
Design Challenges of Scalable Operating
Systems for Many-Core Architectures

Andreas Schärtl

Friedrich-Alexander University Erlangen-Nuremberg (FAU)

06/12/2016

Introduction

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 2

Introduction Motivation

We are moving from multi-core to many-core [1]. This
introduces some changes:

1,000 and more cores
Differences in computer architecture [5]

It is important that operating systems scale on this hardware!
OS is the base for all applications
It is helpful to differentiate between load scalability and
structural scalability [4]

What are the design challenges for an OS on many-core
hardware?

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 3

Introduction Motivation

We are moving from multi-core to many-core [1]. This
introduces some changes:

1,000 and more cores
Differences in computer architecture [5]

It is important that operating systems scale on this hardware!
OS is the base for all applications
It is helpful to differentiate between load scalability and
structural scalability [4]

What are the design challenges for an OS on many-core
hardware?

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 3

Introduction Motivation

We are moving from multi-core to many-core [1]. This
introduces some changes:

1,000 and more cores
Differences in computer architecture [5]

It is important that operating systems scale on this hardware!
OS is the base for all applications
It is helpful to differentiate between load scalability and
structural scalability [4]

What are the design challenges for an OS on many-core
hardware?

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 3

Introduction Agenda

Introduction

Locks

Caches and Locality

Reliance on Cache Coherent Shared Memory

Conclusion

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 4

Locks

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 5

Locks

One job of any OS is managing system resources [14]
Network
Memory
...

Sometimes exclusive access to resources is required
Often locks enforce critical sections [15]

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 6

Locks Locks may not Scale

Figure: Taken from Factored Operating Systems (Fos): The Case for
a Scalable Operating System for Multicores [15]

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 7

Locks Short Term Remedies

Locks hurt OS scalability. What can be done about it?

Use more fine-grained locks?
Done today in OS development [15]
But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

Use better locks?
Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

Locks Short Term Remedies

Locks hurt OS scalability. What can be done about it?
Use more fine-grained locks?

Done today in OS development [15]
But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

Use better locks?
Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

Locks Short Term Remedies

Locks hurt OS scalability. What can be done about it?
Use more fine-grained locks?

Done today in OS development [15]
But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

Use better locks?
Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

Locks Short Term Remedies

Locks hurt OS scalability. What can be done about it?
Use more fine-grained locks?

Done today in OS development [15]
But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

Use better locks?
Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

Locks Avoiding Locks All Together

How does fos [15] avoid locks?
fos is optimized for systems with hundreds to thousands of cores
Operating system is factored into small parts
Servers offer OS functionality (e.g. networking, paging)

Each server runs on a dedicated core
Servers are organized in fleets that provide the same functionality
Servers process requests in a sequential manner

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 9

Locks Sequentializing OS services

S A₀

A₁

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

S A₀

A₁

malloc

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

S A₀

A₁

JOB 0 ↺

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

S A₀

A₁

malloc
JOB 0 ↺

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

S A₀

A₁

JOB 0 ↺

JOB 1 ◷

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

S A₀

A₁

Reply

JOB 1 ◷

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

S A₀

A₁

JOB 1 ↺

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

Dedicated server cores make it possible to sequentialize OS
services [15]

No locks are required on a core
Takes advantage of optimistic synchronization

New challenge: How to synchronize servers in a fleet with each
other?

Notional locks
Transaction servers
Distributed algorithms

In 2011, some OS services were implemented as servers [16]:
Networking, paging, read-only file system
Some overhead is introduced
Compared to Linux, fos offered better scalability

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 11

Locks Sequentializing OS services

Dedicated server cores make it possible to sequentialize OS
services [15]

No locks are required on a core
Takes advantage of optimistic synchronization

New challenge: How to synchronize servers in a fleet with each
other?

Notional locks
Transaction servers
Distributed algorithms

In 2011, some OS services were implemented as servers [16]:
Networking, paging, read-only file system
Some overhead is introduced
Compared to Linux, fos offered better scalability

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 11

Locks Sequentializing OS services

Dedicated server cores make it possible to sequentialize OS
services [15]

No locks are required on a core
Takes advantage of optimistic synchronization

New challenge: How to synchronize servers in a fleet with each
other?

Notional locks
Transaction servers
Distributed algorithms

In 2011, some OS services were implemented as servers [16]:
Networking, paging, read-only file system
Some overhead is introduced
Compared to Linux, fos offered better scalability

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 11

Caches and Locality

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 12

Caches and Locality

Often OS and application share the same core [12]:
Caches and TLB lose effectiveness because of poor locality
Context switching is expensive in itself

Impact on load scalability
More system calls mean more damage to caches

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 13

Caches and Locality Cache Misses

Figure: Taken from Factored Operating Systems (Fos): The Case for
a Scalable Operating System for Multicores [15]

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 14

Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

On many-core platforms, cores will be plentiful
It becomes possible to assign one core to every thread

If there are less cores than threads, time sharing is used only as a
fallback

Other operating systems also use dedicated cores
Corey [6] allows applications to dedicate cores to kernel tasks
Barellfish [2] uses a similar approach to fos

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 15

Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?
On many-core platforms, cores will be plentiful
It becomes possible to assign one core to every thread

If there are less cores than threads, time sharing is used only as a
fallback

Other operating systems also use dedicated cores
Corey [6] allows applications to dedicate cores to kernel tasks
Barellfish [2] uses a similar approach to fos

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 15

Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?
On many-core platforms, cores will be plentiful
It becomes possible to assign one core to every thread

If there are less cores than threads, time sharing is used only as a
fallback

Other operating systems also use dedicated cores
Corey [6] allows applications to dedicate cores to kernel tasks
Barellfish [2] uses a similar approach to fos

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 15

Caches and Locality Separating OS and application

Figure: Improvements of separating OS and application onto different
cores on a Linux system. Taken from Vote the OS off your core [3].

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 16

Reliance on Cache Coherent Shared Memory

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 17

Cache Coherent Shared Memory

Typical PC hardware today offers cache coherent shared
memory [6]
Software running on such systems can make certain
assumptions [13]:

There exists a single global address space
Cache coherence can ensure that caches remain in sync
(volatile keyword)

Cache coherent shared memory can be used for communication
between threads and processes [9, 15, 6]

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 18

Cache Coherent Shared Memory Difficulties

Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]

Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]
Cache Coherence is hard to scale up [8]:

Power and latency overhead
Extra space overhead
Complex implementation prone to errors

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 19

Cache Coherent Shared Memory Difficulties

Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]
Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]

Cache Coherence is hard to scale up [8]:
Power and latency overhead
Extra space overhead
Complex implementation prone to errors

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 19

Cache Coherent Shared Memory Difficulties

Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]
Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]
Cache Coherence is hard to scale up [8]:

Power and latency overhead
Extra space overhead
Complex implementation prone to errors

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 19

Cache Coherent Shared Memory Message Passing

Many-Core architectures typically do have on-die networks [5]
Ring or mesh topologies
Packet-switching

Performance evaluations are encouraging [2]

Figure: Typical many-core chip layout. Taken from Thousand core
chips: a technology perspective [5].

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 20

Cache Coherent Shared Memory Islands

Cache Coherent shared memory should still be offered to
applications, if supported by hardware [15]

A₀ A₀ A₀

A₀ S A₁

A₀ A₀ A₁

S

A₁

A₁

A₁

A₂ A₂

A₂ A₂

S

S

Figure: Application A0 and A2 use application-level cache coherent
shared memory. The server cores S and application A1 do not.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 21

Conclusion

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 22

Conclusion
We are moving toward the many-core era. This introduces new
challenges for OS development.

Locks may not scale
Lock contention gets expensive
Using better and more fine-grained locks can be a short term
solution
Structuring the OS to sequentialize requests scales better

OS/application sharing of cores
Poor locality impedes performance, especially of the OS
Dedicated server cores take full advantage of caches

Reliance on cache coherent shared memory
Many-Core architectures may not offer cache coherent shared
memory
Using message passing instead is a viable alternative
Applications can use islands of shared memory

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Conclusion
We are moving toward the many-core era. This introduces new
challenges for OS development.
Locks may not scale

Lock contention gets expensive
Using better and more fine-grained locks can be a short term
solution
Structuring the OS to sequentialize requests scales better

OS/application sharing of cores
Poor locality impedes performance, especially of the OS
Dedicated server cores take full advantage of caches

Reliance on cache coherent shared memory
Many-Core architectures may not offer cache coherent shared
memory
Using message passing instead is a viable alternative
Applications can use islands of shared memory

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Conclusion
We are moving toward the many-core era. This introduces new
challenges for OS development.
Locks may not scale

Lock contention gets expensive
Using better and more fine-grained locks can be a short term
solution
Structuring the OS to sequentialize requests scales better

OS/application sharing of cores
Poor locality impedes performance, especially of the OS
Dedicated server cores take full advantage of caches

Reliance on cache coherent shared memory
Many-Core architectures may not offer cache coherent shared
memory
Using message passing instead is a viable alternative
Applications can use islands of shared memory

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Conclusion
We are moving toward the many-core era. This introduces new
challenges for OS development.
Locks may not scale

Lock contention gets expensive
Using better and more fine-grained locks can be a short term
solution
Structuring the OS to sequentialize requests scales better

OS/application sharing of cores
Poor locality impedes performance, especially of the OS
Dedicated server cores take full advantage of caches

Reliance on cache coherent shared memory
Many-Core architectures may not offer cache coherent shared
memory
Using message passing instead is a viable alternative
Applications can use islands of shared memory

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Questions?

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 24

Bibliography I

[1] The international technology roadmap for semiconductors
2.0 Executive Report.
2015.

[2] R. I. Andrew Baumann, Paul Barham and T. Harris.
The multikernel: A new OS architecture for scalable
multicore systems.
In 22nd Symposium on Operating Systems Principles.
Association for Computing Machinery, Inc., October 2009.

[3] A. Belay, D. Wentzlaff, and A. Agarwal.
Vote the OS off your core.
2011.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 25

Bibliography II

[4] A. B. Bondi.
Characteristics of scalability and their impact on
performance.
In Proceedings of the 2Nd International Workshop on
Software and Performance, WOSP ’00, pages 195–203,
New York, NY, USA, 2000. ACM.

[5] S. Borkar.
Thousand core chips: A technology perspective.
In Proceedings of the 44th Annual Design Automation
Conference, DAC ’07, pages 746–749, New York, NY, USA,
2007. ACM.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 26

Bibliography III

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y.-h.
Dai, et al.
Corey: An operating system for many cores.
In OSDI, volume 8, pages 43–57, 2008.

[7] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and
N. Zeldovich.
Non-scalable locks are dangerous.
In Proceedings of the Linux Symposium, pages 119–130,
2012.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 27

Bibliography IV

[8] B. Choi, R. Komuravelli, H. Sung, R. Smolinski,
N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter, and
C.-T. Chou.
Denovo: Rethinking the memory hierarchy for disciplined
parallelism.
In Parallel Architectures and Compilation Techniques
(PACT), 2011 International Conference on, pages 155–166.
IEEE, 2011.

[9] J. Liedtke.
On micro-kernel construction.
In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages 237–250,
New York, NY, USA, 1995. ACM.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 28

Bibliography V

[10] J. M. Mellor-Crummey and M. L. Scott.
Algorithms for scalable synchronization on shared-memory
multiprocessors.
ACM Trans. Comput. Syst., 9(1):21–65, Feb. 1991.

[11] J. Shalf, J. Bashor, D. Patterson, K. Asanovic, K. Yelick,
K. Keutzer, and T. Mattson.
The MANYCORE revolution: will HPC lead or follow.
SciDAC Review, 14:40–49, 2009.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 29

Bibliography VI

[12] L. Soares and M. Stumm.
FlexSC: flexible system call scheduling with exception-less
system calls.
In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, pages 33–46. USENIX
Association, 2010.

[13] D. J. Sorin, M. D. Hill, and D. A. Wood.
A primer on memory consistency and cache coherence.
Synthesis Lectures on Computer Architecture, 6(3):1–212,
2011.

[14] A. S. Tanenbaum and H. Bos.
Modern operating systems.
Pearson Prentice Hall, 3rd international edition, 2009.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 30

Bibliography VII

[15] D. Wentzlaff and A. Agarwal.
Factored operating systems (fos): The case for a scalable
operating system for multicores.
SIGOPS Oper. Syst. Rev., 43(2):76–85, Apr. 2009.

[16] D. Wentzlaff, C. Gruenwald III, N. Beckmann, A. Belay,
H. Kasture, K. Modzelewski, L. Youseff, J. E. Miller, and
A. Agarwal.
Fleets: Scalable services in a factored operating system.
2011.

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 31

	Introduction
	Locks
	Caches and Locality
	Reliance on Cache Coherent Shared Memory
	Conclusion

