Design Challenges of Scalable Operating
Systems for Many-Core Architectures

Andreas Schartl

Friedrich-Alexander University Erlangen-Nuremberg (FAU)

06,/12/2016

Introduction

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

Introduction Motivation

®m We are moving from multi-core to many-core [1]. This
introduces some changes:
= 1,000 and more cores
= Differences in computer architecture [5]

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 3

Introduction Motivation

®m We are moving from multi-core to many-core [1]. This
introduces some changes:

= 1,000 and more cores
= Differences in computer architecture [5]
m [t is important that operating systems scale on this hardware!
= OS is the base for all applications
m It is helpful to differentiate between load scalability and
structural scalability [4]

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 3

Introduction Motivation

®m We are moving from multi-core to many-core [1]. This
introduces some changes:

= 1,000 and more cores
= Differences in computer architecture [5]
m [t is important that operating systems scale on this hardware!

= OS is the base for all applications
m It is helpful to differentiate between load scalability and
structural scalability [4]

m What are the design challenges for an OS on many-core
hardware?

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 3

Introduction Agenda

Introduction

Locks

Caches and Locality

Reliance on Cache Coherent Shared Memory

Conclusion

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 4

Locks

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

Locks

® One job of any OS is managing system resources [14]

m Network
= Memory

...
B Sometimes exclusive access to resources is required

m Often locks enforce critical sections [15]

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

- Locks

Locks may not Scale

12

W get_page_from_freelist
" __pagevec_lru_add_active

10 +— © __rmqueue_smallest
u free_pages_bulk
rmqueue_bulk

8 +—— M main
- M page_fault
S ® handle_mm_fault
% 6 -—— Mother
= M clear_page_c
3
2 4
>
&)
2 —
0 -

Lock
contention

Architectural
overhead

Useful
work

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cores

Figure: Taken from Factored Operating Systems (Fos): The Case for

a Scalable Operating System for Multicores [15]

Andreas Schart! Design Challenges of Scalable Operating Systems for Many-Core Architectures 7

I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?

m Use more fine-grained locks?

= Done today in OS development [15]

m But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?

m Use more fine-grained locks?
= Done today in OS development [15]
m But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more
m Use better locks?
= Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].
m But: Lock contention remains

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

I_OCkS Short Term Remedies

Locks hurt OS scalability. What can be done about it?

m Use more fine-grained locks?

= Done today in OS development [15]
m But: Parallelizing code is prone to errors and already parallelized
code is hard to parallelize even more

m Use better locks?

= Boyd-Wickizer et al. replaced spin locks in the Linux kernel with
more modern MCS locks [10]. This resulted in considerable
performance improvements [7].

= But: Lock contention remains

Both approaches offer poor structural scalability because they
still rely on locks.

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 8

Locks Avoiding Locks All Together

How does fos [15] avoid locks?

fos is optimized for systems with hundreds to thousands of cores
Operating system is factored into small parts

Servers offer OS functionality (e.g. networking, paging)

m Each server runs on a dedicated core

m Servers are organized in fleets that provide the same functionality
m Servers process requests in a sequential manner

Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 9

Locks Sequentializing OS services

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

malloc

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

malloc

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

i JOBO U i

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

Reply

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 10

Locks Sequentializing OS services

m Dedicated server cores make it possible to sequentialize OS
services [15]

m No locks are required on a core
m Takes advantage of optimistic synchronization

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 11

Locks Sequentializing OS services

m Dedicated server cores make it possible to sequentialize OS
services [15]
m No locks are required on a core
m Takes advantage of optimistic synchronization

m New challenge: How to synchronize servers in a fleet with each
other?
m Notional locks

= Transaction servers
m Distributed algorithms

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 11

Locks Sequentializing OS services

m Dedicated server cores make it possible to sequentialize OS
services [15]
m No locks are required on a core
m Takes advantage of optimistic synchronization
m New challenge: How to synchronize servers in a fleet with each
other?
m Notional locks
= Transaction servers
m Distributed algorithms
® In 2011, some OS services were implemented as servers [16]:
= Networking, paging, read-only file system
= Some overhead is introduced
m Compared to Linux, fos offered better scalability

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 11

Caches and Locality

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

12

Caches and Locality

Often OS and application share the same core [12]:

m Caches and TLB lose effectiveness because of poor locality
= Context switching is expensive in itself

B Impact on load scalability

= More system calls mean more damage to caches

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

13

Caches and Locality Cache Misses

Direct Mapped User & OS Miss Rates
25

20
z
815
& W User
v
% 10 0S/User
8 Interference
= mO0S

e > ' % & D v ™
& = o S % S 5 « o
S A T S U AN) &
Cache Size (Bytes) >

Figure: Taken from Factored Operating Systems (Fos): The Case for
O a Scalable Operating System for Multicores [15]

Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 14

Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 15

Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

® On many-core platforms, cores will be plentiful
m |t becomes possible to assign one core to every thread

m If there are less cores than threads, time sharing is used only as a
fallback

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 15

Caches and Locality Separating OS and application

How does fos avoid OS/application sharing of cores?

On many-core platforms, cores will be plentiful
It becomes possible to assign one core to every thread

m If there are less cores than threads, time sharing is used only as a
fallback

Other operating systems also use dedicated cores

m Corey [6] allows applications to dedicate cores to kernel tasks

m Barellfish [2] uses a similar approach to fos

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 15

Caches and Locality Separating OS and application

Improvement in Total CPI (Percent)

=15 ~ [[[[[
apache find make psearchy zip
Workload

M Different Core(Shared L3) Different Core(Unshared L3)

Figure: Improvements of separating OS and application onto different
cores on a Linux system. Taken from Vote the OS off your core [3].

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 16

Reliance on Cache Coherent Shared Memory

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

17

Cache Coherent Shared Memory

m Typical PC hardware today offers cache coherent shared
memory [6]
m Software running on such systems can make certain
assumptions [13]:
m There exists a single global address space
m Cache coherence can ensure that caches remain in sync
(volatile keyword)

m Cache coherent shared memory can be used for communication
between threads and processes [9, 15, 6]

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 18

~ Cache Coherent Shared Memory Difficulties

m Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 19

~ Cache Coherent Shared Memory Difficulties

m Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]

m Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 19

Cache Coherent Shared Memory Difficulties

B Some researchers believe that many-core architectures will not
offer cache coherent shared memory [15, 2, 8]

m Current embedded many-core platforms do not have cache
coherent shared memory available [11, 15]
m Cache Coherence is hard to scale up [8]:

m Power and latency overhead
m Extra space overhead
s Complex implementation prone to errors

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 19

~ Cache Coherent Shared Memory

Message Passing

®m Many-Core architectures typically do have on-die networks [5]
= Ring or mesh topologies
m Packet-switching

m Performance evaluations are encouraging [2]

Figure: Typical many-core chip layout. Taken from Thousand core
chips: a technology perspective [5].

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 20

~ Cache Coherent Shared Memory

m Cache Coherent shared memory should still be offered to
applications, if supported by hardware [15]

.

O

Islands

A

; s
°
s

A,

A;

Figure: Application Ag and Ay use application-level cache coherent

shared memory. The server cores S and application A; do not.

Andreas Schartl

Design Challenges of Scalable Operating Systems for Many-Core Architectures

21

Conclusion

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

22

Conclusion

m We are moving toward the many-core era. This introduces new
challenges for OS development.

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Conclusion

m We are moving toward the many-core era. This introduces new
challenges for OS development.

® Locks may not scale
= Lock contention gets expensive

m Using better and more fine-grained locks can be a short term
solution

m Structuring the OS to sequentialize requests scales better

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Conclusion

We are moving toward the many-core era. This introduces new
challenges for OS development.

Locks may not scale

= Lock contention gets expensive

m Using better and more fine-grained locks can be a short term
solution

m Structuring the OS to sequentialize requests scales better
OS/application sharing of cores

= Poor locality impedes performance, especially of the OS
= Dedicated server cores take full advantage of caches

Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Conclusion

m We are moving toward the many-core era. This introduces new
challenges for OS development.
® Locks may not scale
= Lock contention gets expensive
m Using better and more fine-grained locks can be a short term
solution
m Structuring the OS to sequentialize requests scales better
m OS/application sharing of cores
= Poor locality impedes performance, especially of the OS
= Dedicated server cores take full advantage of caches
m Reliance on cache coherent shared memory
m Many-Core architectures may not offer cache coherent shared
memory
= Using message passing instead is a viable alternative
= Applications can use islands of shared memory

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures 23

Questions?

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

24

__ Bibliography |

[1] The international technology roadmap for semiconductors

2.0 Executive Report.
2015.

[2] R.I. Andrew Baumann, Paul Barham and T. Harris.
The multikernel: A new OS architecture for scalable
multicore systems.

In 22nd Symposium on Operating Systems Principles.

Association for Computing Machinery, Inc., October 20009.

[3] A. Belay, D. Wentzlaff, and A. Agarwal.
Vote the OS off your core.
2011.

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

25

___ Bibliography |l

[4] A. B. Bondi.
Characteristics of scalability and their impact on
performance.
In Proceedings of the 2Nd International Workshop on
Software and Performance, WOSP '00, pages 195-203,
New York, NY, USA, 2000. ACM.

[5] S. Borkar.
Thousand core chips: A technology perspective.
In Proceedings of the 44th Annual Design Automation
Conference, DAC '07, pages 746749, New York, NY, USA,
2007. ACM.

O Andreas Schart! Design Challenges of Scalable Operating Systems for Many-Core Architectures 26

__ Bibliography lll

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y .-h.
Dai, et al.
Corey: An operating system for many cores.
In OSDI, volume 8, pages 43-57, 2008.

[7] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and
N. Zeldovich.
Non-scalable locks are dangerous.

In Proceedings of the Linux Symposium, pages 119-130,
2012.

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

27

__ Bibliography IV

[8] B. Choi, R. Komuravelli, H. Sung, R. Smolinski,
N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter, and
C.-T. Chou.
Denovo: Rethinking the memory hierarchy for disciplined
parallelism.
In Parallel Architectures and Compilation Techniques
(PACT), 2011 International Conference on, pages 155-166.
IEEE, 2011.

[9] J. Liedtke.
On micro-kernel construction.
In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP '95, pages 237-250,
New York, NY, USA, 1995. ACM.

O Andreas Schart! Design Challenges of Scalable Operating Systems for Many-Core Architectures 28

__ Bibliography V

[10] J. M. Mellor-Crummey and M. L. Scott.

Algorithms for scalable synchronization on shared-memory

multiprocessors.
ACM Trans. Comput. Syst., 9(1):21-65, Feb. 1991.

[11] J. Shalf, J. Bashor, D. Patterson, K. Asanovic, K. Yelick,
K. Keutzer, and T. Mattson.
The MANYCORE revolution: will HPC lead or follow.
SciDAC Review, 14:40-49, 2009.

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

29

__ Bibliography VI

[12] L. Soares and M. Stumm.
FlexSC: flexible system call scheduling with exception-less
system calls.
In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, pages 33—46. USENIX
Association, 2010.

[13] D. J. Sorin, M. D. Hill, and D. A. Wood.
A primer on memory consistency and cache coherence.
Synthesis Lectures on Computer Architecture, 6(3):1-212,
2011.

[14] A. S. Tanenbaum and H. Bos.
Modern operating systems.
Pearson Prentice Hall, 3rd international edition, 2009.

O Andreas Schart! Design Challenges of Scalable Operating Systems for Many-Core Architectures 30

___ Bibliography VI

[15] D. Wentzlaff and A. Agarwal.
Factored operating systems (fos): The case for a scalable
operating system for multicores.
SIGOPS Oper. Syst. Rev., 43(2):76-85, Apr. 2009.

[16] D. Wentzlaff, C. Gruenwald Ill, N. Beckmann, A. Belay,
H. Kasture, K. Modzelewski, L. Youseff, J. E. Miller, and
A. Agarwal.

Fleets: Scalable services in a factored operating system.
2011.

O Andreas Schartl Design Challenges of Scalable Operating Systems for Many-Core Architectures

31

	Introduction
	Locks
	Caches and Locality
	Reliance on Cache Coherent Shared Memory
	Conclusion

