
Efficient Many-Core Systems

Florian Schmaus, Stefan Reif

2016-11-08



Moore’s Law (Computer History Musem, Mountain View, CA)



Moore’s Law

Moore’s Law

“The number of transistors incorporated in a chip will approximately
double every 24 months”

Not really a law, but an observation.

Area of Integrated Circuit stays (roughly) the same

Transistors get smaller → Can switch at higher speeds

Computation power grows exponentially

fs, sr KvBK (WS 16) Motivation 3



Dennard Scaling

Dennard Scaling [2]

As transistors get smaller, their power density stays constant.

In other words: Smaller transistors need less current and voltage

Power demand remains constant while transistor count grows

“[...] even if many more circuits are placed on a [...] chip, the cooling
problem is essentially unchanged.”

Dennard scaling has failed

fs, sr KvBK (WS 16) Motivation 4



Dennard Scaling

Dennard Scaling [2]

As transistors get smaller, their power density stays constant.

In other words: Smaller transistors need less current and voltage

Power demand remains constant while transistor count grows

“[...] even if many more circuits are placed on a [...] chip, the cooling
problem is essentially unchanged.”

Dennard scaling has failed

fs, sr KvBK (WS 16) Motivation 4



Breakdown of Dennardian Scaling

Why?

Static power losses have increased [5]

because of complex quantum effects
which manifested because of the smaller component sizes

Manufactures lost the ability to drop the voltage and the current

Because they need to counter the power losses

As result, the power consumption per area is now increasing

Would eventually reach power density of a nuclear reactor core
Danger of overheating

We hit the Power Wall [7]

fs, sr KvBK (WS 16) Motivation 5



Breakdown of Dennardian Scaling

Why?

Static power losses have increased [5]

because of complex quantum effects
which manifested because of the smaller component sizes

Manufactures lost the ability to drop the voltage and the current

Because they need to counter the power losses

As result, the power consumption per area is now increasing

Would eventually reach power density of a nuclear reactor core
Danger of overheating

We hit the Power Wall [7]

fs, sr KvBK (WS 16) Motivation 5



Effects of the breakdown

Low supply voltage

Lower supply voltage ⇒ less leakage current
Low static power consumption

Energy-inefficient software runs slowly [3]

Processor throttles due to thermal constraints
Energy management improves system performance

Thermal runaway is possible

Higher temperature ⇔ higher leakage current
“Hotspots” are dangerous

Clock speed increases no longer

Transistors switch less often ⇒ lower dynamic power consumption
Supply voltage can be reduced ⇒ lower static power consumption

fs, sr KvBK (WS 16) Motivation 6



Effects of the breakdown

Low supply voltage

Lower supply voltage ⇒ less leakage current
Low static power consumption

Energy-inefficient software runs slowly [3]

Processor throttles due to thermal constraints
Energy management improves system performance

Thermal runaway is possible

Higher temperature ⇔ higher leakage current
“Hotspots” are dangerous

Clock speed increases no longer

Transistors switch less often ⇒ lower dynamic power consumption
Supply voltage can be reduced ⇒ lower static power consumption

fs, sr KvBK (WS 16) Motivation 6



The free lunch is over

“Most classes of applications have enjoyed free and regular
performance gains [...], because the CPU manufacturers [...] have
reliably enabled ever-newer and ever-faster mainstream systems”

“[...] the clock race [...] is over”

“[...] if you want your application to benefit from the continued
exponential throughput advances in new processors, it will need to be
a well-written concurrent [...] application”

“programming languages and systems will increasingly be forced to
deal well with concurrency”

CPU manufactures can’t increase clock rate any more
Herb Sutter: “Free lunch is over” [8]

“Free Lunch”
Software benefited from rising clock speed
Automatically, without any modifcations necessary

But: Sequential processing speed is reaching its limits
Existing non-parallel software no longer profits from new parallel hardware
Developers need to write parallel code

We are on the edge from multi-core to many-core systems
Parallelism defines performance
Even for small-scale devices

This trend requires new approaches and concepts from
Libraries / Runtime
Programming Languages
Operating Systems

We need Concurrency Platforms

fs, sr KvBK (WS 16) Concurrency Platforms 7



The free lunch is over

CPU manufactures can’t increase clock rate any more

Herb Sutter: “Free lunch is over” [8]
“Free Lunch”

Software benefited from rising clock speed
Automatically, without any modifcations necessary

But: Sequential processing speed is reaching its limits
Existing non-parallel software no longer profits from new parallel hardware
Developers need to write parallel code

We are on the edge from multi-core to many-core systems

Parallelism defines performance
Even for small-scale devices

This trend requires new approaches and concepts from

Libraries / Runtime
Programming Languages
Operating Systems

We need Concurrency Platforms

fs, sr KvBK (WS 16) Concurrency Platforms 7



The free lunch is over

CPU manufactures can’t increase clock rate any more

Herb Sutter: “Free lunch is over” [8]
“Free Lunch”

Software benefited from rising clock speed
Automatically, without any modifcations necessary

But: Sequential processing speed is reaching its limits
Existing non-parallel software no longer profits from new parallel hardware
Developers need to write parallel code

We are on the edge from multi-core to many-core systems

Parallelism defines performance
Even for small-scale devices

This trend requires new approaches and concepts from

Libraries / Runtime
Programming Languages
Operating Systems

We need Concurrency Platforms

fs, sr KvBK (WS 16) Concurrency Platforms 7



Cilk A concurrency platform

Cilk [1] is a C language extension and runtime library

Keywords to express parallelism

Provably efficient scheduler using work-stealing [4]

Parallel Fibonacci Function using Cilk

1 uint64_t fib(uint32_t n) {

2 if (n < 2)

3 return n;

4 uint64_t a = spawn fib(n-1);

5 uint64_t b = fib(n-2);

6 sync ;

7 return a + b;

8 }

fs, sr KvBK (WS 16) Concurrency Platforms 8



Cilk A concurrency platform

Cilk [1] is a C language extension and runtime library

Keywords to express parallelism

Provably efficient scheduler using work-stealing [4]

Parallel Fibonacci Function using Cilk

1 uint64_t fib(uint32_t n) {

2 if (n < 2)

3 return n;

4 uint64_t a = spawn fib(n-1);

5 uint64_t b = fib(n-2);

6 sync ;

7 return a + b;

8 }

fs, sr KvBK (WS 16) Concurrency Platforms 8



Invasive Computing A systems paradigm for future many-core systems

Covers all layers from application
down to hardware

Hardware: Dark Silicon, accelerator
units, . . .
Software: POS, X10i, . . .

Tiled architecture

Tiles are interconnected with a
two-dimensional NoC

Partitioned Global Address Space

Cores within tile share a coherent
memory view

But no inter-tile cache coherence

Resource aware programming

Resources are granted exclusively

Memory

TCPA

MemoryI/OCPU CPU

CPU

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

NoC
Router

NA

CPU CPU

CPU CPU

CPU CPU

fs, sr KvBK (WS 16) Concurrency Platforms 9



OcotoPOS [6] A parallel operating system

Enforces resource-allocation requests

PEs, Memory, NoC channels, accelerator units, . . .

Works similarly to a distributed system

One OS instance per tile
Inter-tile communcation via messages

Kernel support for micro-parallelism

Async Syscalls, Futures, . . .

Basic unit of execution: i-let

Consists of a function- and two data-pointer

Interchangeable scheduler in user-space

HW-accelerated scheduling, work-stealing, . . .

fs, sr KvBK (WS 16) Concurrency Platforms 10



Conclusion

Microprocessors hit a power wall

Clock speed increases no longer

Only parallel software is fast

Parallel software needs support from

Libraries / Runtime
Programming languages
Operating systems

Concurrency Platforms

fs, sr KvBK (WS 16) Conclusion 11



Conclusion

Microprocessors hit a power wall

Clock speed increases no longer

Only parallel software is fast

Parallel software needs support from

Libraries / Runtime
Programming languages
Operating systems

Concurrency Platforms

fs, sr KvBK (WS 16) Conclusion 11



Seminar Requirements Short Recap

How to process the paper assigned to you:

Summarize

Present motivation, proposed solution and evaluation

Put in perspective

Who wrote it?
When was it written?
Related work and delta to related work?
Citation count?

Discuss and constructively critize

Threats to validity discussed?
Weak motiviation/evaluation?
Approach inconclusive?
Incomplete implementation?

fs, sr KvBK (WS 16) Seminar 12



Seminar Requirements Short Recap

How to process the paper assigned to you:

Summarize

Present motivation, proposed solution and evaluation

Put in perspective

Who wrote it?
When was it written?
Related work and delta to related work?
Citation count?

Discuss and constructively critize

Threats to validity discussed?
Weak motiviation/evaluation?
Approach inconclusive?
Incomplete implementation?

fs, sr KvBK (WS 16) Seminar 12



Seminar Requirements Short Recap

How to process the paper assigned to you:

Summarize

Present motivation, proposed solution and evaluation

Put in perspective

Who wrote it?
When was it written?
Related work and delta to related work?
Citation count?

Discuss and constructively critize

Threats to validity discussed?
Weak motiviation/evaluation?
Approach inconclusive?
Incomplete implementation?

fs, sr KvBK (WS 16) Seminar 12



Seminar Requirements Short Recap

How to process the paper assigned to you:

Summarize

Present motivation, proposed solution and evaluation

Put in perspective

Who wrote it?
When was it written?
Related work and delta to related work?
Citation count?

Discuss and constructively critize

Threats to validity discussed?
Weak motiviation/evaluation?
Approach inconclusive?
Incomplete implementation?

fs, sr KvBK (WS 16) Seminar 12



Seminar Motivation

Techniques learned will become handy

You will read a lot of papers for your BA/MA

It will help you writing a good BA/MA

Because you have to

fs, sr KvBK (WS 16) Seminar 13



Seminar Motivation

Techniques learned will become handy

You will read a lot of papers for your BA/MA

It will help you writing a good BA/MA

Because you have to

fs, sr KvBK (WS 16) Seminar 13



Thanks for your attention!

Questions?



References I

Robert D Blumofe et al. “Cilk: An efficient multithreaded
runtime system”. In: Journal of parallel and distributed
computing 37.1 (1996), pp. 55–69.

Robert H Dennard et al. “Design of ion-implanted MOSFET’s
with very small physical dimensions”. In: IEEE Journal of
Solid-State Circuits 9.5 (1974), pp. 256–268.

Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore
scaling”. In: Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA 2011). IEEE,
2011, pp. 365–376.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. “The
Implementation of the Cilk-5 Multithreaded Language”. In:
SIGPLAN Not. 33.5 (May 1998), pp. 212–223. issn: 0362-1340.

fs, sr KvBK (WS 16) Seminar 15



References II

Nam Sung Kim et al. “Leakage current: Moore’s law meets
static power”. In: IEEE computer 36.12 (2003), pp. 68–75.

Benjamin Oechslein et al. “OctoPOS: A parallel operating
system for invasive computing”. In: Proceedings of the
International Workshop on Systems for Future Multi-Core
Architectures (SFMA). EuroSys. 2011, pp. 9–14.

Fred J. Pollack. “New Microarchitecture Challenges in the
Coming Generations of CMOS Process Technologies”. In:
Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture. IEEE, 1999.

Herb Sutter. “The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software”. In: Dr. Dobb′s Journal 30.3
(Mar. 2005), pp. 202–210. url: http:
//www.gotw.ca/publications/concurrency-ddj.htm.

fs, sr KvBK (WS 16) Seminar 16

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

	Motivation
	Concurrency Platforms
	Conclusion
	Seminar

