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ABSTRACT
On-Chip cache coherence is in widespread use on

mainstream general-purpose computers nowadays.
Scaling from multi to many core systems hardware
coherent cache might become problematic, since sim-
ply scaling existing systems is not possible due to
overhead. This paper will discuss and evaluate two
different approaches for cache coherence implemen-
tations in many core systems, that solve the over-
head problems caused by a high count of cores. One
of these approaches stays with hardware cache co-
herence but introduces a hierarchy. The other is
based on a hybrid approach, based on hardware cache
coherence on small scale and software cache coher-
ence on coarse scale.

1. INTRODUCTION
Current general-purpose processors build in x86 or amd64

architecture utilize only few cores - between 4 to 8 in con-
sumer products and up to 24 for professional server ma-
chines.Since Pollack’s Rule states that the performance of
a microprocessor grows roughly proportional to the square
root of it’s complexity, it is not favorable to stay with the
same core count. If inverted Pollack’s rule gives implies a
speedup of factor

√
2 when dividing a core into two. There-

fore the logical solution is a increasing core count, which
brings issues with currently used cache coherence designs.

Hardware cache coherence is the widespread design for
current processors on which all mainstream software is build
upon. The second design in use are graphics-processors
(GPUs), already using thousands of cores on one chip [1].
GPUs are not using coherent caches though [10], making
programming more demanding. Therefore a GPU-like de-
sign will probably not be the solution for mainstream proces-
sors but a hybrid cache coherence approach, utilizing hard-
ware cache coherence on small scale and software cache co-
herence on coarse scale could, and is discussed in Section 3.

Changing transparent memory access by introducing hard-
ware incoherent cache imposes at least some redesigning
in well known software though, which is generally undesir-
able. Therefore hardware manufacturers are expected to
gain speedups in performance while maintaining the same
architecture and hardware cache coherence.

To avoid the introduction of processors with incoherent
cache a hierarchical design using multiple stages of inclusive
cache, grouping cores into clusters, will be discussed in Sec-
tion 2. This design is able to work with sufficiently small
overhead on up to 512 core-processors as Martin et al. [8]

states and does not break with hardware cache coherence.
A cache hierarchy [8] can have a heavy impact on per-

formance, if multi threaded applications are run on distant
cores in distant clusters. In order to reduce this issue, vari-
ous approaches for better thread mapping to hardware cores
are discussed in Section 4. This is done without the need of
any changes on the applications itself.

2. HARDWARE COHERENCE
Hardware cache coherence in mainstream CPUs is neces-

sary in order to maintain legacy support of software. It may
also be a well functioning design in future. As of today main-
stream CPUs use inclusive coherent caches[10] with multiple
levels. The amount of last level pages usually exceeds the
aggregate of lower levels. Intel’s Core i7 6700K for instance
uses a last level inclusive cache with 8 times of the lower
level aggregate.

In this section coherent cache design, it’s necessities, ad-
vantages and disadvantages will be discussed. As Martin et
al. [8] showed in their theoretical paper, there is a possibility
that ” [..] on-chip coherence is here to stay ”. Boyd-Wickizer
et al.[3] demonstrated that it is in fact possible to maintain
the current OS and application design, even on a 48 Core
machine, keeping a reasonable speedup. The following dis-
cussion is based on a inclusive, shared design, using exact
tracking of sharers in the shared cache (every cache above
L1).

Network-traffic is one concern, that needs to be addressed.
If blocks are shared and sharers are tracked with one bit per
core the traffic per miss is constant (regarding the number
of cores) in a scenario of shared blocks. Thus the cost of
hardware coherence will be acceptable. If blocks are not
shared, messages need to be passed on every miss in a private
cache. For clean blocks, those which have not been written,

traff c cost of cache misses.

Clean block Dirty block

Without coherence (Req+Data) + 0 = 80B/miss (Req+Data) + Data = 152B/miss

With coherence (Req+Data) + (evict+Ack) = 96B/miss (Req+Data) + (Data+Ack)= 160B/miss

Per-miss traff c overhead 20% 5%

To calculate traff c, we must assume values for the size of addresses and cache blocks (suchas 8B
physical addresses and 64B cache blocks). Request and acknowledgment messages are typically
short (such as 8B) because they contain mainly a block address and a message type f eld. A data
message is signif cantly larger because it contains both an entire data block plus a block address
(such as 64B + 8B = 72B).

Figure 1: Example of network traffic cost. With and
without coherence [8]



two messages need to be passed: One with the request from
a cores private cache to the shared cache and one with the
shared cache response containing the data. If a block has
been written (a dirty block) in a private cache before an
other core hits a read miss on it, then the dirty block needs
to be written back to the shared cache and forwarded to the
requesting core, that requested the miss. These cases are
independent of the number of cores, too and thus negligible
for scaling. An example for traffic cost can be seen in the
following Figure 1 In this Figure the exact amount of traffic
per miss is calculated for 64Byte blocks, with and without
coherence.

Since there is fewer traffic with block sharing and the
exact amount can be tracked, this design choice is preferable.
Exact tracking of sharers can lead to an enormous amount

Figure 2: Traffic for shared blocks for write misses
against read misses. (a) illustrating exact tracking
of sharers, while (b) illustrates non exact tracking
with 32 tracking bits. [8]

of storage overhead tough. With a block size of 64 Bytes and
1024 Cores the overhead amounts to 50% of total storage
cost for tracking of sharers only. This much overhead is not
deemed acceptable, therefore a hierarchical model[8] dealing
with this problem will be introduced in Section 2.1.

Figure 2 shows the advantages of exact sharer tracking (a)
against hybrid tracking (b), having 32 bits for each block
representing cores. If the amount does not exceed 32 - or if
exceeded, an inexact representation is used, which increases
traffic until the core count is high enough that messages need
to be passed on every miss to every core anyway.

Therefore a exact representation of sharers is favorable.
It’s storage costs can be dealt with a hierarchical design[8].
See Subsection 2.1.

2.1 Hierarchical Design
A hierarchical design [8] for cache coherence can overcome

the extreme overhead for exact tracking of sharers. It ex-
ploits the fact, that one hierarchy level only needs to track
its underlying sharers per block. Figure 3 (shortened to
save space) illustrates the following Example: If you con-
sider 144 cores, a 3 level hierarchy with inclusive caches, a
design choice may be 12 cores with private caches, having
a shared cache per cluster. Then each level 2 cache only
needs 12 bit for exact tracking of block sharers. The last
level again needs only 12 bit to encode each cluster. Thus
every block can be tracked precisely, on the cost of higher
latency if a block is shared across multiple clusters. This
issue may be overcome software is aware of the hardware
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Figure 3: Illustration of a hierarchical cache design.
The area of boxes representing caches is roughly pro-
portional to it’s actual size.



architecture. An example may be that the operating system
schedules processes that need a large amount of communi-
cation on one cluster if possible. Thus inter process mes-
sages and synchronization is handled faster and does not
need escalation to a higher cache level. Further discussed in
Section 4.

2.2 Accelerators on heterogeneous Processors
Power et al. [9] describes a model (Heterogeneous Sys-

tem Coherence) for ”hardware coherence between CPUs and
GPUs”, which can be implemented efficiently. This eases the
burden for programmability, eliminating the need of explicit
copies for the Graphics Processing Unit. Their model is
specialized in modern All Processing Units (APU’s) that in-
corporate a classic CPU and GPU. Intel’s i-Series [6] already
are only APU’s and AMD also has a series of APU hybrid
processors [2]. Less and more efficient traffic result in less
energy usage and thus is favorable for Processors in general
but especially for energy saving ones in mobile usage, where
APU’s are used to save power, since the total amount of
available energy is limited.

The GPU and CPU part of modern hybrid processors
share the same virtual address space: Both may use the
systems ram. Therefore explicit copies are not favorable,
since they need more ram and handling of multiple address
spaces. In order to reduce storage cost, caused by explicit
copies and traffic while increasing total throughput Power
et al. designed HSC[9]. Since locality of code and data is
different for each parts - GPU’s usually have higher spacial
and lower temporal locality than CPU’s - HSC implements
one region directory for both and region buffers for GPU
and CPU L2 caches respectively[9]. The region directory
consists of a region tag, state bits, one bit for CPU access
and one bit for GPU access. In case of a hierarchical CPU
design, it’s last level cache may have the region buffer. All
misses from each processor part, that escalate above L2 are
firstly handled by the region buffer. If permission is found,
requests are sent directly to system memory. If not, the
region directory handles the request and may grand permis-
sion. Regions may consist of 16 to 64 blocks each. Because
of this granularity size most of L2 misses are routed directly
to system memory, keeping a low workload on the directory.
Power et al.[9] achieved an increased performance of factor
2 and 94% less bandwidth on the directory on average.

3. OTHER COHERENCE

L3 cache cluster
(to memory)

L3
cache
bank

(to interconnect)

L3$0 L3$1 L3$2 L3$3 L3$4 L3$5 L3$6 L3$7

DRAM
bank 0

DRAM
bank 2
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bank 1 DRAM
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bank 6
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Core
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Figure 4: Baseline processor architecture with 1024
cores , 8 per cluster in a RISC-like hierarchical or-
ganization [7]

While pure hardware cache coherence is nice to have from
the programmers view, there are issues which should be dis-
cussed. The issue of hardware cache coherence is, that mes-
sages are rather pulled on demand: A miss in a cores private
cache is necessary in order to fetch the needed data into it’s
cache. Therefore the core has to wait until the needed data
is available. Software coherence protocols are the opposite
and usually work in a push manner: They save blocks in
the according private caches whenever writes occur, which
makes short delays possible but possibly on the expense of
traffic, since the pushed data may be unread by some cores.

Kelm et al. proposed a hybrid design which they called
Cohesion [7]. This system utilizes hardware based coherence
for fine granularity at block level and software coherence for
coarse granularity in order to tackle the problem of traffic
and storage overhead on many core processors.

In their simulation Software cache coherence needed sig-
nificantly less messages to be passed between locally shared
L2 cache and global L3 for most of the tested algorithms.
Figure 8 illustrates the results, normalized to software co-
herence. False sharing, which is the false sharing of data
in a block that is actually not shared, can be prevented by
fine grained software coherence protocols. An example for
false sharing are two variables stored close together in ad-
dress space that are stored in a shared block and used by a
concurrently running program. The first of these variables
is used by one thread only and the second by the other but
the block containing both of them is shared nevertheless.
Software Cache Coherence can eliminate this issue, since it
is knowledgeable of the actual information shared.

Hardware cache coherence has the advantage of ensuring
latest data for every core in case of shared blocks. This
gives the programmer memory transparency and simplifies
the actual work to be done. Programs can be ported to
other hardware cache coherent systems without much ef-
fort and if at all only minor rewrites compared to a totally
different system. The total performance may be impacted
though, since processors might have varying implementa-
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Figure 5: Execution time normalized to OS.[5]
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Figure 6: Energy consumption normalized to OS.[5]



tions for hardware coherence, although they appear to have
the same architecture from the software developers view. An
example are the difference between AMD and Intel CPU’s,
although they both have the ”same” architecture.

Since neither hardware nor software cache coherence are
perfect, the by Kelm et al. proposed design could be a per-
fect alternative utilizing the benefits of both. By not enforc-
ing hardware cache coherence only, the transition between
an general purpose processor and specific accelerators like
GPUs can also be handled by cohesion, unifying access to
different processors. This may actually improve programma-
bility.

Figure 4 shows the processor being used for the simula-
tions by Kelm et al. [7]. It is organized in 128 clusters of
8 cores each. Every core has it’s own L1 cache, sharing a
unified L2 cache within a cluster. The L3 cache banks are
non inclusive to the L2 ones. A directory is used that holds
entries cached in at least one L2. This means that the di-
rectory may contain lines which are not cached in L3. For
software coherence a region table, build on chip, is employed
that holds address ranges for software coherence.

Since hardware coherence and software coherence need to
be organized, cohesion acts as a bridge between these two
protocols. Figure 7 illustrates the transitions from hardware
to software coherence. Cohesion acts as link between both
implementations for coherence by moving blocks, kept co-
herent by software to hardware managed coherence. This
can be achieved by only one extra incoherence-bit in each
L2 cache on the proposed processor. If a block is stored co-
herently, queries can be handled by hardware coherence. On
every request from L2 to L3 Cohesion queries the directory.
On directory and L3 hit the L2’s request can be handled
with hardware coherence. On directory hit but L3 miss ac-
cess is blocked by the directory and the region tables are
used. On fill from memory the directory sends a response
that the requested data is accessible. If a request has neither
a directory, nor a L3 hit, L3 sends a response to L2 that an
incoherent access has occurred. L2 sets it’s incoherence bit
accordingly on arrival of the response. Then cohesion can
handle the request with it’s software side.

4. PROGRAMMING
The Programmability of Hardware is and will still be an

important factor of it’s success. Even the most advanced
and performant hardware will probably not be used if it’s
complexity in programming is unacceptable. Therefore the
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Figure 7: Cohesion as bridge between hardware and
software coherence. Left: Software coherence pro-
tocol; Right: Hardware coherence protocol.[7]

pressure not to break with established pragmatisms is high
and backward compatibility deemed necessary. As described
in subsection 2.1 it is indeed possible not to break with ex-
isting designs and stay cache coherent, even when scaling to
many core systems. Thus a existing software ecosystem can
still be used while further speedups are achievable with mi-
nor modifications. Two possible software modifications are
presented in the following paragraphs.

Cruz et al.[4] proposed a system for ”Dynamic thread map-
ping of shared memory applications by exploiting cache co-
herence protocols”[4]. They gained 13.9% in execution time
while having 30.5% less cache misses and 39.4% less inval-
idation messages. The speedups and less traffic as result
of less cache misses are made possible by ”[..] communica-
tion aware thread mapping”. Cruz exploited modern CPU’s
cache hierarchy as implicated in Section 2.1. A multilevel
hierarchical cache like illustrated in 3 and higher order hier-
archies may benefit even more from Cruz’s thread mapping
than the tested ones, since latencies for synchronization be-
tween distant cores increase with hierarchy level. Hardware
awareness may become inevitable for high throughput on
many core systems.

Similar results were achieved by Diener et. al[5], who
gained an average execution time reduction of 13.8% and
improved energy efficiency by 9.3% on average. These re-
sults were achieved by ”[..]Kernel-Level Management of Thread
and Data Affinity” (kMAF) [5] and are therefore favorable,
since no program modifications are necessary. This was done
by analyzing memory access characteristics of parallel ap-
plications and optimizing locality of threads on hardware
(thread affinity) with this information. No previous infor-
mation of the applications behavior is necessary, making the
usage of kMAF easy for existing software. Figure 5 and Fig-
ure 6 show their measurements. Although these results were
generated for a small set of benchmarks and were not im-
plemented system wide, they appear to be very promising.

Cohesion, an alternative approach for cache on many core
systems, as described in Section 3 may have huge advan-
tages in scaling but well known ease of programmability for
general purpose processors may suffer. On the other hand
Kelm et al. [7] suggested the implementation of Cohesion
by compiler, runtime or programming models. Thus they
”[..] make coherence management and optimization a choice
rather than a burden for correctness” [7] and give the pro-
grammer an easy entry while having the tools for optimiza-
tions, if wanted.
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5. CONCLUSION
Two different models, a hierarchy for hardware coherent

caches[8] and a hybrid cache coherence design[7] were pre-
sented here. Whilst both have advantages, they also have
issues that need to be dealt with.

Hardware coherence as proposes by Martin et al.[8] has
the enormous benefit of not breaking with current hardware
coherence models and thus giving the possibility to use cur-
rent and legacy software without any modifications. Thus
the already proven ecosystem of operating systems and soft-
ware can simply be used further on. There might be impacts
on performance though if software is running concurrently
on distant clusters, causing a lot of high latency traffic when
synchronizing. Cruz et al.[4] and Diener et al.[5] proposed
systems to overcome those problems on software side though.

Kelm et al.[7] proposed a system they called Cohesion.
It combines both: Hardware and software cache coherence
giving. With this technique even many core processors can
achieve high throughput. Their proposed processor is or-
ganized in clusters implementing hardware coherence. The
clusters are kept coherent by software. While it’s clear ad-
vantage is a low amount of overhead, it also imposes a bur-
den on the programmer, since software can now manage
hardware’s caches and probably need to if good performance
is necessary: An application programmer needs to focus
more on the hardware and not only on the application’s
features itself, when using cohesion. Then the efficiency is
very high though and false sharing can be eliminated on
coarse grain level. Some restructuring of software will also
be necessary.

Both systems are a legitimate design choice and may be
implemented in future. Since both studies were only in the-
ory or simulation, a real implementation of them might show
side effects not covered. Since the trend in mainstream pro-
cessors was some kind of hardware coherent implementation
it will unlikely be abandoned. Therefore the hierarchical
design by Martin et al. is probably favored.

6. REFERENCES
[1] Whitepaper nvidia geforce gtx 1080.

[2] Advanced-Micro-Devices:(AMD). Amd apu public
website, 2016.

[3] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An analysis of linux scalability to many
cores. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’10, pages 1–16, Berkeley, CA, USA, 2010.
USENIX Association.

[4] E. H. Cruz, M. Diener, M. A. Alves, and P. O.
Navaux. Dynamic thread mapping of shared memory
applications by exploiting cache coherence protocols.
Journal of Parallel and Distributed Computing,
74(3):2215–2228, 2014.

[5] M. Diener, E. H. Cruz, P. O. Navaux, A. Busse, and
H.-U. Heiß. kmaf: Automatic kernel-level management
of thread and data affinity. In Proceedings of the 23rd
International Conference on Parallel Architectures and
Compilation, PACT ’14, pages 277–288, New York,
NY, USA, 2014. ACM.

[6] Intel. Intel ark i7 6th generation, 2016.

[7] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta,

and S. J. Patel. Cohesion: An adaptive hybrid
memory model for accelerators. IEEE Micro,
31(1):42–55, Jan. 2011.

[8] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why
on-chip cache coherence is here to stay. Commun.
ACM, 55(7):78–89, July 2012.

[9] J. Power, A. Basu, J. Gu, S. Puthoor, B. M.
Beckmann, M. D. Hill, S. K. Reinhardt, and D. A.
Wood. Heterogeneous system coherence for integrated
cpu-gpu systems. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 457–467, New
York, NY, USA, 2013. ACM.

[10] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor,
and T. M. Aamodt. Cache coherence for gpu
architectures. In 2013 IEEE 19th International
Symposium on High Performance Computer
Architecture (HPCA), pages 578–590, Feb 2013.


