i.e. process. In each case, lower-level
system components are more basic and can be used in various contexts.

2.3. Process Structuring

The operating system family concept presupposes some kind of object-oriented system
design. Service encapsulating system components are required to reside within an own context
and these components must be addressable in a unique way. Processes are the appropriate
tools for representing these components. Both requirements, maintaining a context and
addressing a service, are fulfilled using a single mechanism. In order to design a
decentralized/distributed operating system, such as PEACE, this aspect is a natural consequence
at all.



A process-oriented operating system has many advantages. It is not only appropriate to
support the design of an application-oriented and distributed operating system, but also to
support a fault-tolerant system design. As noted in [15], the actual structure of a system is
one important requirement for making it fault-tolerant. Especially for SUPRENUM it is
important to maintain operating system functionality even in the case of host crashes. Single
system services, represented by autonomous processes, can be migrated onto other hosts, thus
keeping the entire system working. Furthermore, there is no fundamental difference in making
application systems and parts of the PEACE operating system fault-tolerant.

2.4. A Family of Communication Protocols

MIMD message-passing architectures are based on a communication network which inter-
connects the various processing nodes. A communication system controls the interactions
between processes distributed over these nodes. Generally, this communication system is
constituted by a multi-level protocol hierarchy.

On the most basic level, simple message/data transfer functionalities are observed, whereas
another level is responsible for network-wide process synchronization/dispatching. On top of
this, a remote procedure call protocol is layered, at least controlling access to operating system
services. Above that, a naming protocol is settled in order to address service encapsulating
operating system processes, for example. Observing the SUPRENUM architecture in some more
detail, inter-networking is required because of two different communication busses, inter-
connected by the communication node. This makes another protocol level necessary which has
to deal with SUPRENUM-specific gateway activities, especially maintaining routing tables up-to-
date.

This 5-level example is typical for a machine like SUPRENUM. Each of these levels
implement a problem-oriented communication protocol. In order to achieve good
communication performance, i.e. reducing host-relative processing time of a communication
request, traveling through all of these protocol layers must be avoided with each application-
initiated communication request. Following the concept of a family of operating systems, each
protocol level can be considered of being a service the communication system provides.
Depending on the functionality required, the process decides what communication service to
use, i.e. attaching what protocol level. This means to provide for problem-oriented
communication services in an application-oriented way.

2.5. Achieving Concurrency on the Basis of Processes

Many MIMD application systems are based on the asynchronous model of inter-process
communication, i.e. the no-wait send [7]. Several application programmers claim that this
model is more fundamental, more efficient and increases parallelism [9]. Considering the
implementation of this model in more detail, as done by a system programmer, one can
observe that the aspect of being fundamental and efficient is no longer valid. In contrast to a
synchronous model, with a remote invocation send or synchronization send semantic [7],
message buffering is necessary, which requires additional memory management activities. In
addition to that, message buffer often are completely copied instead of simply exchanging
descriptors, in which case buffer descriptor management is required, only. In the most cases,



reliable communication is expected, instead of simple datagram services, which significantly
increases communication costs. All these activities are executed by the host, steeling processor
cycles for solving the original MIMD application problem.

Just as application processes, executed by an MIMD message-passing machine, communicate
by the means of messages, processes constituting the distributed/decentralized operating system
will have to do so. This especially means that operating system requests are message-encoded.
It is widely accepted to invoke these requests on the basis of remote procedure calls [13].
This technique implies remote invocation send semantics. Implementing remote procedure
calls on the basis of no-wait send increases communication protocol overhead and, thus, is to
the debit of operating system as well as application system performance.

With respect to the semantics of fundamental primitives for inter-process communication,
there are two different concerns when considering higher-level distributed MIMD applications
and lower-level distributed operating systems. Common to both levels is the communication
aspect and the only difference is due to concurrency. In this situation, separation of concerns
would mean to separate the communication mechanism from the concurrency mechanism. As
noted in [12], it is sensible to implement concurrency by the means of processes instead of
messages. Nearly all state-of-the-art operating systems follow this design rule by implementing
the concept of light-weighted processes sharing the same address space. With THOTH [3] this
concept was successfully implemented for a real-time environment, a traditional domain for
asynchronous communication mechanisms. One of the most recent operating system examples
is MACH [18], which supports concurrency within MIMD programs on the basis of multiple
threads . With PEACE, similar concepts and design decisions are given.

3. Design Decisions for the PEACE Operating System

Generally, a multi-level hierarchy of system processes provides for operating system
services in an application-oriented way. This section describes by what means the PEACE
operating system is constructed. In [16], a more detailed discussion of the PEACE operating
system structure can be found.

3.1. Light-Weighted Processes and Teams

In PEACE, operating system services are provided by processes. These processes, i.e. the
services, are encapsulated by teams. Following the pattern of THOTH, a PEACE team is the
notion for grouping several light-weighted processes. These processes is given a common
execution domain which is qualified by the same access rights onto all objects owned by the
team. Objects are memory segments, files, devices just as processes and processors, i.e.
resources typically managed by an operating system. In this sense, a team is the traditional
heavy-weighted process which, for example, is scheduled as a single unit by an operating
system.

In addition to the common execution domain, a PEACE team serves for two other purposes.
First, it represents the unit of distribution. Second, it is the building block of the operating
system, i.e. it encapsulates operating system services. As illustrated with AMOEBA [12], several
light-weighted processes, encapsulated by the same team, may be responsible in PEACE for
executing services provided by the team. On this basis, concurrent execution of services



within a single team is enabled, because with each light-weighted process a unique thread of
control is implemented. Switching between these processes is extremely fast. On SUPRENUM,
an intra-team user level process switch, controlled by the PEACE kernel, takes about 50 pusec.

3.2. Two Separate Communication Mechanisms

According to a synchronous request—response model of communication, 64 byte fixed-size
messages are exchanged between peer processes on a send-receive-reply basis. Once a process
(the server) received a message from a peer process (the client) and has not yet replied to the
client, arbitrarily sized data streams may be transferred between client and server team. This
transfer activity is controlled by the server team on the basis of movefrom/moveto primitives.
In terms of PEACE, a high-volume data transfer (hvdt) is performed. Each message exchange
just as data transfer is network-wide.

As illustrated with V [4], this principle avoids temporary buffering of message/data streams
within low-level communication systems. With respect to the address spaces of peer teams,
transfer of message/data streams is always of end-to-end significance. Buffering of messages
is only required if low-level network hardware interfaces impose certain alignment restrictions
on the data items to be transferred.

Asynchronous communication principles are implemented using two fundamental PEACE
mechanisms, namely light-weighted processes and the primitives for message-passing and
high-volume data transfer. The light-weighted processes are used in order to establish an
inter-connection between peer teams, thus exchanging hvdt access right. Technically, a non-
terminated rendezvous between peer light-weigthed processes, encapsulated by different teams,
enables this connection. Because high-volume data transfer, on the basis of movefrom/moveto,
is a non-blocking activity in PEACE, a no-wait send semantic of communication between peer
teams is achieved.

3.3. A Small and High-Performance Message-Passing Kernel

The fundamental PEACE system component is the message-passing kemel. The major
functionality of this component is to provide for network-wide inter-process communication
and high-volume data transfer. In addition to this functionality, dispatching of light-weighted
processes just as scheduling of teams is supported. Processor multiplexing is always bound to
a single object, which means that with each process an own dispatching and with each team an
own scheduling strategy can be associated. What strategies are actually known to the kernel is
fixed at configuration time. During runtime, dispatching and scheduling strategies may be
dynamically changed for a process and team, respectively. There is no need in PEACE for a
host-relative, central and overhead-prone scheduler/dispatcher.

The remote procedure call interface of the PEACE message-passing kernel is implemented
by at least one light-weighted process, the ghost. This process is always present on each host
and constitutes the kernel team. Depending on kemel configuration parameters, additional
light-weighted processes, each one implementing a remote procedure call interface on its own,
may be encapsulated by the original kemel team. Each of these processes is responsible for
providing configuration-dependent kernel services, such as host management, low-level address
space and process management, network driver management, low-level device management,



and so on. The main functionality of these low-level kemnel services is to provide for an
abstraction level from hardware-specific details, only.

In addition to the remote procedure call interface(s) of the kemel team, there is a local
interface which is comparable to typical system call interfaces of procedure-oriented operating
systems. By the means of this local interface, message-passing just as high-volume data
transfer primitives are accessible. These primitives are provided by the nucleus of the PEACE
message-passing kemel and are directly accessible by user as well as system processes. The
nucleus is the most basic PEACE system component whose services are not provided on the
basis of remote procedure calls — these services are used in order to implement remote
procedure calls. All other PEACE services are accessible on a remote procedure call basis, only.

3.4. System-Wide Unique Process Identification and Naming

One of the most critical aspects of distributed systems is how to identify and address
processes (i.e. objects). Identification and addressing mechanisms directly influence inter-
process communication performance — and performance is predominant in PEACE.

Processes are addressed by unique process identifiers. Following the pattern of V, a PEACE
process identifier is represented as a low-level pathname and consists of the triple {host, team,
process}. Given a process identifier, the team and host membership of a process can be
directly determined. As a consequence of this organization, the PEACE process identifier is a
handle how to locate a specific process object within network environments, absolutely and
efficiently. All PEACE message-passing primitives use a process identifier in order to select the
corresponding communication partner.

Abstraction from team and host membership of a process is achieved by the PEACE naming
facility. This facility associates symbolic names with process identifiers. Names exported by
processes constitute the PEACE name space which is structured into one or more name planes,
according to the SUPRENUM architecture. This means the presence of at least four different
name plane types: node, cluster, hyper-cluster and system name plane. The PEACE naming
facility is applied by the remote procedure call system to name services provided by processes.
Asking for a service name results in the delivery of the associated process identifier. The
process identifier then denotes a service access point which is the target of a message-encoded
remote procedure call request.

4. On the Suitability for Message-Passing Architectures

So far, experiences drawn from implementing and running the first PEACE prototype
completely confirm the overal PEACE design for a MIMD machine like SUPRENUM. The most
important aspects covered by the prototype implementation are very high performance, good
modularization and flexibility.

The PEACE message-passing performance, i.e. a complete send-receive-reply sequence,
takes about 385usec. for local inter-team communication. For remote inter-team
communication, a 10 MBit ETHERNET configuration takes 1.2msec. and a configuration based
on a SUPRENUM cluster bus coprocessor software emulation takes 2.03msec. Using the final
firmware-based communication coprocessor, it is expected to perform remote inter-team



communication in less than 750 uwsec. In [17] a more detailed analyzation of PEACE prototype
parameters can be found.

These excellent performance parameters for a prototype implementation are the
consequence of the design principle followed with PEACE. The most fundamental PEACE
component, the message-passing kemel (more specifically, the nucleus), only is concerned with
communication aspects. Most essentially, however, is the fact, that this design principle made
it feasible at all to develop and complete an upward expandable process execution and
communication environment for a distributed hardware environment, namely for SUPRENUM.
At the one end, very early it was possible to drive first experiments, thus making first
experiences with distributed systems in general and SUPRENUM in particular. At the other end,
further system functionalities can be added, in terms of high-level and application-oriented
system processes, without loosing any communication performance.

5. Concluding Remarks

With its fundamental design aspects, PEACE is comparable with V and AMOEBA. With
respect to its message-passing performance, PEACE is superior to these systems [11]. Although
V as well as AMOEBA are used within completely different environments than associated with
PEACE, the fundamental synchronous message-passing principle common to each of these
systems proves to be the most efficient one in an MIMD message-passing architecture. In
addition to this, at least with V, just as AMOEBA, experiences have shown that synchronous
message-passing is more fundamental and more efficient when compared to asynchronous
message-passing, and that parallelism should be increased on the basis of light-weighted
processes, instead of overloading a communication mechanisms. Because all these experiences,
there is no doubt that PEACE is the appropriate process execution and communication
environment for SUPRENUM.

Acknowledgments

Several excellent computer scientists and students contributed to the successful design and
implementation of the PEACE prototype. Essential conceptual support came from Friedrich
Schon and Winfried Seidel. Without the support of Jorg Nolte and Lutz Eichler, the network-
oriented PEACE message-passing kermnel would not exist at this point in time. An ETHERNET
interface was implemented by Bernd Oestmann and Michael Sander, which made inter-
networking experiments by Thomas Patzelt and UNIX access possible, at all. Last but not least,
presently there is a residual crew of 12 excellent software engineers, all together working
towards completing and maintaining PEACE.

References

[1] P. M. Behr, W. K. Giloi, H. Miihlenbein: Rationale and Concepts for the SUPRENUM
Supercomputer Architecture, Gesellschaft fiir Mathematik und Datenverarbeitung
(GMD), 1986

[2] P. M. Behr, S. Montenegro The SUPRENUM Node-Computer, CONPAR 88, Manchester,
UK., 12th-16th September, 1988



[3] D. R. Cheriton: Multi-Process Structuring and the Thoth Operating System,
Dissertation, University of Waterloo, UBC Technical Report 79-5, 1979

[4] D. R. Cheriton: The V Kernel: A Software Base for Distributed Systems, IEEE
Software 1, 2, 1943, 1984

[5] W. K. Giloi The SUPRENUM Architecture, CONPAR 88, Manchester, UK., 12th-16th
September, 1988

[6] K. A. Lantz, W. 1. Nowicki, M. M. Theimer: An Empirical Study of Distributed
Application Performance, Technical Report STAN-CS-86-1117 (also available as CSL-
85-287), Department of Computer Science, Stanford University, 1985

[7] B. H. Liskov: Primitives for Distributed Computing, Procecdings of the Seventh ACM
Symposium on Operating Systems Principles, 33-42, 1979

[8] R. M. Metcalfe, D. R Boggs: Ethernet: Distributed Packet Switching for Local
Computer Networks, Comm. ACM, 19, 7, 395-404, 1976

[9] H. Miihlenbein, O. Kridmer, F. Limburger, M. Mevenkamp, S. Streitz: Design and
Rational for MUPPET - A Programming Environment for Message Based
Multiprocessors, Gesellschaft fiir Mathematik und Datenverarbeitung (GMD), 1987

[10] S. J. Mullender: Report on the Workshop on Making Distributed Systems Work,
ACM Operating Systems Review, 21, 1, 1986

[11] S. J. Mullender: The AMOEBA System - a Retrospect, International Workshop on
"Experiences with Distributed Systems", Kaiserslautern (West Germany), Sept. 28-30,
1987

[12] S. J. Mullender, A. S. Tanenbaum: The Design of a Capability-Based Distributed
Operating System, The Computer Journal,, Vol. 29, No. 4, 1986

[13] B. J. Nelson: Remote Procedure Call, Camegie-Mellon University, Report CMU-CS-81-
119, 1982

[14] D. L. Pamas: On the Design and Development of Program Families,
Forschungsbericht BS I 75/2, TH Darmstadt, 1975

[15] B. Randell, P. A. Lee, P. C. Treleaven: Reliability Issues in Computing System Design,
ACM Computing Surveys, Vol. 10, No. 2 (June), 1978

[16] W. Schroder: Concepts of a Distributed Process Execution and Communication
Environment (PEACE), Technical Report, GMD FIRST an der TU Berlin, 1986

[17] W. Schréder: A Distributed Process Execution and Communication Environment for
High-Performance Application Systems, Lecture Notes in Computer Science, 309,
J.Nehmer (Ed.), International Workshop on "Experiences with Distributed Systems",
Kaiserslautern (West Germany), Sept. 28 - 30, 1987

[18] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D.
Black, R. Baron: The Duality of Memory and Communication in the Implementation
of a Multiprocessor Operating System, ACM Operating Systems Review, 21, 5,
Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, Austin,
Texas, 1987



