Concepts of a Distributed
Process Execution and Communication Environment

(PEACE)

W. Schroder

Gesellschaft fiir Mathematik und Datenverarbeitung mbH
GMD FIRST an der TU Berlin
Hardenbergplatz 2
1000 Berlin 12

ABSTRACT

The software architecture of the SUPRENUM operating system is explained refer-
ing to the design decisions, met. It is shown, what techniques are used to real-
ize decentralized/distributed and fault-tolerant applications on top of SUPRE-
NUM. As a special case, the operating system itself is regarded to be such an
application. The fundamental techniques by which the system is constructed
are consequent process structuring and very efficient mechanisms for inter-
process communication using message-passing. The functional hierarchy of the
operating system is given and the responsibility of each system component is
explained, in short. It is exemplified how one can imagine to build up a
decentralized/distributed PEACE operating system and to achieve network tran-
sparent inter-process communication as well as addressing.

" This work is supported by the Ministry of Research and Technology {BMFT) of the German
Federal Government under Grant No. ITR 8502 A 2.

PEACE Table of Contents

Table of Contents

CHapier L lge@liclion & - ... i oo 1
11 FandamentallCORCEPES .. o e e s 1
12 The Bepice o BISibulEON =i ot e s e e 1
1.3; The Degreelob Eaa-oleranne: ..o o i et 2
TA@NeIVICw: - s b e e 3

Chapier-2: Basic GOmMPORENIS o0 oo i n e L G i 5
2.1 FunetiemallBlierarely: . o0 . ool o e 5
232 ThelNueleusees st cnvl oo i o s e e L6

2.2:1. Inter-Brocess COMMUHICAHOR - L o o e 6
22 BrocessIBMSpAteMBS v s oo s ek e s 8
225 Suldives DR WO o s s i bk s ik 9
224, By emupEBRopacaiOnes o s ne e s T 10
I TR SR e e e 11
P s s SRR e s e SR Sl 12
25 iheiNIenlonySSErRver o= fo iiac il s e i i e e 15

Chagiietr 3 (DARERICINE CRBONOIIE ... hoiiniioin s oo i it ikt esb sh e L7
Sl oA e e i s A e s e 17
32 T T R e e s e s s v 19
33 hecSiowaltAdsmRiSIator = e e e e e 20

S50 Devnal PremSiem RIDAEE i i s e s e e 20
S N BRI, . e e s b e e 21
Seed Mt Eastane - e s e ien el el e e s e 22
38 THe N BNE o et e s 75
35 The Adiiest SES SIIINIEIIE oo coeieiion iosnins onmen st e sm s s sesins v 24
30 THE TN R e e 24
21 TN AN e 25
I TR T AR I . e 25
Jel THeBE AR . i R e 26

Chapterd: Netwole heanSparency .. oteoh = L 0 id e a2 e e o e 28
S T L SRS . i e s s 28
4.2 Remote Semvive MV@Eation: .. hin ol v e el L 29
4.3 Inter-Node Inter-Process Coimmunieadon oo 0 30

PEACE Table of Contents

463 BiskNode Breakdown: .- ..o o L 39
4:64. Bigoaestic Node Breakdown' .-~ .. 0 L 40
Ghipter St Bullding Bloeks: - 5.0 0 h s s 42
J.1. AUOPLAUOIL OL FTOCCSSECS .irveieriiirrranrssnaraentssssirssnsssssrssesssssssssssrssossssnssssstassasssnsssansasasssnnsess 4L
SEACCOUBNNG: - e e s i 42
5.1.2. Exceptional Temnination of ReNAeZVOMSol i csiiaeaeniisnsnnee s 3

S2 AdoplaeR BESERVICES o e s 44
2% Sepaece BHQGalon o0 - 00 o 45

S>3 PrepasaliongolRSionale: . oo D as i L e 45
531 Conmelnf €heclpeimling .5 ool i e e 46
CHaner: BN i i e i e e e 48

o B E Re e s e R E S S G T S G e 49

Chapter 1

Introduction

The PEACE operating system is designed to use SUPRENUM [Behr et al. 1986] as a versatile
virtual machine. It is this virtual machine that hides the fact of a complex multi-computer
system from the application level. On the other hand, the network architecture of such a
system is made visible to the application level to take advantage of the specific hardware
architecture. Thus network transparency is achieved as well as dedicated and network oriented
applications are supported.

In this paper the fundamental concepts and the functional hierarchy of PEACE are explained.
Techniques are illustrated that allow for the construction of a high flexible operating system as
well as application systems.

1.1. Fundamental Concepts

The design of PEACE has deeply been influenced by THOTH [Cheriton 1979]. Process
structuring is the key to realize the PEACE operating system and message-passing is used as the
fundamental inter-process communication mechanism. The concepts of V [Cheriton 1984] are
the prototypes for the design of a decentralized/distributed and runtime efficient operating
system. This is also valid for the design of applications intended to run on top of PEACE. The
fundamental ideas about how one can hierarchically structure an operating system are taken
from [Parnas 1975] and [Habermann et al. 1976].

With MOOSE [Schroeder 1986] it has been exemplified how to can construct a hierachically
and process structured system that can be well suited to any application complex and which is
based on message-passing. The basic mechanisms of MOOSE, especially the idea of consequent
service structuring and service encapsulation by processes, are used to allow the dynamical
reconfiguration of PEACE. These facilities are fundamental to the distribution and fault-
tolerance of applications running on top of PEACE and of the PEACE operating system itself.

1.2. The Degree of Distribution

Due to the SUPRENUM hardware architecture at least a decentralized operating system must
be realized. It suffices to provide mechanisms for remote service invocations in a fashion of
remote procedure calls [Nelson 1982]. With respect to system services, there is no cogent
necessity for a really distributed PEACE, e.g. by replication of primary data structures of the
operating system.

PEACE Introduction

System services, e.g. the creation or destruction of processes, are provided to the
application level by dedicated system processes. These services are often composed from a set
of internal and more basic services, which are itself provided by other system processes. The
processes necessary to realize a system service, requested from the application level, need not
reside on the same processor. It is the characteristic feature of PEACE that a system service is
provided by a specific group of system processes and that these processes may be distributed
over a given processor network. A system service may be provided in a distributed fashion if
more than one system process is associated with the realization of the corresponding service
request.

Because of its process structuring, decentralizing or even distributing PEACE is a natural
consequence once the proper hardware architecture is given. With this respect, PEACE is a
more decentralized/distributed system than e.g. LOCUS [Popek et al. 1981] is. In contrast to
LOCUS, the typical operating system kernel is composed from a specific set of system
processes. These processes, and thus the kernel, may be distributed over the processor
network. There is no need in PEACE to condition each processor in a network with the same
kernel functions, as it is e.g. the case with LOCUS.

The ability of a distributed realization of system service is given by the hierarchical process
structuring of PEACE. Each system process provides some services to processes which are at a
higher level in the system hierarchy. System processes at a higher level request services from
lower level processes and may in turn provide specific services to higher level (system/user)
processes. There is a strong uses relation [Parnas 1974] between processes and the interactions
between processes are realized by remote procedure calls using the message-passing facility of
the PEACE nucleus. The remote procedure call model of PEACE hides the multi-computer
architecture of SUPRENUM. Each process complex that is responsible for some system service
may be associated with a dedicated processor (node). Passing the node boundaries, because of
a system or user initiated service request, is transparent to the processes.

1.3. The Degree of Fault-Tolerance

The main aspect to achieve fault-tolerance in PEACE is based on transaction oriented
checkpointing and on the automatic generation of test sequences for the hardware as well as
for the software components of the system [Fabry 1973]. The software related aspects of
fault-tolerance will address both system and application processes.

The fault-tolerance of the system is defined by system processes which realize specific
functionalities (e.g. checkpointing and recovery). The nucleus and very few low-level system
processes of PEACE are the only system components which must reside on each SUPRENUM
node. The functionality of these components is basic inter-process communication and the
low-level aspects of naming, process creation/destruction and address space management.
More complex functionalities are realized by high-level system processes, which may be
located only on a specific subset of all available nodes.

Y eg. the management, control and loading of jobs, deadlock detection and resolving, scheduling, pro-
pagating and handling of system specific exceptions, file handling, i/o management, etc.

PEACE Introduction

The result of the consequent process structuring of PEACE is the very small size of system
components. Additionally, each system component is given its own address space, which in
turn is controlled by a specific set of processes. With that design decision a high secure
system can be realized, because potential malfunctions of system components, e.g. the
destruction of address spaces, are mostly of local nature. More specifically, the design of
PEACE follows the idea of a security kemnel, thus, once a formal specification is given,
providing the chance of verification of the most crucial operating system components [Millen
1976].

The most significant aspect in PEACE to achieve a good basis for fault-tolerant system
design is its consequent and actual structuring. As noted in [Randell et al. 1978], the
important characteristic feature of an "actual" structure is the constrained inter-relationship
between the system components. In PEACE the inter-relationship between system components
is realized by synchronous message-passing and system components are encapsulated by
processes. Replacement as well as reconfiguration strategies may be applicated to avoid, after
its detection, the further use of a faulty system component. These strategies are supported due
to the process oriented nature of PEACE, i.e. a faulty process (encapsulating a faulty system
component) may be replaced by another ("stand-by") process or may be destroyed and re-
created. These functionalities are at the system as well as the application processes’ disposal.

One of the characteristic feature in the design of PEACE is to postpone design decisions as
far as possible [Habermann et al. 1976]. With that means, design decisions for an actual
model of fault-tolerance, e.g. statical/masking or dynamical redundancy of system components,
are not included in the basic PEACE system structure. On the other hand, no design decisions
had been met which would exclude any of the known models of fault-tolerance. It is the
freedom of the system designer to realize specific and application oriented fault-tolerance
models by one’s own decision. That freedom is widely supported by the process structuring of
PEACE as well as by the very basic services each system component (process) provides. One
can say, on each level of system hierarchy fault-tolerance may be introduced, using specific
system processes, without effecting the existing system processes.

1.4. Overview

In chapter 2 the basic components of PEACE are introduced. The functional hierarchy
between these components is illustrated. It is shown in what way they are represented and
what functionalities they provide.

In chapter 3 the more powerful and application oriented system components of PEACE are
introduced. These components are termed "constructive components”, because they are the
building blocks of the operating system. Again, the functional hierarchy between them is
illustrated and their relation to the basic componentes of PEACE is shown. The functionality of
each constructive component is explained.

In chapter 4 a more enhanced model is introduced, which supports network transparency in
PEACE. It is shown how one can imagine to decentralize or even distribute PEACE over
SUPRENUM. The functionalities of specific system components for network communication are
represented. Additionally, a short discussion about the functionality of certain distributed

7

PEACE Introduction

constructive components takes place.

In chapter 5 some building blocks of PEACE are introduced in form of a short case study.
It is shown how one can build up its own system services without reducing the functionality of
the actual system. Each example gives a framework for representing in PEACE enhanced
operating system services as accounting, monitoring, deadlock prevention, audit trailing and
checkpointing.

PEACE Basic Components

Chapter 2
Basic Components
The basic system components of PEACE must reside on each SUPRENUM node. There are

four system components, represented by three system processes and the nucleus. In this
chapter these components and the functional hierarchy between them are illustrated, in short.

2.1. Functional Hierarchy
The basic system components of PEACE are the nucleus, the name server the process server

and the memory server. The nucleus takes the position of a shared library, i.e. its services are
invoked directly in a procedural fashion. There is no process switch performed if services of
the nucleus are invoked and if results of the executed service are returned to the requesting
process — although executing a nucleus service may involve a process switch, e.g. when

applying certain inter-process communication primitives. The other named components each
2)

are represented by dedicated system processes ™. Figure 2.1 gives the functional hierarchy of

the basic system components.

process
server

Figure 2.1: Basic system components

Common to all of these components is the address space switch upon requesting one of
their services. The address space switch along with a service request to the nucleus normally
is performed by hardware. A nucleus service is invoked by some trap instruction of the
processor, thus switching from user to kernel mode for the requesting process. In each mode
there is an own set of address space descriptors, as far as the processor supports this kind of
address space management.

2 In contrast to the nucleus, the service request to each of these processes, as well as returning results
from them, means a process switch.

PEACE Basic Components

A system service is invoked by a remote procedure call to the corresponding system
process. Moreover, the services of the nucleus are used to realize the remote procedure calls.
These services are composed from the primitives for inter-process communication [Schroeder
1987]. The requested system service is coded in some kind of message which is transmitted
by the nucleus on behalf of the requesting process, the client, to the providing process, the
server. The address space switch in this situation is realized by the process switch along with
the service request (the message transmission) and is performed by the nucleus.

The functional hierarchy shown is defined by the uses relation [Pamas 1974] between the
single system components, encapsulated by system processes. This representational model is
used throughout in this paper. Moreover, the uses relation between the system processes
reflects the way the processes will block on each other upon requesting some lower level
services. With this respect, the uses relation defines a blocking graph as applicated by
[Cheriton 1979] for the design of THOTH.

2.2. The Nucleus

The nucleus takes the lowest level (level 0) in the overall system hierarchy. The main
functionalities are inter-process communication, process dispatching, address space switching
and trap/interrupt propagation. All these functionalities are invoked from the requesting
processes by the trap sequence, supported by the used processor.

2.2.1. Inter-Process Communication

The mechanisms for inter-process communication are the basis for all system interactions
in PEACE. Therefore, special requirements are worth to a qualified model and to a runtime
efficient realization of the model. The fundamental concepts stem from THOTH.

Synchronous inter-process communication is supported by the primitives send and receive.
Between the sending process, the client, and the receiving one, the server, a rendezvous is
established, during which the transfer of data actually takes place. No structural requirements
are stated about the message format, except its fixed size length. With the reply primitive the
server normally terminates a rendezvous to a specific client. The relay primitive, applicated by
the server, initiates a new rendezvous for the client. Addressing is performed by the process
identification of the communicating processes.

The essential design decision taken with the inter-process communication model is that all
communication activities are of local nature. There is always a local server, which means, that
the nucleus needs only to handle local rendezvous. Remote rendezvous, i.e. rendezvous that
crosses node boundaries, are handled by dedicated system processes. The multi-computer
architecture is completely transparent to the nucleus, more specifically, it is transparent to all
basic components of PEACE.

The fact that the basic inter-process communication mechanism deals only with local
communication is the main requirement to realize very efficient inter-process communication.
On the other hand, this model makes it feasible that higher level (global) communication

PEACE Basic Components

protocols are exchangeable without modification of any of the basic components of PEACE.
Thus the dynamical reconfiguration of communication systems is given.

The independence from any communication protocol for inter-node inter-process
communicationi, or more generally the ability of dynamical reconfiguration at runtime, is given
by the routing facility of the PEACE nucleus. The techniques for routing were taken from
MOOSE and have been improved for PEACE. In figure 2.2 the principles of routing on the very
low level of PEACE are illustrated.

a) send message routing b) reply message routing

send/relay

¢) send/reply message routing

server

Figure 2.2: Monitoring send messages and reply messages

Routing inter-process communication is based on a technique that allows the adoption of
one or both processes involved in a rendezvous. The send as well as the reply message can be
routed to any other system process which in turn acts as a server, generally termed as the
monitor. This process determines how to handle the received (routed) message. The routing
process is able to terminate the rendezvous to the adopted client or relays the received message
to the original server, by one’s own decision.

Common to all of these variants is that a send or relay, which addresses a server as the
receiving process, and a reply, which addresses the client as the receiving process, each may
be routed to the monitor. The monitor normally stays in a receive, thus, due to the routed

PEACE Basic Components

message, always is able to start a rendezvous with the client. Note that the server never is the
rendezvous partner of the monitor, because the reply to the client actually is relayed and not
sent. This means, that the server, without taken any notice of it, initiates for the client a new
rendezvous, this time with the monitor .

The functionalities of the adopting/routing server, i.e. the monitor, can be manifold. Not
only high level communication protocols are realized in this way. Process migration,
monitoring, accounting and verification of communication activities between client and server
are realized/supported in PEACE using the basic routing facility of the nucleus.

2.2.2. Process Dispatching

Process structuring an operating system leads to more runtime overhead when providing a
requested system service. The mechanisms for inter-process communication are tuned to
reduce the overhead involved with the message exchange. Because process dispatching takes
place with each communication activity it must be very well tuned, too.

Another consequence of process structuring is the high degree of sequential execution of
system services as usually not discovered with procedure oriented systems, as e.g. UNIX 2
[Thompson, Ritchie 1974]. This is due to the typical sequential execution of one process and
that a process in PEACE is the focus of service realization.

The sequential execution of system services is loosen by the concept of light-weigthed
processes [Schroeder 1987b], as introduced with THOTH and also found in other modem
message-passing operating systems as e.g. [Haertig et al. 1986] and [Balter et al. 1986]%. A
group of processes is given the same access right on system specific objects. Such a group is
called a team in PEACE. The objects are typically memory segments, files, devices, but also
processes itself.

The nucleus regards processes as objects with which certain access rights are associated
during a rendezvous. Not only the single server, but the entire server team receives reply,
relay and data transfer access on the blocked client. The data transfer access right is related to
the entire team of the corresponding client. By this way, the realization of a system service
can be easily distributed on all processes of the same team. Thus, the sequential execution of
a system service in general does not hold for a PEACE team.

Process dispatching is initiated either each time a process blocks, because waiting on a
rendezvous (i.e. executing either send or receive), or on an explicitly request without blocking.
To speed up process switching time, there is no expensive schedule strategy associated with
dispatching. The processes are dispatched in a simple two-stage round robin fashion. The
first stage dispatches processes local to each team. At this level, the processes are contained in
a per-team ready list. The second stage dispatches processes from other teams. At this level,
teams, that encapsulate processes ready to run, are contained in a so called dispatch set.

Y UNIX is a registered trademark of AT & T Bell Laboratories.
9 See also [Tanenbaum, van Renesse 1985] for a short overview about one of the most important and state
of the art message-passing based operating systems.

PEACE Basic Components

Additionally, each team has its own time slice, which defines the maximal duration a team can
execute without blocking. Blocking a team means, that all encapsulated processes are blocked,
i.e. the per-team ready list is empty.

Dispatching a team is initiated either because the time slice elapsed, or because blocking
the actual executing team. Independent of the reason for team dispatching, a process from
another team is selected for execution. This process always is at the head of its per-team ready
list, taken from the successor team contained in the dispatch set. Upon resuming the selected
process, a new team is activated, defining its own execution domain for a new group of
processes.

More enhanced strategies are realized by specific system processes, running on top of the
nucleus. As exemplified with MOOSE, priority based or job related scheduling can be
dynamically integrated in PEACE. Moreover, the scheduling strategies are exchangeable at
runtime without effecting the basic components of PEACE.

2.2.3. Address Space Switching

One of the main aspects of teams in PEACE is the implied sharing of code and data
segments between the encapsulated processes. As already mentioned, memory segments are
objects to which all processes of the same team gain the same access rights. This means that
all processes of one team are able to manipulate a common data area in a direct way. Once
received a message, e.g., all processes of the server team may access and decode the message
— all processes encapsulated by a team may execute the same code sequences.

This implied sharing is the main aspect why distributed service realization by a team
involves no expensive runtime overhead. The same address space is multiplexed between the
processes on one’s own decision. Multiplexing is realized by relinquishing control over the
address space of the team either by blocking, because applying specific communication
primitives, or by an explicit dispatch request, in which case the requesting process remains
ready.

Each process has its own runtime context, defined by its runtime stack. It is completely
defined by the services of the memory server if a stack is only accessible from the associated
process or if it is accessible by all processes of a team.

The nucleus takes advantage of the concept of teams if process switching and address
space switching must be performed. A complete address space switch takes only place if a
process of another team than the actual executing one is resumed. As far as there are more
processes in a team ready to run, no team switch and thus no complete address space switch
will happen.

The common address space defined by teams means that all processes belonging to the
same team are located on the same processor in a multi-computer system. Swapping is defined
only for an entire team and migration of processes means moving the entire encapsulating team
to another processor. Thus, a PEACE team is never distributed.

PEACE Basic Components

2.2.4. Trap/Interrupt Propagation

One of the critical aspects in operating systems design is the management of traps and
interrupts. Traps must often be handled in a concrete application dependent way. Interrupts
are of asynchronous nature and their processing must be proper synchronized. Moreover, they
are always related to some kind of devices, whose management is an awkward task in systems
programming. Because of these facts, trap/interrupt handling in PEACE is widely encapsulated
by specific teams and thus (at least conceptually) removed from the nucleus. The main task of
the nucleus is merely to propagate traps and interrupts as specific events to the serving system
processes and to synchronize the communication activities occuring in conjunction with the
interrupt propagation.

Common to both kinds of event propagation is a special nucleus object, the gate. A gate
controlls the activities of the nucleus along with the occuring event. Upon request by system
processes, a gate is placed between the trap/interrupt vector of the processor and the serving
process, the so called event server. The event server determines if a specific processor
exception vector is to be served as a trap or as an interrupt. In case of a trap, the event server
is more specifically termed as trap server; in case of an interrupt, the more specifically term is
interrupt server. Additionally, a second process, the so called interrupt client, is involved with
the interrupt propagation. Both processes belong to the same team, that in tumn is responsible
for processing propagated interrupts. Figure 2.3 depicts the general model for trap/interrupt
propagation as well as the inter-relationship between trap/interrupt client and server.

a) trap propagation b) interrupt propagation

reply | send (trap) relay (interrupt)

interrupt

trap
server

server

Figure 2.3: Trap/Interrupt propagation

The propagation of traps is a very simple task once the trap server is known by the
nucleus. The trapped process, the trap client, is forced in a rendezvous with that trap server
associated with the corresponding gate. The trap server team gains complete access on the trap
client team — due to a trap, the trap client team uses the trap server team. By terminating the
rendezvous with the trap client, execution of the trapped process is resumed. Because the data
transfer access right onto the trap client team, the trap server team is able to manipulate the
trap client’s processor state. By this way, specific trap handling can be perceived by the trap
server team. For example, process tracing can be controlled by dedicated system processes as
well as serving of page faults, which may need the software enabled re-execution of the trap

-1 -

PEACE Basic Components

initiating instruction by the trap client.

In contrast to trap propagation, the propagation of interrupts is a more complicated task.
The main reason is given by the asynchronous nature of interrupts, whereas traps are always
synchronous with the execution of a process. Interrupt propagation means relaying a message
from the interrupt client to the corresponding interrupt server. This actually is a non-blocking
communication activity. This communication activity is synchronized with respect to all other
communication activities of the nucleus. The synchronization is controlled by the specific
gate. Interrupt propagation is initiated after termination of the interrupt handler linked to the
gate. The result of an interrupt handler specifies either to propagate or to ignore the interrupt.

Linking an interrupt handler to a gate may be performed in several ways [Schroeder 1986].
Basically, it can either be done in a dynamical way or it is statically established at nucleus
generation time. At present, a PEACE interrupt handler is statical and procedural linked, thus
executing completely in nucleus space. More enhanced strategies are planed to be realized,
which allows the complete encapsulation of an interrupt handler by the interrupt client, thus
giving the interrupt handler an own address space, the so called team space. This technique, as
has been successfully realized with MOOSE, leads to the consequent decoupling of interrupt
server space from nucleus space.

The dynamical reconfiguration of PEACE is praticable with a consequence that enables
exchanging event server teams. From the security point of view, with each such a team there
is an own address space associated. Thus, the system wide expansion of address space errors,
because the potential malfunction of any of the system components responsible for
trap/interrupt handling, can be reduced. With the proper hardware support, around each such
system component a "fire wall" may be placed if teams are used consequently in one’s system
design.

2.3. The Name Server

The lowest level (level 1) of the hierarchy of system processes in PEACE is defined by the
name server. The functionality of this process is to realize an abstraction from the service
providing processes. Addressing a process for inter-process communication is based on the
process identifications of the communicating processes. Once a process identification of a
server is known by a client, the communication can take place applying the basic nucleus
primitives. For example, this identification already may be made known to the client if a
server creation request is stated. The result of a process creation service request usually gives
the process identification of the new process. A more flexible solution is that of naming a
server and addressing him by applying its name. A name is typically any character sequence
defined by a server and applied by a client.

In PEACE the service a server provides is named and not only a single name is given (in an
unstructured way) to the entire server. A server associates with each services he provides a
certain service name and makes this name known to the name server. A client requests the
identification of a server by asking the name server for a certain service name. The name
server returns either an identification, that gives the way to the requested service, or indicates,
that the service is not yet known. The identification is considered to be the service access

-

PEACE Basic Components

point of the requested service. If the service is provided local, the identification directly
addresses the corresponding server. Is the service provided remote, the identification addresses
some local network process, who realizes the remote service invocation. In either case the
service requesting process is not aware about the different ways a service can be invoked. See
[Schroeder 1987c] for more detail.

Basically, before the communication between client and server takes place, there is some
kind of communication establishment to the server controlled by the name server. This phase
is defined by asking the name server for the service name. The service connection may be
released by the responsibility of the client or the server. The latter case is signaled as a PEACE
specific system exception and may be propagated to all connected clients.

The essential facility of naming in PEACE is the ability of service replugging. The
association between server and client can be manipulated in a way transparently to the
connected clients. A system process can adopt a service and will in turn act as the new service
provider. This mechanism is similar to that of adopting a process by applying the routing
facility of the nucleus. The difference is that adopting a server means adopting all services the
server provides. Adopting a service means that only a part of the servers communication
activities is routed to the new server.

2.4. The Process Server

To keep the nucleus small in size and functionality no aspects of dynamic process
creation/destruction are associated with that PEACE component. The nucleus regards processes
or teams as statical known objects, although they are dispatched in a dynamical way. The
dynamical view of processes and teams is realized by the process server, placed on level 2 of
the system hierarchy.

Upon request from higher level system processes a new process may be created.
Additionally, the new process is associated with a specific team. Thus its execution domain is
manifested. The creation of a new team means the creation of a process which is the only one
associated with the respective team. This process is called the custodian of the team. New
processes may be added to an existing custodian. In this way a team actually is formed,
because its characteristic feature is the group of processes belonging to the same execution
domain. An added process is termed the captive of a team.

Destructing processes is analogous. Processes, more specifically captives, may be removed
from an existing team. Removing the custodian means the complete destruction of the entire
team controlled by this process.

Besides the creation/destruction of processes, the process server attributes processes as
well as teams and creates system wide unique process identifications. The attributes control
dispatching of processes and define certain access rights, global to all processes of the same
team. Table 2.1 gives an overview about the team attributes recognized by the basic system
components. With table 2.2 a summary about the meaning of process attributes in PEACE is
given.

A

PEACE

Team Attributes

Attribute

Meaning

user

The team is allocated with normal
user mode privileges.

system

The team is allocated with system
mode privileges. The adoption/routing
of processes is allowed.

privileged

The team is privileged. Connecting to
trap/interrupt vectors is allowed, thus
adapting traps/interrupts.

Table 2.1:

The meaning of team attributes

Process Attributes

Attribute

Meaning

custodian

The process is the initial one created
in its team.

captive

The process is added to the team.

indivisible

The process is not dispatched if the
time slice of its team elapses.

server

The process acts as a trapfinterrupt
server and thus can’t be destroyed.

client

The process acts as a trapfinterrupt
client and thus, in case of an interrupt
client, can’t be destroyed.

interrupt

The process encapsulates an interrupt
handler and is activated upon each
signalled hardware interrupt at its
corresponding interrupt vector. Addi-
tionally, the process must be attributed
to be an interrupt client.

Table 2.2: The meaning of process attributes

Basic Components

A process identification represents a system wide unique object, designating a process.
The uniqueness is given by the structure of the object — the concepts of V are recovered with a
PEACE process identification. See table 2.3 for a summary about the meaning of the single
structure members within a process identification object.

Basically, the index member of a process identification object is used to achieve efficient
localization of control structures which are subject to process managements). Its application by

A typical example is the process control block discovered in an operating system. PEACE specific, the
index gives the route map [Schroeder 1987] entry, which contains the address of the process control

8 -

PEACE Basic Components

Process Identification

Member Meaning

index Identifies the proper entry into several
process tables.

version Makes a process identification locally
unique.

node Gives the processor identification with

which the process initially has been
associated and makes a process
identification globally unique. The
cluster sub-field of this member allows
for the identification of the cluster as-
sociated with the process.

class Qualifies the process as remote or as
system.

Table 2.3: Structure of a process identification object

the nucleus gives the basis for very fast inter-process communication primitives. The version
member serves for the unique generation of a local index member associated with a new
created process. Each time a process identification is fixed to a new process the version
member is incremented by one. The node member enables the system wide uniqueness of the
process identification. It identifies the processor initially associated with the new created
process. Migrating the process onto another processor necessarily does not mean manipulating
the node member of the corresponding process identification. The class member, more
precisely the remote attribute, enables the nucleus to route inter-process communication with
processes which reside on different nodes. Additionally to the remote attribute, there exists
the system attribute as a further class member. This attribute says that the corresponding
process is on a certain privilege level and is allowed to perform system specific operations.
For example, in conjunction with the inter-process communication primitives, which all use
process identifications for addressing server and client, a privileged client is recognized by
inspecting the process identification returned from receive to the server.

It is important to note that the applicating processes of a process identification need not be
aware of the concrete object structure. The process identification can be used as a plain,
unstructured number for addressing a certain process D T usually will be the case with
simple application processes. However, system processes in PEACE will take advantage of the
given object structure. By this way a runtime efficient realization of system services is
supplied.

block, associated with the given process identification.
9 In PEACE, a process identification object is 32-bit wide. This design decision leads to efficient applica-
tion of process identification objects.

e

PEACE Basic Components

All tasks of the process server will effect certain data structures maintained by the nucleus
to control team/process dispatching and inter-process communication. These data structures,
the process and team control blocks, are collected together in proper tables located in nucleus
space. The process server directly shares these data structures and is allowed to manipulate
them by one’s own decision.

2.5. The Memory Server

Just as no dynamical process creation/destruction is performed by the nucleus there is no
dynamical address space management integrated in this system component. The nucleus
merely performs address space switching each time a request for process dispatching is stated.
From the nucleus point of view the address spaces are of statical nature. The dynamical view
is given by the memory server, more precisely, it is located on level 2 of the PEACE system
hierarchy.

Address space management means the creation/destruction as well as the
expansion/reduction of address spaces. Creation/destruction of address spaces goes along with
creation/destruction of processes. Against that, expansion/reduction of address spaces takes
place during the processes lifetime. Memory segments are given the processes upon request
and may be returned to the system, again.

The framework for an address space in PEACE is given by a team, or vice versa, a team
owns a couple of code, data and stack segments, all together constituting its address space.
Expanding the address space of a team is allowed by each process, encapsulated by the
respective team.

The purpose of the memory server is to realize an abstraction from the given hardware
architecture for address space management. Basically, the memory structuring mechanism is
given by segments. For access control, with each segment certain attributes are associated. A
segment descriptor maintains the physical location and size, the attributes and the ownership of
the corresponding memory range.

A memory segment can explicitely be shared by a couple of teams — the segments
constituting a team are implicitely shared by all processes of the team. Therefore, each sharing
entity has its own access rights on the segment. Basically, the segment descriptor may be
considered as the capability [Dennis, van Horn 1966] of a team for memory access. The
capabilities on memory segments (objects) can be passed to other teams. This is typical in
PEACE to support high-volume data transfer during a rendezvous [Schoen 1987].

Proceeding from the logical description of memory objects, based on segment descriptors,
the memory server realizes a mapping onto the hardware. The mapping results in the
definition of so called software prototypes which manifest the address space of a team/process.
These software prototypes are known by the nucleus, because they are neccessary to fix the
address space upon each process/team switch. More precisely, the memory server shares the
software prototypes with the nucleus.

For teams, the nucleus maintains so called image descriptors which contain the software
prototypes for the code and data segments accessible by the team. For processes, the nucleus

Lds

PEACE Basic Components

maintains so called context descriptors which contain the software prototypes for the stack

segment of the process”.

Address space switching, as performed by the nucleus, merely means copying the software
prototypes, as defined by the memory server, onto the hardware prototypes for address space
management. Usually, some kind of memory management unit (MMU) must be programmed
according to the informations contained in the software prototypes. The imageand context
descriptors are structured in such a way that a simple and fast one-to-one mapping onto the
hardware prototypes is sufficient to realize an address space switch — hence the term "software
prototypes".

9 Additionally, the stackpointer is remembered in the context descriptor of a process.

-5

PEACE Constructive Components

Chapter 3

Constructive Components

The constructive system components of PEACE all using the services provided by the basic
components, introduced in the previous chapter. In contrast to the basic components, excepted
some specific system processes, there is no cogent necessity to associate with each SUPRENUM
node the same constructive components. The decentralization/distribution of PEACE is given by
the actual placement of the constructive components on the nodes. In this chapter, the
constructive components, the functional hierarchy between them and their relationship to the
basic components are illustrated, in short.

3.1. Functional Hierarchy

Conceptually, the constructing components of PEACE completely are represented by
dedicated system processes/teams which define level 3 upto level 9 of the system hierarchy.
The distributeable system processes are the team server, the signal server, the clock server, the
tty server, the disk server, the file server and the loader ® In contrast to these system
processes, the name replugger, the MMU server and the panic server each serve for per-node
and application oriented handling of specific system events. The functional hierarchy between
these processes is given by figure 3.1.

The interactions between the constructive components are completely realized by the
message passing facility of the nucleus. Moreover, each component exports services
remembered by the name server. Therefore the uses relation to these both basic components
is not completely shown — all constructive components of PEACE, more generally all system
components placed on level 2 and above, will use nucleus and name server services.

In PEACE, the most significant aspect of the uses relation between the constructive
components is its transparency to some network architecture. Remote service invocations are
supported to realize the interactions between a decentralized set of constructive components.
To achieve network transparency in PEACE and decentralization of PEACE additional system
processes/teams are neccessary. These system components are associated with specific levels
in the system hierarchy. However their functionality and their position in the system hierarchy
is explained in the following chapter to keep the description of the minimal set of constructive

® The clock server, the tty server and the disk server each are representatives of PEACE interrupt servers.
For clearness, the corresponding clock client, tty client and disk client has been removed from the figure.
Actually, these system processes are mandatory for PEACE due to the nucleus interrupt propagation model.
Without the presence of these processes, the corresponding servers never would receive propagated inter-
rupt signals from the respective interrupt handler.

il -

PEACE Constructive Components

level

team
server
process
server

Figure 3.1: Constructive system components

components elementary.

Dependent on the functionality of the given hardware architecture, especially the used
processor, parts of the components responsible for interrupt management must be migrated into
the nucleus. These parts are defined by the interrupt handling modules, procedurally and
statically linked to their controlling gate in nucleus space. Nevertheless, the respective
interrupt server team and therefore the main functionality of the corresponding system
component is associated with some higher level system hierarchy.

The given structure of the constructive components shows three specific system teams
which may be regarded as a "bracket” around other system processes. The necessity of these
teams and of both system processes in each team is given by the uses relation between the
various system components. It is a general principle in PEACE to realize inter-relationships,
whereby two system components uses each other, by representing one system component as
two sub-components and associating with each sub-component an own process. In [Pamas
1976] this technique is called sandwitching of system components, because they in turn can
take advantage of the services provided by each other. This principle is mandatory in PEACE,
because services are invoked using blocking inter-process communication mechanisms. Thus if
sandwitching would not take place, there will be a potential deadlock situation defined by the
system uses relation. The "sandwitch" technique generally ensures the construction of a top-
down and circle-free blocking graph [Cheriton 1979].

S0

PEACE Constructive Components

The term administrator in PEACE defines a system complex composed out of a specific set
of processes. There may be only one process, a team encapsulating a group of processes or a
certain group of teams, each constituting an administrator. In case of structuring an
administrator as a group of teams, conceptually its possible distribution is given. An
administrator is responsible for a certain set of system services and represents a complete
autonomous system complex in PEACE.

Actually, there are eigth administrators associated with the constructive components of
PEACE. The name, team and address space administrator each takes advantage of the team
concept because "sandwitching" of their system components. On the other hand, the clock,
disk and tty administrator each uses the team concept due to the nucleus interrupt propagation
model. These administrators are generally termed device administrator. The file administrator,
by now only represented by a single process, will provide functionalities for remote file access.
To realize the network transparency with respect to file management, this administrator, in a
more enhanced version, will consist of a couple of teams. And finally, the signal administrator
controlls the propagation of system specific events.

3.2. The Team Administrator

Teams are constituted using process and memory objects. Each process represents a
certain team activity and the memory objects are represented by code, data and stack segments.
The team administrator associates processes with segments and processes with teams. More
specifically, the team administrator defines the process model as e.g. provided to the
application level.

Process and team objects are requested from the process server and memory objects are
requested from the memory server. Requesting a process object results in the delivery of a
process identification, uniquely designating that object. The same is true when requesting a
team object, in which case the process identification of the corresponding custodian is
returned. The result of a request for some kind of memory object (representing a code, data or
stack segment) is the corresponding segment identification of that object. The team
administrator remembers for each team what process and memory objects have been allocated
for team construction.

The creation of a new team, as controlled by the team administrator, is possible in several
ways. Existing memory objects, not yet associated with any team, may be related to the new
team object. Another variant is relating already associated memory objects to the new team.
In this variant some memory objects are duplicated (in case of data and stack segments) and
some other memory objects are shared (in case of code segments). Basically, the
corresponding segments already have been allocated by the team administrator. The alternative
to that is loading segments from the file system. Because of these two strategies, the team
administrator is "sandwitched"” and realized by two system processes.

The functionality of the loader is controlling team creation, which needs reading of
segments from the file system. A UNIX exec or LOCUS run service is the typical example for
that. Additionally, the loader controlls process termination and raises this event, as well as the
process creation event, as a system specific exception. These events are propagated by the

s 30 -

PEACE Constructive Components

signal server in sequenced multi-casting”.

The team server controlls creation of teams and processes for which already loaded
segments are available for setting up the corresponding runtime image. An example for that is
the UNIX fork/vfork service. In addition to that, the expansion/reduction of address spaces is
controlled by the team server. In this case new memory segments are associated with the
given team and memory segments of a team are released.

3.3. The Signal Administrator

The solely task of the signal server is the propagation of specific exceptions. The
exceptions are raised by certain processes and their handling is properly propagated to some
higher level components. By this way typical mechanisms for application oriented exception
handling [Goodenough 1975] are supported. The main aspect with exception handling in
PEACE, however, is the application oriented propagation of system/user defineable events across
address space as well as node boundaries.

3.3.1. Signal Propagation Model

Exceptions in PEACE are represented by expedited messages, so called signals, whose
transmission and reception is guaranteed by the system. Because of that message oriented
nature of signal propagation in PEACE, there is a specifc model necessary. This model stems
from MOOSE and is shown in figure 3.2.

applicant

Figure 3.2: Propagation of signals

In general, there are four processes involved with signal propagation. On the raising side,
the signal notifier raises or notifies the occurance of an exception. On the receiving side, the
signal client serves and awaits propagated signal, originally dedicated to the signal applicant.
In general, signal applicant and signal client both are encapsulated by the same team. On the

o Sequenced multi-casting is explained along with signal management in PEACE.

<30 -

PEACE Constructive Components

propagating side, the signal server directs and distributes raised signals to all clients which
requested to be informed about the occurance of a specifc exception. The signal server and the
signal client both constitute the signal administrator.

The signal client is blocked as long as there are no signals pending. This blocking is
simply represented by a non-terminated rendezvous with the signal server. Thus, propagating
a signal by the signal server means terminating the rendezvous to the corresponding signal
clients.

The signal notifier is only blocked as long as the signal server has not yet processed
(remembered) the request for signal propagation. From the signal server point of view the
signal notifier executes asynchronous to the signal applicant and the signal client.

The signal applicant is the actual destination of a raised signal. The signal notifier
usually only knows the signal applicant. The signal client is hidden to both processes,
because its existence is required only by the specific signal propagation model of PEACE.
Consequently, the signal client usually will be part of the system library, responsible for signal
handling.

The existence of the signal client is motivated due to the fact, that signals must be
propagateable to a specific application process (in this model represented by the signal
applicant) independently of its actual processing state. Specifically this is ensured in PEACE by
the non-terminated rendezvous with the signal server. Because the fact that signals are
represented by messages and the signal clients will represent the receiving processes of a
propagated signal, the distributed/decentralized realization of signal propagation is possible in
PEACE.

3.3.2. Signal Distribution

The actual propagation of signals is realized by their distribution on the known signal
clients, each one waiting on the signal. With each client, a set of signal numbers is associated,
whereby each signal number is an application dependent identification of the propagated signal.
Additionally, each client is given a team group, which is inherited from the custodian (the
signal applicant) of the signal client. The group identification and the signal number are used
to distribute raised signals, thus actually propagating the signals.

It is important to note that a single signal client may serve signals for a couple of signal
applicants. More specifically, a hierarchy of signal servers may be constructed if a signal
client is projected to act itself as a signal server. This is due to the team group relationship
between these processes. Thus encapsulating the pair signal applicant/client by the same team
is no cogent necessity, although it will be the usual case if propagating system exceptions to
the application level.

The signal server remembers which signal applicant will accept and which signal client
will handle the occurance of a specific signal. If a signal applicant does not accept the signal,
its termination is initiated by requesting the proper team server service. If a signal applicant
accepts the signal, however there is no signal client for handling it, the signal is ignored. If
there is a signal client known to the signal server, the signal will be propagated properly. In

L

PEACE Constructive Components

case that the signal client is already processing a propagated signal, the new signal is made
pending. As soon as the signal client again is registered by the signal server, all pending
signals are propagated to him. In this case the signal server immediafly terminates the
rendezvous to the signal client.

If there are no signals pending, the rendezvous to the signal client itself is made pending,
i.e. the signal server waits on signal notifier requests for signal propagation to the waiting
client. The signal client implicitely is selected by the signal server due to the information
given by the signal notifier. Either the process identification or the team group of the signal
applicant is used for selection. Given a team group identification'?, all signal applicants with
that group identification are considered and the corresponding signal clients are selected. In
either case, the raised signal is propagated to each selected client. However, only those signal
clients are selected for propagation whose signal applicant will accept and does not ignore the
corresponding signal.

Additionally to the raised exception, the way propagating the corresponding signal can be
defined by the signal notifier. In general, a signal is propagated to all waiting clients in
parallel. There is no ordering and no dependence defined between the clients. The other way
of signal propagation is based on some kind of sequencing the activation of the selected signal
clients. In this case the signal is propagated on a client-by-client basis. At each point in time
there is only one signal client processing a specific signal. A typical case of sequenced
propagation is given with the process termination/creation signal.

3.3.3. Multi-Casting

Basically, signal propagation in PEACE means multi-casting an expedited message.
Realized is multi-casting due to the ability for the signal notifier to supply a team group
identification along with raising a signal. All signal clients belonging to the supplied team
group may receive the same signal, respectively the same message.

Within the complex of system processes, multi-casting is a fundamental technique in PEACE
to distribute system specific events. Such events, e.g., are termination/creation of processes
and detaching services from server processes, as done in conjunction with process migration
and service replugging just as with replacement and reconfiguration strategies for achieving
fault-tolerance.

One of the significant applications of multi-casting in PEACE is checkpointing, consistence
checking of specific data structures, test pattern generation and recovery. A fault-tolerant
application in PEACE uses the signal client model to encapsulate application oriented
management activities, triggered at the responsibility of dedicated system processes, e.g. a
checkpoint server. For example, this system process controlls writing of application dependent
checkpoints and directs the signal client to actually write out critical data objects of its team.
The team itself is part of the application to be checkpointed. Is the application composed out

Y A team group identification actually is represented by a process identification object whose index
member is 0.

D

PEACE Constructive Components

of a couple of teams, these teams each may given the same team group identification. Thus,
initiating checkpointing would lead to reactivation of all the signal clients acting as checkpoint
clients of the corresponding teams.

3.4. The Panic Server

Trap handling in PEACE exclusively is controlled by system processes. These processes, so
called trap server, are connected to distinct processor trap vectors. The connection is managed
by the nucleus and a trap is represented as a specific system message, transmitted to the
connected trap server.

There may exist a couple of trap servers in PEACE — extremely, with each trap vector an
own trap server can be associated. On the other hand, only a single trap server may be
present, receiving all kinds of trap messages. In this case the trap server is connected to each
trap vector of the processor.

The functionalities of trap servers can be manifold. For example, they may emulate certain
processor instructions, serve page faults, handle address space errors or they may trace/debug
specific processes. Basically, they accept traps, propagated by the nucleus, and they may itself
direct the traps to be propagated as specific exceptions. In this way, a signal client may be
notified about the accurance of a trap, e.g. initiated by its custodian (i.e. the signal applicant).

The trap message, as propagated by the nucleus, contains the vector identification of the
corresponding trap and the processor state of the trapped process, the trap client. Because of
the rendezvous between a trap client and a trap server, the processes of the trap server tcam are
able to manipulate the processor state of the trap client. Handling of specific traps makes this
necessary.

The position of a trap server in the PEACE system hierarchy is denpendent on its
functionality. Presently, there is one system process in PEACE, whose responsibility is to signal
all non-specific i traps as some system specific exception. This process is the panic server
and its position is just above the signal server. The MMU server, e.g., is a trap server that
handles MMU specific traps. Advanced handling of these traps may result in page loading
from disk if a paging system is to be supported. In this case, the position of the corresponding
trap server (pager) would be just above the system process responsible for disk management.
Another example will be a trap server whose functionality is loading code segments upon the
first reference on it. If properly arranged, this reference results in a trap and may be
propagated to a corresponding trap server. In MULTICS [Organick 1972] such a functionality is
used to realize dynamical binding of application programs. In this case the corresponding trap
server will be placed in the system hierarchy above the loader to read in the referenced code
segment. The concept of shared libraries under PEACE will use such a trap server semantic.

) With "non-specific” a trap is termed, with which no specific exception, e.g. divide-by-zero or illegal in-
struction, is associated by the operating system.

o,

PEACE Constructive Components

3.5. The Address Space Administrator

Address spaces in PEACE are controlled by a paging MMU. MMU traps may be generated
and signalled by the processor if a process performs an exceptional access on MMU protected
objects. However, this does not mean to abort the execution of the trapped process, rather the
trap may be projected and thus is expected for the process. A typical example is the page fault
in virtual memory systems. In contrast to that, violating the virtual or logical address space
given to a process/team results in a non-expected MMU trap and may lead to the termination
of the trapped process/team.

To distinguish an expected MMU trap from a non-expected one, the address space
definition of the trapped process must be investigated. This definition is manifested in the
software prototypes of a process or team. Thus, properly handling the address space trap
means sharing knowledge about certain data structures with the memory server.

If the trap is not expected, an address space violation exception is to be signalled. To
realize that, the memory server must use signal server services. From the hierarchical point of
view the memory server is unable to use these services. More specifically it is not allowed for
the memory server to do so, because violating the inter-relationship defined by the blocking
graph may result in a system deadlock. Therefore, the original memory server is
"sandwitched". The MMU server is the responsible process for accepting, validating and
signalling address space traps. This process as well as the memory server both constitute the
address space administrator.

The MMU server acts in a way as a general trap server does. A connection to the MMU
trap vector is requested from the nucleus. This enables the MMU server to receive propagated
traps. One can say the MMU server is a problem oriented trap server, handling address space
traps. Problem oriented aspects are, e.g., realizing copy-on-write or paging functionalities,
each triggered by the propagated trap. In PEACE, copy-on-write semantic of a page fault trap is
intended for use in conjunction with address space creation'® as well as high-volume data
transfer, where actually pages are exchanged (i.e. re-mapped), onlyn).

3.6. The Name Administrator

A significant functionality of PEACE is the propagation of a service re-association with
some server. Generally known as service replugging, an existing service is associated with
another service access point. The necessity for that functionality is given to support fault-
tolerant applications as well as team/process migration, whereby the migrated team
encapsulates at least one server process. The name administrator is responsible for supporting
the service replug facility in PEACE.

Basically, the name administrator is realized by the name server , which in turn has already
been introduced as one of the basic PEACE components. Adding the functionality of service
replugging, however, needs the existence of some higher level system process. This process,

' in a similar way to the vfork system call of 4.2BsD [Joy et al. 1983].

'3 Paging, thus really supporting virtual memory, is for further study.

o

PEACE Constructive Components

the name replugger, shares the same knowledge with the name server to be directly informed
about the actual service-to-server relationship.

The name replugger raises the re-assignment of a service name to another server as a
name replug exception. This signalling is the motivation for "sandwitching” the original name
server, thus to allow the usage of signal server services by the name administrator.

In its more enhanced functionality, service replugging may ensure the re-creation of a
terminated server. By this way a certain service never vanishes from the set of all system
services. The process realizing that functionality, however, will serve the name replug
exception, as propagated by the signal server, instead of burden the name replugger with the
server re-creation semantics. This case is a typical example in PEACE of a postponed design
decision.

3.7. The Clock Administrator

Low level clock management already is performed by the nucleus. However, the
functionality of that nucleus facility is restricted to time slice control and to realtime clock
counting. More enhanced strategies are realized by the clock administrator.

The clock administrator actually is represented by a team that encapsulates two processes.
This organization is required because the interrupt propagation strategy, as defined by the
nucleus. Generally, the clock administrator belongs to the class of device administrators in
PEACE. Its services, however, may be used by other device administrators to realize e.g.
timeout controlled device management. Additionally, the clock administrator enables time
controlled process execution as well as time controlled signal propagation, e.g. the distribution
of an alarm clock signal. Therefore, its position in the system hierarchy is different from that
of other PEACE device administrators.

Process execution may be delayed upon request to the clock server. Delaying simply is
realized by a non-terminated rendezvous with the requesting client. Resuming execution of a
delayed process is done either if the specified delay time has been elapsed or if it is triggered
upon request from some other process. Additionally to that functionality the actual time-of-day
clock is maintained as well as alarm clock signals may be raised by the clock server.

The clock client actually waits on the propagation of clock interrupt events. More
specifically, these events already have been scalled with a software implemented interval
parameter, done by the nucleus clock interrupt handler. A clock event is directed to the clock
server as a clock message whose producer is the clock client.

3.8. The Device Administrator

Level 7 of the PEACE system hierarchy is concerned with i/o management. On this level
several interrupt server teams are located, each performing device specific functionalities.
Therefore, the number of system processes associated with this level is highly configuration
dependent.

=N -

PEACE Constructive Components

At least two system teams are necessary to support typical device handling functionalities
as discovered with operarting systems. The teams are the disk administrator, to serve block
special devices, and the tty administrator, to serve character special devices'. With respect to
the network architecture of PEACE an additional device administrator exists for serving frame
special devices. Its functionality is explained in conjunction with the network transparency of
PEACE.

As with the trap server, a device administrator is connected to a specific interrupt vector of
the processor. More specifically and as required by the interrupt propagation model, there will
exist certain interrupt server and interrupt client processes in the corresponding device handling
team. If interrupt handling is performed in nucleus space, the respective team shares a data
segment with the nucleus device handling modul. If interrupt handling is performed in team
space, the corresponding device handling team completely represents an autonomous system
component. In either case the interrupt propagation model is the same, i.e. the interrupt client
will send a message to the interrupt server each time requested by the interrupt handler.
Actually the interrupt client is relayed, thus propagating an interrupt is achieved using non-
blocking inter-process communication.

The associated system hierarchy with device administrators in PEACE enables them to use
certain system services. Most importantly, the interrupt server will create the interrupt client
within its team before the linkage to a specific interrupt vector is established. Analogous, the
interrupt client is destroyed if the connection is released. By this way dynamical
reconfiguration of distinct device administrators is supported in PEACE.

The relation between the tty administrator and the signal server enables operator initiated
propagation of signals. Specific control characters are associated with signals and stroking the
proper key at the keyboard will initiate the propagation of the actual signal. The destination
for such a signal propagation is the team group of the tty owner. This functionality allows,
e.g., the termination of processes, running out of control by other processes.

3.9. The File Administrator

File handling in PEACE is related to UNIX file handling. The file structure implemented,
using disk administrator services, basically is that of UNIX SYSTEM V. Responsible for file
management in PEACE is the file administrator.

Because the file administrator is seperated from the disk administrator, it can be placed on
cach node in a network oriented system. Moreover, replication of files, as e.g. done with
LOCUS, and thus supporting a distributed file system may be achieved.

A special functionality of the PEACE file administrator is locating certain device
administrators upon request from higher level processes. As with UNIX, the concept of special
device files is supported. Opening of such a file will direct the file administrator to ask the

') With respect to the SUPRENUM architecture, the disk administrator usually will reside on the disk node
and the tty administrator will realize the character special interactions with some host, running UNIX on
top of it.

-6 -

PEACE Constructive Components

name server for the device administrator of the corresponding device. The service name
exported by the device administrator may be constructed simply by representing the UNIX
major/minor device number as a character sequence.

The file opening request to the file administrator terminates with the process identification
of the server for the just opened file. In case of a plain file the process identification
designates a file server, belonging to the file administrator. Particularly, this file server may
reside on any node in a network oriented system.

In case of opening a special device file, the delivered process identification may designate
any device administrator. The opening request usually is repeated, this time, however directed
to the new identified server.

It is a principle in PEACE that ifo requests by higher level processes are supplied with the
process identification returned from the (evtl. repeated) file opening request. This identification
actually represents the access point of the requested i/o service — PEACE and thus i/o services
always are requested by inter-process communication via the corresponding service access
point, implemented by some server process. Because of that abstraction, remote file/device
access is supported in a very simple and runtime efficient fashion. The requesting process is
not aware about the actual localization of a service provider. All remote files/devices are
served by a problem-oriented file/device deputy [Schroeder 1987c¢], just close to the requesting
client and, more specifically, residing on the client’s node.

-2 -

PEACE Network Transparency

Chapter 4

Network Transparency

PEACE is a decentralized/distributed system in which its constructive components may be
distributed over a given network architecture. To achieve a high degree of distribution within
the operating system one important fact is to hide the network architecture from the
constructive components. Only with this aspect the different components can be arbitrarily
associated with any node in the network.

The required network transparency in PEACE is realized by a specific set of system
components. These components widely follow the design principle in PEACE of a process
structured operating system. Distinct system processes are used to realize the inter-node
communication. Especially these processes support mechanisms for remote service invocation
and actually realize the network transparency.

In this chapter the system processes necessary for achieving network transparency in PEACE
are introduced. A basic model is illustrated which supports high-performance network
communication and which provides a high degree of flexibility in system design. The actual
position of the necessary communication processes in the system hierarchy is explained along
with their inter-relationship to other PEACE system components. It is exemplified how a typical
configuration of a decentralized/distributed operating system for SUPRENUM looks like.

4.1. The Network Architecture

SUPRENUM is a multi-computer system which is based on two different inter-connection
systems. The one inter-connection system is given by the so called cluster bus which connects
upto 20 nodes, thus forming a cluster. The cluster bus is a high-speed parallel bus and
supports transmission speeds of upto 256 Mbytes/sec. The other inter-connection system is
given by the SUPRENUM bus which connects a couple of clusters, The SUPRENUM bus is a
slotted-ring bit-serial bus with a transmission rate of upto 25 Mbytes/sec. With this inter-
connection system as the basis so called hyper-clusters are realized by connecting a couple of
clusters. Thus, a cluster represents the SUPRENUM hardware building block to construct a
specific multi-computer system with a performance to any extend desired by a customer. See
[Behr et al. 1986] for more detail.

To allow the flexible inter-connection of clusters, in each cluster a qualified node is
identified for that task. This node, the communication node, acts as a gateway, i.e. it bridges
the two different SUPRENUM inter-connection systems. Additionally, specific communication
nodes are connected to a host, running UNIX on top of it. There are three of such hosts
identified by the overall SUPRENUM architecture, each one associated with some specific
controlling task.

298 .

PEACE Network Transparency

This specific network architecture requires the very efficient realization of a communication
model with respect to maximal network performance as specified by the hardware. The first
step in that direction already has been realized by the high-performance local inter-process
communication mechanisms of PEACE. The comparison to other message-passing systems,
particularly v [Cheriton, Zwaenepoel 1983], AMOEBA [Tanenbaum, van Renesse 1985] and AX
[Schroeder 1986], shows that PEACE takes the leading position with respect to its message-
passing performance. The remote communication model benefits from the runtime efficiency
associated with the local inter-process communication mechanisms, from the team concept and
from the efficient mechanisms for process dispatching.

4.2. Remote Service Invocation

All interactions between user and system processes in PEACE are controlled by a remote
procedure call like fashion. Because services are the focus of system activities, the principles
of a remote procedure call are applicated to realize a model that allows for a remote service
invocation.

It is important to note that all service invocations in PEACE potentially are of remote nature.
This is also true if local service activities between processes are considered, i.e. between
processes residing on the same node. In this case, service invocations are remote with respect
to its initiating and its providing team, its address space. The same remote service invocation
protocol data unit is applicated, independently of the node or cluster membership of the
corresponding processes.

The generation of the protocol data unit as well as "marshalling”, i.e. the generation of
code for the definition and interpretation of a protocol data unit, is done automatically. Given
an interface specification of the requested service, a PEACE utility arranges the necessary steps
for generating a framework to cope with the definition and interpretation of a protocol data unit
for remote service invocation. In terms of [Nelson 1982] and applicated to the service model
in PEACE, this framework is represented by the service stub on the client’s side and by the call
stub on the server's side™. Basically, the protocol data unit used in conjunction with remote
service invocation is structured as illustrated by table 4.1.

One great advantage of the mechanism just mentioned is the resulting runtime efficiency in
conjunction with the service invocation and acception sequence. A typed message directly is
coded without any procedural or system specific overhead. One can say, the actual
programming language, in which client and server are implemented, has been extended by a
new data type. However, this data type is not visible to the programmer.

The principle of abstract data types strongly is followed with the service interface design in
PEACE. Not only high-performance is achieved when invoking a service. More importantly is
the fact of abstraction from the way a service is encoded by a message, the way the

'5) The interface specification is represented by a MODULA-2 definition module. With UNIX LEX and YACC a
parser for MODULA-2 and a code generator for marshalling procedure (service) arguments has been built.
Given any definition module, the library for service invocation (service stub) as well as for service accep-
tance (call stub) is generated automatically.

£

PEACE Network Transparency

Remote Service Invocation
Protocol Data Unit

Member Meaning

client The process identification associated
with the service requesting client.

team The team identification associated with
the service requesting client.

server The process identification associated
with the service providing server.

status Indication about the successful/non-
successful service execution.

service The internal identification of the re-
quested service.

data The argument list associated with the
service function.

Table 4.1: Structure of a remote service invocation protocol data unit

corresponding server is identified by asking the name server, the way the service is decoded
from the received message and, finally, the way the client/server interaction is realized by a
specific communication protocol and system. It is this mechanism of remote service invocation
which enables the network transparency in PEACE. For example, service replug exceptions are
served on this level, thus hiding the corresponding signal client from the application level.
Handling this kind of system specific exceptions within the application context, always can
guarantee the direct addressing of service providing processes.

4.3. Inter-Node Inter-Process Communication

In PEACE, inter-node communication is based on a model with minimal process overhead.
Considering two nodes, remote service invocation and thus remote communication is modelled
as given by Figure 4.1.

It is important to note that the actual underlying network hardware architecture does not
influence the functionality associated with that model. Actually, the node server hides the
structure of the respective network interface’®. More specifically, the node server encapsulates
the device handling components necessary for driving the physical network interface. A virtual
network device realizes the abstraction from the specific physical characteristic of the
networking hardware.

19 The network interfaces in PEACE are given by the cluster bus and the SUPRENUM bus.

Al

PEACE Network Transparency

node node

server

Figure 4.1: Communication between different nodes

4.3.1. Remote vs. Local Server

It is a principle in PEACE that a server, which provides remote accessible services, at least
is constituted by two processes encapsulated by the same team. The one process, the local
server, is responsible for receiving (by receive) and processing local service requests, whereas
the other process, the remote server, is responsible for requesting (by send) from the node
server remote service requests and, once delivered by the node server, controlls processing of
these requests.

With that very simple model the remote server acts in the same way as the local server
does — it blocks as long as there are no pending service requests. More importantly, the
(client-to-server) inter-relationship between remote server and node server allows the
continous (pre) processing of incoming service requests. Either the rendezvous to the blocked
remote server is terminated by the non-blocking reply issued by the node server, or the
incoming message is made pending (queued) and delivered upon one of the next rendezvous.

The node server only blocks on the actual network interface, thus waiting on more
incoming messages. Because handling the network device, the node server belongs to the
class of PEACE device administrators, in this case the node administrator’”.

Terminating the rendezvous to the remote server has the same effect as if sending a
message to the local server, with except that the reply message contains the message-encoded
remote service request and not the send message. In either case, the requested service (coded
in the message) immediatly may be processed, because both processes reside in the same

) Due to the nucleus interrupt propagation model, a device administrator consists of an interrupt client
and interrupt server, both encapsulated by the same team. As illustrated in one of the following sections,
the node server actually combines the functionality of interrupt client and interrupt server. From the con-

ceptual point of view, however, there is a seperate node client representing the actual network hardware
interface.

-9 -

PEACE Network Transparency

server team. Moreover, there is no lost in efficiency while processing a service, because
services are still received in a client-by-client basis without the necessity of any specific
client/server synchronization. The local server only executes if the remote server does not,
and vice versa. Each process will block if there are no more requests pending, thus, due to the
dispatch strategy locally to one team and enforced by the nucleus, enabling the execution of
the other, non-blocked process.

4.3.2. Invoking a Remote Service

To complete the scenario of inter-node inter-process communication in PEACE, the client
side is considered in the following. In general, a client is unaware about the localization of the
server. In case of a remote residing server, the service access point, at which the client may
state certain service requests, is represented by the node server residing on the client’s node.
Sending a message-encoded service request to such a service access point, will restart the node
server, which in turn will initiate the interaction with the corresponding node server residing
on the service providers’s node.

Distinguishing a remote service from a local one is done once the service provider has
been asked for by supplying the name server with a service name. The process identification
delivered by the name server designates the actual server for the requested service,
independently of the server’s node membership. In case of a remote residing server, its
process identification is attributed as remote and the node member of this identification is
different from that of the client’s process identification. Because the remote class attribute or
the node member associated with a PEACE process identification, one can efficiently distinguish
a remote from a local residing server. The remote server process identification is returned to
any client requesting a service from remote. In contrast to that, the local server process
identification is returned to any client locally requesting a service. However, it is not required
that a service completely is provided on the local server’s node. The local residing server
may be the deputy of a remote residing server, thus allowing for a service specific, i.e.
problem-oriented, inter-node protocol.

In case of a remote residing server, the message-encoded service request is transmitted
using node server services. Actually the remote service invocation protocol data unit is sent to
the node server, which in turn starts the necessary inter-node communication with some other
node server. The node address of the remote residing node server is taken from the node
member of the remote server process identification. This process identification is taken from
the protocol data unit, more specifically from the server member, used along with a remote
service invocation.

4.4. Inter-Cluster Inter-Process Communication

A principle problem arises with remote inter-process communication if network boundaries
must be passed. In this case, typically, a network gateway must be installed, whose
responsibility it is to shift all communication activities between different network architectures.
This means an additional overhead, because converting protocol data units as well as

S b

PEACE Network Transparency

programming other network devices will be necessary. Moreover, it may be required to drive
another protocol and to perform some other time consuming management activities as, for
example, buffering of data items. Actually with that situation the overall communication
system for SUPRENUM is confronted. Figure 4.2 shows in general the inter-networking model
in PEACE.

node

node

@ e cluster cluster

node node

network i eae vl network
gateway gateway

node. Nl e ,
server

Figure 4.2: Communication between different clusters

The network gateway resides on the communication node. Actually, this process combines
the functionality of the node server, as well as the cluster server. The latter mentioned system
process drives the SUPRENUM bus, however it realizes the same functionality as the node
server does. More specifically, the main difference between node server and cluster server is
given by the various device handling modules necessary for driving the two SUPRENUM

network interfaces™.

If a node server receives a message-encoded service request from a client, whereby the
service request is directed to a different cluster than that of the node server, it relays this
message to the network gateway. The network gateway address (process identification) is the
same as that of the node/cluster server residing on the communication node of the client’s
cluster. Once the client cluster network gateway receives an inter-cluster message, it
determines the actual cluster where the remote server of that message resides. To distinguish
an intra-cluster message from an inter-cluster one, the node member, more specifically its
cluster sub-field, of the remote server process identification is used. If that member is
different from the corresponding one of the network gateway process identification then inter-
cluster communication is established.

8 As with the node administrator, conceptually a seperate cluster client assists the cluster server in pro-
cessing inter-cluster communication requests. Both processes constitute the cluster administrator. The
same holds for the network gateway, which more generally is termed gateway administrator in PEACE.

.38

PEACE Network Transparency

To realize the network gateway route facility, the process identification of the remote
server itself is taken from the message to be routed. More precisely, this identification is
extracted out of the protocol data unit, i.e. the server member, associated with the message-
encoded remote service invocation. Once determined the cluster™ on which the remote server
resides, the client’s network gateway (cluster server) interacts in a direct way with the
corresponding network gateway (cluster server) responsible for inter-cluster message delivery
to the remote server. The latter mentioned network gateway itself directs all received
messages to the corresponding node server responsible for intra-cluster message delivery to the
remote server. Again, the address of this node server is taken from the node member field of
the remote server process identification contained in the remote service invocation protocol
data unit.

4.5. The Network Communication Protocol

The main requirement stated at inter-node and inter-cluster communication is its
performance, i.e. maximal utilization of the physical communication bandwith as specified for
the SUPRENUM inter-connection architecture. To fullfil that requirement to a great extend, from
the communication software point of view very optimistic assumptions about the underlying
network hardware must be met. Especially, this means that time consuming recovery
procedures, for example given by complex retransmissions strategies, must be excluded from
the communication protocol design, as far as possible.

In [Zwaenepoel 1985] measurements about several communication protocols, well suited
for high-performance local area networks, are given. Although these measurements are based
on 10 Mbit Ethernet interfaces [Metcalfe, Boggs 1976], it can be taken as a basis for deciding
what kind of communication protocol will be the best for SUPRENUM. Moreover, it has been
shown that most lost of performance was given because transfering data by the processor
from/to the network interface (the Ethernet controller). Such a bottleneck, however, is not
given with the hardware design of the SUPRENUM networking interface.

Maximal utilization of the SUPRENUM network hardware is achieved by using a simple
blast protocol [Zwaenepoel 1985]. The principle behind this protocol is to transmit all data
packets belonging to the same message in sequence, with only a single acknowledgement for
the entire packet sequence. Thus, network traffic with respect to transmission of
acknowledgement packets is minimized. Moreover, the retransmission strategy applied either
leads to the complete retransmission of the entire packet sequence or allows for selective
retransmission of erroneous packets. What strategy actually would be the one with the best
performance is to be investigated once both protocol variants have been realized for
SUPRENUM. At first sight, it seems that the complete retransmission of an entire packet
sequence will be the best solution. Due to the high-performance cluster bus and SUPRENUM
bus, it would take more time controlling selective retransmission by a specific protocol
functionality, than it would take to retransmit an entire packet sequence upon the negative
acknowledgement issued by the receiving node/cluster server. Additionally, to reduce protocol

') The cluster address is taken from the remote server process identification, too.

o

PEACE Network Transparency

overhead while passing network boundaries, thus switching from cluster bus to SUPRENUM bus
and vice versa, the same blast protocol is used for controlling the communication over these
two SUPRENUM inter-connection systems.

With a blast protocol the overhead necessary for coping with transmission errors is
minimized and, in the very optimistic case, would not be present at all. It is assumed that such
errors are very rare, because the quality of the SUPRENUM inter-connection hardware. Without
such an assumption, a high-performance communication system, with respect to the
requirements stated at SUPRENUM, could never be realized. More precisely, the quality of the
SUPRENUM network hardware architecture determines what software overhead must be
considered when realizing a high quality communication system.

4.6. Functional Hierarchy

Basically, there are two strategies for realizing an actual structure of PEACE, within which
the system components encapsulating the inter-node/inter-cluster communication are included.
The one strategy would be to place these system components in team space between level 2
and 3, the other strategy considers the placement on level O, i.e. in nucleus space. The
conceptual structure, however, places these components always between level 2 and 3, i.e. just
above the basic system components. This is motivated by the fact, that the basic PEACE
components must reside on each node and that decentralizing/distributing of PEACE will be
done by a proper arrangement of the constructive components.

The system components for inter-node/inter-cluster communication together constitute the
communication administrator. This administrator consists of the node server, the cluster
server and the network gateway. However, due to the hardware design of a SUPRENUM node,
the communication administrator must reside in nucleus space and thus actually is placed on
level 0. Figure 4.3 depicts that design and the resulting functional hierarchy of the actual
structure of PEACE.

Because of that actual structure, the communication administrator is solely realized by one
system process M Phis process is termed the ghost of the nucleus and represents "process
zero" of PEACE. Independently of its functionality, the ghost always is present in PEACE

because it is the first process started, once the node bootstrap has been performed.

Although placing the communication administrator into nucleus space represents not that
conceptual clean realization of PEACE, from the technical point of view it is the solution with
the best performance achieved. Activating the ghost means no additional address space switch
and no return from nucleus to team space. The same holds for blocking the ghost *®. On the
other hand, the communication administrator is integrated in such a way into nucleus space
that local communication does not suffer from lost of performance. Thus, both forms of

0 This speciﬁc.rea]imtion only is possible because the communication admimistrator resides in nucleus
space.

* First benchmarks have shown that a runtime overhead of 27% is involved with a nucleus call when per-
forming one rendezvous. A rendezvous is realized by the sequence of three nucleus calls: send, receive
and reply .

oA,

PEACE Network Transparency

level

Figure 4.3: The actual structure of PEACE

communication, the local as well as the remote one, optimally are supported by PEACE.

So far the actual hierarchical system structure of PEACE in terms of the inter-relationship
between the basic and constructive system processes (components). The following four sub-
sections consider this system structure in more detail. It is exemplified in which way PEACE
can be distributed over SUPRENUM. In this example, a cluster and some of its qualified nodes
are taken as the basis for distributed PEACE. However, this exemplification does not mean the
only way of distributing PEACE. There are many other variants practicable. Therefore, the
following short breakdowns are only of exemplary nature.

4.6.1. Application Node Breakdown

The subsequent model discussion considers the application node as the part of a cluster that
is responsible for running user application programs. In SUPRENUM context, the application
programs solve some specific kind of numerical problems and thus can take advantage of
certain hardware support, e.g. the floating-point unit of an application node. Figure 4.4
represents the minimal configuration of an application node — it is the minimal configuration of
PEACE components residing on one node at all.

- 36 -

PEACE Network Transparency

Figure 4.4: An actual application node structure

The only services completely, i.e. stand-alone provided on this node are the one of the
name administrator and the address space administrator. Additionally, the process server and
the nucleus, as part of the basic components, completely realizes services on its own.

As shown by that figure, a new and somewhat special system component is identified.
This system component is termed the service daemon. The only functionality of the service
daemon is to act as a remote server for all remote stated service requests. However, there is
no local server associated with it, because all services, with except of the name service, are
provided remote. The memory server and process server services only are used by the team
administrator, which resides on some remote node. Because of this organization, all stated
service requests are mapped by the service stub onto remote service invocation. On some
other node, may be in a centralized fashion, the constructive services are provided by the
corresponding server. Thus, the functionality of the server daemon is to bridge the gap
between remote residing constructive system components and the basic components, residing
on the application node.

Actually, the service daemon requests a local basic service for some other remote residing
constructive server. To realize its task, the service daemon uses services of the ghost, which
in turn represents the node/cluster server or the network gateway, respectively. One can say,
the service daemon is the deputy for all non-basic system processes in PEACE. In terms of the
remote service invocation model, the service daemon encapsulates the corresponding call stub
for the remote residing service stubs .

This general deputy functionality of the service daemon especially realizes the remote
creation and remote termination of processes and/or address spaces, for example. Another
important aspect is that of making remote server known to the local name server. In this
way, on any node a remote attributed process identification is associated with a service name.

The MMU server, the panic server and the name replugger functionality remains
unchanged by this model. The only difference is that signalling some kind of system specific
exceptions is realized by remote service invocation. Therefore the inter-relationship between
these three system processes and the ghost.

A

PEACE Network Transparency

4.6.2. Communication Node Breakdown

The next model considered is that for the communication node. The main functionality of
this node is to route inter-cluster messages and to control other intra-cluster communication
activities. The corresponding model is given with figure 4.5.

process
server

Figure 4.5: An actual communication node structure

The main difference to the application node is the presence of the signal team which
actually is responsible for global signal propagation. The other difference is given by the
building block for remote controlled accounting and/or monitoring. The functionality of this
building block, more specifically that of the monitor and the accounter deputy, is explained
along with the diagnostic node breakdown.

The signal team consists of the signal server assisted by its remote server. As shown with
the application node model, some system processes (the MMU server, panic server and name
replugger) will signal system specific events using remote service invocation. Therefore, the
remote server is placed side by side with the signal server in the same team, which in turn is
able to process remote requests for signal propagation.

Besides processing of remote signal propagation, remote residing signal clients are
activated by the remote server, too. Because the message-oriented nature of signal
propagation in PEACE and because awaiting propagated signals is nothing more than a service
provided by the signal team, re-activating a signal client is straight forward — there is no
difference from terminating other remote rendezvous. The remote server just sends a reply
request to the ghost, which in tum interacts with the corresponding remote ghost, with the
result of replying the signal client still blocked on this remote ghost.

<98 .

PEACE Network Transparency

4.6.3. Disk Node Breakdown

To proceed with the exemplary discussion of the distributed actual structure of PEACE, the
team administrator, the file server and the disk administrator must be associated with some
node. The disk node is used as the host for these system components, as shown by figure 4.6.

Service

Figure 4.6: An actual disk node structure

The most important aspect given with the disk node model is the necessity of a client
deputy pool in the service daemon’s team. Each member of this pool represents a remote
residing client which states a remote i/o request, in this case disk i/o.

Some of the file server services as well as some of the loader services will work blocking
on the requesting client. For example, a client receives the reply only if the requested file
block has been read from disk (and if the block is not hold in the cache, already). The same
holds for loading a new program. If the service daemon would state these requests on its own,
it would block and thus unable to accept in the meantime more incoming remote service
requests. However, while a system service is still processed, it should be possible to accept
and process other remote stated service requests. Otherwise a dangerous bottleneck, which
additionally may produce global deadlock situations, will be designed with the system.

Each time a remote service request, which is a blocking one, is received by the service
daemon an inactive client deputy is taken from the process pool and instructed to process the
service request just received. By this way, the client deputy blocks for the service daemon,
which in turn is able to proceed accepting more remote stated requests.

<39 -

PEACE Network Transparency

4.6.4. Diagnostic Node Breakdown

The last considerd example is a configuration suited for the diagnostic node. On this node,
specifc control and monitor functionalities, for example checkpointing and accounting, are
realized. In the model introduced for this node, tty i/o and central clock management is
considered, too. Thus, there are two device administrators associated with the diagnostic node,
the tty administrator and the clock administrator. Moreover, as an example for the monitor>>
functionality of the diagnostic node, an accounter is integrated in the system structure. Figure
4.7 depicts the corresponding actual system structure for the diagnostic node.

remote accounter
server

process
server

Figure 4.7: An actual diagnostic node structure

The purpose of the client deputies assisting the service daemon is the same as that already
explained in conjunction with the disk node structure. Because there are clock server services
which, upon request, will delay clients for a specified duration, the client deputy principle must
be applied, too.

The accounter collects informations from several remote residing monitors. Such a
monitor has been placed on the communication node, as an example for this system
discussion, and monitors all communication activities in direction to the ghost of that node.
Thus, all outgoing remote, i.e. inter-cluster and/or intra-cluster, communication activities are
remembered. The accounter deputy on the communciation node is responsible for the delivery
of the remembered account information to the accounter. This actually is realized by remote

*2) The model for general monitoring is discussed in more detail in the next chapter. This functionality is
realized in PEACE by a so called "building block" for enrichment of the minimal system functionalities.

-

PEACE Network Transparency

service invocation on behalf of the accounter deputy .

To process remote incoming account informations, the accounter is assisted by a remote
server, both encapsulated by the same team. Once the account information is present, the
remote server and/or the accounter will initiate proper (pre) processing. This may involve
printing of status informations onto the connected console, using tty server services, or to
remember the account informations onto stable storage, using remote file access services
relayed by the ghost.

Sl

PEACE Building Blocks

Chapter 5
Building Blocks

The basic and constructive components of PEACE together constitute a
decentralized/distributed operating system with minimal functionality. Taken these components
as the basis, several application specific services may be provided, once the corresponding
server/administrator is installed. More specifically, this application oriented configuration of
PEACE is supported in a dynamical fashion. With that functionality, PEACE follows the concept
of a family of operating systems as, for example, realized with MOOSE,

The system components representing dynamical operating system services are termed the
building blocks in PEACE. The administrators of such building blocks are placed at level 10,
and above, in the PEACE system hierarchy. However, depending on the functionality of the
administrators, some of its processes may be associated with lower levels. In this chapter
some of these adminstrators are introduced. By this way the suitability of PEACE to support a
broad area of (system/user) applications is exemplified.

5.1. Adoptation of Processes

The basic mechanism for adopting a process in PEACE is given by the routing facility of the
nucleus. Adopting a process means relaying all messages directed to an adopted process to
some specific server. These messages are transmitted by send, reply and relay. More
specifically, it is specified by the routing process, what kind of messages, the one supplied by
send and relay or the one supplied by reply, is wanted to be routed.

The main system application using the principle of adopting a process are bulk message
accounting, monitoring and audit trailing of messages. Additionally specifc forms of deadlock
prevention are realized by this principle in PEACE, too. Basic to all these functionalities is a so
called monitor. This process is responsible for routing a send message, issued either by send
or relay , or a reply message, issued by reply and for receiving the re-directed messages.

5.1.1. Accounting

The advantage of the nucleus routing facility is illustrated in the following by giving the
framework for realizing an accounter. The accounter constitutes with the monitor an
accounter team. Figure 5.1 shows that model.

The monitor’s task is to receive the re-directed messages and to remember these message
in some accounter work area. If the accounter is not yet running, the monitor will reply it,
thus initiating the specific accounting functionality. It is a good strategy, that the monitor

A2 -

PEACE Building Blocks

work area

3
Server

Figure 5.1: Accounting of messages

merely queues the re-directed messages and does not process them. Applying this principle
means realizing the minimal delay associated with message accounting.

This model illustrates another important aspect given by the team concept. Actually the
monitor performs a no-wait send to the accounter. This is realized first by queueing the
message in the team data space and then replying — which already is a non-blocking
communication activity — the accounter if it is not yet running. Using the team concept, any
non-blocking communication semantic may be realized [Schroeder 1986].

5.1.2. Exceptional Termination of Rendezvous

One aspect for the runtime efficiency of the local inter-process communication primitives in
PEACE is that these primitives don’t consider exceptional process states which temporarely are
associated with any process. This means, for example, that a rendezvous with a terminated
process from the nucleus point of view is legal. Thus the client will block indefinatively long
once it sends a message to the already terminated server. The monitor and the nucleus routing
facility gives an elegant solution of this communication problem. Figure 5.2 illustrates the
necessary model as applicated in PEACE.

Figure 5.2: Signalling an exceptional rendezvous

-

PEACE Building Blocks

In this model the monitor is represented by the so called terminator, whose task it is to
signal a rendezvous exception using signal server services. This exception is raised, each time
the terminator receives a message from a client which sent a message to an already terminated
process. Simply, the terminator merely accepts re-directed messages. In this case, the
terminated server has been adopted by the terminator .

The terminator functionality is supported by the signal client of the terminator team.
Each time a process terminates, which is signalled as a process termination exception by the
loader and propagated by the signal server, the terminator adopts that terminated process. In
contrast to that, each time a process is created, which is signalled and propagated as the
process creation exception, the terminator relinquishes the adoptation of the respective process.
The signal handler of the terminator team calls the actual nucleus primitive to enable and
disable routing for terminated processes, respectively. In the meantime of one’s process
incarnation, the phase between dead and alive, the terminator considers all communication
activities with that process as illegal and enables application oriented handling of this system
specific exception.

5.2. Adoptation of Services

As with adopting a process, adopting a service means that the original server will not
receive a service request on a direct way. Some other server takes the position between client
and original server and catches all stated service requests by the client.

The difference to process adoptation is that routing a message-encoded service request is
realized by the name server and not by the nucleus. More precisely, the name server does
not really route a message, it merely provides services to change the association between a
service name and the process identification of a server, i.e. service access point. This means
that routing a service request only is possible if a client asks for the server address of the given

service name, i.e. at client/server connection establishment time*>.

An important aspect of service adoptation in PEACE is service-accounting (monitoring), in
contrast to the more general message-accounting as realized with process adoptation, and
service migration. Once a service has been adopted, another service access point, designating
the path to the adopting server, is returned from the name server each time the adopted service
is asked for by a client. Additionally, adopting a service means signalling the name replug
execption by the name replugger. In this way, already existing service connections from a
client to a server can be updated with respect to the client’s context.

= Adaptation of services can be combined with adoptation of processes. In this case, a specific service
request may be monitored (service adoptation) as well as the corresponding service termination, indicated
by a reply (process adoptation, more specifically reply message routing).

PEACE Building Blocks

5.2.1. Service Migration

As an example for service adoptation the migration of a service onto another node is
considered. Service migration in PEACE does not necessarily mean the migration of the entire
server or, more specifically, of the entire server team. A server may be splitted in such a way
that its main functionality still is provided on its original node and that only a single service of
it is migrated onto another node. However, it is worth to note that the model described, here,
merely enables continuous service invocation, i.e. identification and addressing of the actual
service providing process. Other, service specific management activities, as e.g. updating of
data structures local to the server, still must be realized by the service providing process on its
own responsibility. The considered model is given by figure 5.3.

Figure 5.3: Typical configuration for a migrated server team

In this model, the original client/server inter-relationship on one node has been represented
by a relationship between the original client and a so called server deputy. The server deputy
realizes a specific interaction with the remote server, which in turn represents the migrated
service providing process. For example, this configuration is typical for remote file access in
PEACE. A file deputy resides on the client’s node remote from the actual file server and drives
a file transfer protocol with the corresponding remote file server. Usually, the remote file
server resides on the disk node associated with the SUPRENUM architecture.

5.3. Propagation of Signals

Signal propagation in PEACE is used to distribute system specific events. The applicants of
these events are system processes as well as user processes. The global propagation of signals
(messages) basically supports the realization of a distributed operating system. For example,
distributed resource or process management means the decentralization of process specific
control structures. In PEACE there is no single per-process user structure as it is for example
the case in UNIX. Moreover, in PEACE this structure is decentralized, i.e. each system

-45 -

PEACE Building Blocks

administrator maintains an own per-process user structure for its management activities. Thus,
it is important for these administrators to receive, for example, a notification about the
termination of one of its potential client’s. Once received that notification, the per-process user
Structure is invalidated by all system administrators.

5.3.1. Control of Checkpointing

One of the main application areas of signal management in PEACE is supporting a
checkpoint mechanism for achieving a certain level of fault-tolerance. Signal propagation is
used in PEACE to initiate and control the communication activities along with checkpointing,
recovery and consistence checking of data structures. Figure 5.4 gives an overview how the
common basic model in PEACE looks like to support the mentioned functionalities.

Figure 5.4: Control of Checkpointing

The application, or part of it, to be checkpointed consists of the checkpoint applicant and
the checkpoint client. From the signal server’'s point of view, both processes are the signal
applicant and the signal client, respectively. The checkpoint controlling process is termed the

checkpoint server.

The signal server services are used by the checkpoint server to enable the asynchronous
activation of checkpoint clients, more specifically to call the corresponding signal handlers
from remote (with respect to the address space and/or to the node) and thus interrupting the
execution of the checkpoint applicant. Each time the checkpoint client receives a checkpoint
signal, as raised by the checkpoint server, it requests from the checkpoint server further
instructions. One of such instructions might be to write out critical data items using file server
services, thus actually fixing a checkpoint for the checkpoint applicant. Another, much easier
example might be to initiate some check sequence over the critical data items produced by the
checkpoint applicant. Thus to trigger dynamic data structure verification.

As has already been illustrated, signal propagation is applicable from remote, too. The
checkpoint server typically resides only once per SUPRENUM cluster, or even once per hyper-
cluster. From remote, the checkpoint server controlls the activities of the signal clients

8 -

PEACE Building Blocks

distributed over SUPRENUM. The checkpoint clients may be considered as the "Sleeping
Beauty", awoken by the checkpoint server in time and realizing team specific checkpointing
tasks.

However, it is noted, again, that there is much more work to be done by a checkpoint
administrator to achieve fault-tolerance. At least the problems resulting from passing address
space as well as node boundaries are removed from such a checkpoint administrator. Thus the
only concern of the checkpoint administrator is the checkpointing itself and its co-ordination
with other system activities.

-

PEACE Conclusion

Chapter 6

Conclusion

The actual structure of PEACE has been realized by a large number of system processes,
following the pattern of a family of operating systems as exemplified by [Parnas 1975],
[Habermann et al. 1976] and [Schroeder 1986]. The motivation behind this consequent process
structuring is to achieve a high degree of decentralization/distribution of an operating system.
With this respect, PEACE is superior to many other operating systems [Balter et al. 1986].

Besides the high degree of decentralization/distribution achieved with PEACE, the flexibility
in terms of a dynamical reconfiguration of the system at runtime is another characteristic
feature. Reconfiguration may be necessary due to several reasons [Isle et al. 1977]. The main
reason for making PEACE dynamical reconfigurateable is to support system fault-tolerance
extensively. Because all typical operating system functionalities are encapsulated by dedicated
processes, exchanging a faulty system complex, for example, may be realized. Of course,
there is a certain limit given because the functionalities of particular system components. In
either case, "fire walls" are placed arround the system components to realize a high degree of
protection,

Very consequent process structuring must not mean to realize an operating system with
little performance. Two aspects are important. At first, no PEACE service request, for example,
is provided by more than two processes, if the local case is considered. Thus process
switching time is low if compared to the total time a service takes to be executed, e.g. creation
of processes. And secondly, inter-process communication directly is supported by the PEACE
nucleus , independently of user or system processes. Most importantly, routing send and/or
reply messages is not realized by the depit of the basic mechanisms of inter-process
communication [Schroeder 1987]. In addition to that, remote inter-process communication in
PEACE either is realized by routing of messages or by using corresponding services provided by
the ghost (representing the node/cluster server and/or nerwork gateway).

As a result of this procedure, service invocation overhead is minimized. For example, a
rendezvous is slowed down due to ca. 27 % general overhead because the seperation of team
(user) and nucleus (supervisor) state. This relative large quota in overhead due to the nucleus
call/return sequence and argument/result passing is an indication for the high-performance
realization of inter-process communication in PEACE. More specifically, it shows that actual
nucleus management in conjunction with inter-process communication, e.g. process
dispatching, process synchronization and message-passing, by way of comparison is really
inexpensive with respect to runtime.

Sag .

PEACE Bibliography

Bibliography

[Balter et al. 1986]
R. Balter, A. Donelly, E. Finn, C. Hom, G. Vandome: Systems Distributes sur Reseau
Local — Analyse et Classification, Esprit project COMANDOS, No 834, 1986

[Behr et al. 1986]
P. M. Behr, W. K. Giloi, H. Miihlenbein: Rationale and Concepts for the SUPRENUM
Supercomputer Architecture, Gesellschaft fiir Mathematik und Datenverarbeitung
(GMD), 1986

[Cheriton 1979]
D. R. Cheriton: Multi-Process Structuring and the Thoth Operating System,
Dissertation, University of Waterloo, UBC Technical Report 79-5, 1979

[Cheriton 1984]
D. R. Cheriton: The V Kernel: A Software Base for Distributed Systems, IEEE
Software 1, 2, 19-43, 1984

[Cheriton, Zwaenepoel 1983]
D. R. Cheriton, W. Zwaenepoel: The Distributed V Kernel and its Performance for
Diskless Workstations, ACM Operating Systems Review, 17, 5, Proceedings of the Ninth
ACM Symposium on Operating Systems Principles, Bretton Woods, New Hampshire, 1983
[Dennis, van Horn 1966]
J. B. Dennis, E. C. van Hom: Programming Semantics for Multiprogrammed
Computations, Comm. ACM, 11, 3, 143-155, 1966
[Fabry 1973]
R. S. Fabry: Dynamic Verification of Operating System Decisions, Comm. ACM, 11, 6,
659-668, 1973

[Goodenough 1975]
J. B. Goodenough: Exception Handling: Issues and a Proposed Notation, Comm. ACM,
18, 12, 683-696, 1975

[Habermann et al. 1976]
A. N. Habermann, P. Feiler, L. Flon, L. Guarino, L. Cooprider, B. Schwanke:
Modularization and Hierarchy in a Family of Operating Systems, Camegie-Mellon
University, 1976

[Haertig et al. 1986]
H. Hartig, W. Kiihnhauser, W. Lux, H. Streich, G. Goos: Structure of the BirliX
Operating System, GMD, Insitut fiir Systemtechnik, 1986

[Isle et al. 1977]
R. Isle, H. Goullon, K.-P. Lohr: Dynamic Restructuring in an Experimental Operating
System, Technical Report 77-27, TU Berlin, Fachbereich 20 (Informatik), 1977

[Joy et al. 1983]

W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, D. Mosher: 4.2BSD System
Manual, University of California at Berkeley, CA 94720, 1983

<y -

PEACE Bibliography

[Metcalfe, Boggs 1976]
R. M. Metcalfe, D. R Boggs: Ethernet: Distributed Packet Switching for Local
Computer Networks, Comm. ACM, 19, 7, 395-404, 1976
[Millen 1976]
J. K. Millen: Security Kernel Validation in Practice, Comm. ACM, 19, 5, 243-250, 1976
[Nelson 1982]
B. J. Nelson: Remote Procedure Call, Carnegie-Mellon University, Report CMU-CS-81-
119, 1982
[Organick 1972]
E. Organick: The Multics System: An Examination of its Structure, MIT Press, 1972
[Pamnas 1974]
D. L. Parnas: On a ’Buzzword’: Hierarchical Structure, Information Processing 74,
North-Holland Publishing Company, 1974
[Pammas 1975]
D. L. Pamas: On the Design and Development of Program Families,
Forschungsbericht BS I 75/2, TH Darmstadt, 1975
[Pamas 1976]
D. L. Pamas: Some Hypotheses about the ’uses’ Hierarchy for Operating Systems,
Report, TH Darmstadt, 1976
[Popek et al. 1981]
G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, G. Thiel: LOCUS: A
Network Transparent, High Reliability Distributed System, ACM Operating Systems
Review, 15, 5, Proceedings of the Eigth Symposium on Operating Systems Principles,
Asilomar Conference Grounds, Pacific Grove, California, 1981
[Randell et al. 1978]
B. Randell, P. A. Lee, P. C. Treleaven: Reliability Issues in Computing System Design,
ACM Computing Surveys, Vol. 10, No. 2 (June), 1978
[Schoen 1987]
F. Schon: Hochvolumen Datentransfer in PEACE, Technical Report, GMD FIRST an der
TU Berlin, 1987
[Schroeder 1986]
W. Schroder: Eine Familie von UNIX-dhnlichen Betriebssystemen - Anwendung von
Prozessen und des Nachrichteniibermittlungskonzeptes beim strukturierten
Betriebssystementwurf, Dissertation, TU Berlin, Fachbereich 20 (Informatik), 1986
[Schroeder 1987]
W. Schroder: Basic Inter-Process Communication in a Decentralized Operating
System, Technical Report, GMD FIRST an der TU Berlin, to be provided, 1987
[Schroeder 1987b]

W. Schroder: Ligth-Weigthed Processes and the Concept of Teams, Technical Report,
GMD FIRST an der TU Berlin, to be provided, 1987

S -

PEACE Bibliography

[Schroeder 1987c]
W. Schroder: Naming and Identification of Services in a Distributed Operating
System, Technical Report, GMD FIRST an der TU Berlin, to be provided, 1987

[Tanenbaum, van Renesse 1985]
A. S. Tanenbaum, R. van Renesse: Distributed Operating Systems, ACM Computing
Surveys, Vol. 17, No. 4 (December), 1985

[Thompson, Ritchie 1974]
K. Thompson, D. M. Ritchie: The UNIX Timesharing System, Comm. ACM, 17, 7,
365-375, 1974

[Zwaenepoel 1985]
W. Zwaenepoel: Protocols for Large Data Transfers over Local Networks, Proceedings
Ninth Data Communication Symposium, IEEE, September, 1985

