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Introduction Motivation

We are moving from multi-core to many-core [1]. This
introduces some changes:

1,000 and more cores
Differences in computer architecture [5]

It is important that operating systems scale on this hardware!
OS is the base for all applications
It is helpful to differentiate between load scalability and
structural scalability [4]

What are the design challenges for an OS on many-core
hardware?
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Locks

One job of any OS is managing system resources [14]
Network
Memory
...

Sometimes exclusive access to resources is required
Often locks enforce critical sections [15]
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Locks Locks may not Scale

Figure: Taken from Factored Operating Systems (Fos): The Case for
a Scalable Operating System for Multicores [15]
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Locks Short Term Remedies

Locks hurt OS scalability. What can be done about it?

Use more fine-grained locks?
Done today in OS development [15]
But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

Use better locks?
Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.
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Locks Avoiding Locks All Together

How does fos [15] avoid locks?
fos is optimized for systems with hundreds to thousands of cores
Operating system is factored into small parts
Servers offer OS functionality (e.g. networking, paging)

Each server runs on a dedicated core
Servers are organized in fleets that provide the same functionality
Servers process requests in a sequential manner

Andreas Schärtl Design Challenges of Scalable Operating Systems for Many-Core Architectures 9



Locks Sequentializing OS services

S A₀

A₁
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Locks Sequentializing OS services

Dedicated server cores make it possible to sequentialize OS
services [15]

No locks are required on a core
Takes advantage of optimistic synchronization

New challenge: How to synchronize servers in a fleet with each
other?

Notional locks
Transaction servers
Distributed algorithms

In 2011, some OS services were implemented as servers [16]:
Networking, paging, read-only file system
Some overhead is introduced
Compared to Linux, fos offered better scalability
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Caches and Locality
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Caches and Locality

Often OS and application share the same core [12]:
Caches and TLB lose effectiveness because of poor locality
Context switching is expensive in itself

Impact on load scalability
More system calls mean more damage to caches
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Caches and Locality Cache Misses

Figure: Taken from Factored Operating Systems (Fos): The Case for
a Scalable Operating System for Multicores [15]
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Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

On many-core platforms, cores will be plentiful
It becomes possible to assign one core to every thread

If there are less cores than threads, time sharing is used only as a
fallback

Other operating systems also use dedicated cores
Corey [6] allows applications to dedicate cores to kernel tasks
Barellfish [2] uses a similar approach to fos
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Caches and Locality Separating OS and application

Figure: Improvements of separating OS and application onto different
cores on a Linux system. Taken from Vote the OS off your core [3].
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Reliance on Cache Coherent Shared Memory
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Cache Coherent Shared Memory

Typical PC hardware today offers cache coherent shared
memory [6]
Software running on such systems can make certain
assumptions [13]:

There exists a single global address space
Cache coherence can ensure that caches remain in sync
(volatile keyword)

Cache coherent shared memory can be used for communication
between threads and processes [9, 15, 6]
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Cache Coherent Shared Memory Difficulties

Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]

Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]
Cache Coherence is hard to scale up [8]:

Power and latency overhead
Extra space overhead
Complex implementation prone to errors
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Cache Coherent Shared Memory Message Passing

Many-Core architectures typically do have on-die networks [5]
Ring or mesh topologies
Packet-switching

Performance evaluations are encouraging [2]

Figure: Typical many-core chip layout. Taken from Thousand core
chips: a technology perspective [5].
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Cache Coherent Shared Memory Islands

Cache Coherent shared memory should still be offered to
applications, if supported by hardware [15]

A₀ A₀ A₀

A₀ S A₁

A₀ A₀ A₁

S

A₁
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A₁
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A₂ A₂

S

S

Figure: Application A0 and A2 use application-level cache coherent
shared memory. The server cores S and application A1 do not.
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Conclusion
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Conclusion
We are moving toward the many-core era. This introduces new
challenges for OS development.

Locks may not scale
Lock contention gets expensive
Using better and more fine-grained locks can be a short term
solution
Structuring the OS to sequentialize requests scales better

OS/application sharing of cores
Poor locality impedes performance, especially of the OS
Dedicated server cores take full advantage of caches

Reliance on cache coherent shared memory
Many-Core architectures may not offer cache coherent shared
memory
Using message passing instead is a viable alternative
Applications can use islands of shared memory
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Questions?
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