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Introduction Motivation

®m  We are moving from multi-core to many-core [1]. This
introduces some changes:
= 1,000 and more cores
= Differences in computer architecture [5]
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= OS is the base for all applications
m It is helpful to differentiate between load scalability and
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Introduction Motivation

®m  We are moving from multi-core to many-core [1]. This
introduces some changes:

= 1,000 and more cores
= Differences in computer architecture [5]
m [t is important that operating systems scale on this hardware!

= OS is the base for all applications
m It is helpful to differentiate between load scalability and
structural scalability [4]

m  What are the design challenges for an OS on many-core
hardware?
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Locks

®  One job of any OS is managing system resources [14]

m Network
= Memory

...
B Sometimes exclusive access to resources is required

m  Often locks enforce critical sections [15]
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Locks may not Scale
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Figure: Taken from Factored Operating Systems (Fos): The Case for

a Scalable Operating System for Multicores [15]
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I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?
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I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?

m  Use more fine-grained locks?

= Done today in OS development [15]

m But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more
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Locks hurt OS scalability. What can be done about it?

m  Use more fine-grained locks?
= Done today in OS development [15]
m But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more
m  Use better locks?
= Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
m But: Lock contention remains
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I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?

m  Use more fine-grained locks?

= Done today in OS development [15]
m But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

m  Use better locks?

= Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].

= But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.
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Locks Avoiding Locks All Together

How does fos [15] avoid locks?

fos is optimized for systems with hundreds to thousands of cores
Operating system is factored into small parts

Servers offer OS functionality (e.g. networking, paging)

m Each server runs on a dedicated core

m Servers are organized in fleets that provide the same functionality
m Servers process requests in a sequential manner
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Locks Sequentializing OS services
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Locks Sequentializing OS services
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Locks Sequentializing OS services
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Locks Sequentializing OS services
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Locks Sequentializing OS services
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Locks Sequentializing OS services

m  Dedicated server cores make it possible to sequentialize OS
services [15]

m No locks are required on a core
m Takes advantage of optimistic synchronization
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Locks Sequentializing OS services

m  Dedicated server cores make it possible to sequentialize OS
services [15]
m No locks are required on a core
m Takes advantage of optimistic synchronization

m  New challenge: How to synchronize servers in a fleet with each
other?
m Notional locks

= Transaction servers
m Distributed algorithms
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Locks Sequentializing OS services

m  Dedicated server cores make it possible to sequentialize OS
services [15]
m No locks are required on a core
m Takes advantage of optimistic synchronization
m  New challenge: How to synchronize servers in a fleet with each
other?
m Notional locks
= Transaction servers
m Distributed algorithms
® In 2011, some OS services were implemented as servers [16]:
= Networking, paging, read-only file system
= Some overhead is introduced
m Compared to Linux, fos offered better scalability
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Caches and Locality
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Caches and Locality

Often OS and application share the same core [12]:

m Caches and TLB lose effectiveness because of poor locality
= Context switching is expensive in itself

B Impact on load scalability

= More system calls mean more damage to caches
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Caches and Locality Cache Misses
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Figure: Taken from Factored Operating Systems (Fos): The Case for
O a Scalable Operating System for Multicores [15]
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Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?
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Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

®  On many-core platforms, cores will be plentiful
m |t becomes possible to assign one core to every thread

m If there are less cores than threads, time sharing is used only as a
fallback
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Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

On many-core platforms, cores will be plentiful
It becomes possible to assign one core to every thread

m If there are less cores than threads, time sharing is used only as a
fallback

Other operating systems also use dedicated cores

m  Corey [6] allows applications to dedicate cores to kernel tasks

m  Barellfish [2] uses a similar approach to fos
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Caches and Locality Separating OS and application
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Figure: Improvements of separating OS and application onto different
cores on a Linux system. Taken from Vote the OS off your core [3].
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Reliance on Cache Coherent Shared Memory
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Cache Coherent Shared Memory

m Typical PC hardware today offers cache coherent shared
memory [6]
m Software running on such systems can make certain
assumptions [13]:
m There exists a single global address space
m Cache coherence can ensure that caches remain in sync
(volatile keyword)

m Cache coherent shared memory can be used for communication
between threads and processes [9, 15, 6]
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~ Cache Coherent Shared Memory Difficulties

m  Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]
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offer cache coherent shared memory [15, 2, 8]

m Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]
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Cache Coherent Shared Memory Difficulties

B Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]

m Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]
m  Cache Coherence is hard to scale up [8]:

m Power and latency overhead
m Extra space overhead
s Complex implementation prone to errors
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~ Cache Coherent Shared Memory

Message Passing

®m  Many-Core architectures typically do have on-die networks [5]
= Ring or mesh topologies
m Packet-switching

m Performance evaluations are encouraging [2]

Figure: Typical many-core chip layout. Taken from Thousand core
chips: a technology perspective [5].
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~ Cache Coherent Shared Memory

m  Cache Coherent shared memory should still be offered to
applications, if supported by hardware [15]
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Conclusion
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Conclusion

m  We are moving toward the many-core era. This introduces new
challenges for OS development.
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Conclusion

m  We are moving toward the many-core era. This introduces new
challenges for OS development.

® Locks may not scale
= Lock contention gets expensive

m Using better and more fine-grained locks can be a short term
solution

m Structuring the OS to sequentialize requests scales better
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Conclusion

We are moving toward the many-core era. This introduces new
challenges for OS development.

Locks may not scale

= Lock contention gets expensive

m Using better and more fine-grained locks can be a short term
solution

m Structuring the OS to sequentialize requests scales better
OS/application sharing of cores

= Poor locality impedes performance, especially of the OS
= Dedicated server cores take full advantage of caches
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Conclusion

m  We are moving toward the many-core era. This introduces new
challenges for OS development.
® Locks may not scale
= Lock contention gets expensive
m Using better and more fine-grained locks can be a short term
solution
m Structuring the OS to sequentialize requests scales better
m  OS/application sharing of cores
= Poor locality impedes performance, especially of the OS
= Dedicated server cores take full advantage of caches
m Reliance on cache coherent shared memory
m Many-Core architectures may not offer cache coherent shared
memory
= Using message passing instead is a viable alternative
= Applications can use islands of shared memory
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Questions?
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