Design Challenges of Scalable Operating Systems for
Many-Core Architectures

Andreas Schartl
Friedrich-Alexander-Universitat Erlangen-Nirnberg

andreas.schaertl@fau.de

ABSTRACT

Computers will move from the multi-core reality of today to many-
core. Instead of only a few cores on a chip, we will have thou-
sands of cores available for use. This new architecture will force
engineers to rethink OS design. It is the only way for operating
systems to remain scalable even as the number of cores increases.
Presented here are three design challenges of operating systems for
many-core architectures: (1) Locks which do not scale, (2) poor
locality offered by the traditional approach of sharing processor
cores between application and OS and (3) no more cache coherent
shared memory available to the OS. This elaboration discusses why
these challenges impact scalability, introduces proposed solutions
and evaluates them.

1. INTRODUCTION

The most recent International Technology Roadmap for Semi-
conductors 2.0 [1] describes the development of microcontroller.
Manufacturers of microprocessors used to increase the frequency
of their processors with each new technology generation. This was
possible because of Moore’s Law. At the beginning of the new
century a physical cap was encountered in the form of thermal lim-
its. It became clear that it would no longer be possible to increase
both the number of transistors on a die while also increasing clock
speed. Trying to do both would cause serious problems related to
heat dissipation. Chip makers decided to keep Moore’s Law in ef-
fect. They still produce chips with an ever increasing number of
transistors, while frequencies do not see any more significant in-
crease.

This is what changed our landscape from a world of single core
to that of multi-core. As the number of transistors on integrated
circuits continues to grow (Moore’s Law remains in effect), it is
reasonable to expect systems with hundreds, even thousands, of
general purpose cores in the future [7, 20].

The number of transistors will continue to grow for the foresee-
able future while frequencies will stay about the same. It is up to the
designers of software to ensure that this new hardware is used ef-
ficiently, because simply waiting for higher frequencies that speed
up performance is not possible anymore [18].

Looking at operating systems, it is essential that they scale with
this new hardware. They have to to manage the resources of the up-
coming many-core systems efficiently, otherwise it will be impossi-
ble for an application running on such a base to take full advantage
of the newly available parallel processing power.

This elaboration is about scalability. As such, it is helpful to con-
sider a definition of scalability. In his 2000 paper Characteristics
of Scalability and Their Impact on Performance [6] Bondi gives
a definition for scalability. He focuses on two types of scalabil-
ity: Load scalability and structural scalability. Bondi defines load

scalability as the ability of a system to continue effective operation
while the workload increases. Systems offering poor load scal-
ability show degraded relative performance when load increases.
Structural scalability is a statement about future developments. A
system with good structural scalability will be able to grow with the
needs of tomorrow. On the other hand, a system with poor struc-
tural scalability will require lots of effort to keep up to date with
current developments.

Wentzlaff et al. identified three challenges for system software
on many-cores hardware: (1) Locks on OS data structures that im-
pede scalability, (2) poor locality that leads to ineffective use of
caches and (3) reliance on cache coherent shared memory, some-
thing future multi-core architectures will probably not be able to
offer. Faced with these challenges they designed the fos operating
system, an OS designed to scale on many-core hardware [20].

This elaboration focuses on those three problems identified by
Wentzlaff et al. Section 2 discusses locks, caches and locality are
topic of section 3 and finally section 4 is about reliance on cache
coherent shared memory.

2. SCALABILITY ISSUES OF LOCKS

This section introduces the first challenge for operating systems
on many-cores: Locks impede OS scalability. As the number of
cores contending for a lock increases, more and more time is wasted
waiting for locks. Because traditional approaches to kernel devel-
opment will not offer enough scalability, a more long-term solution
is introduced: Avoiding locks as a core design goal.

One job of any OS is to distribute hardware resources to the ap-
plication processes and applications may need exclusive access to
one or more of these resources at a given time [19, p. 6-7]. Oper-
ating systems today use locks to synchronize these different parties
with each other to avoid race conditions and similar problems [20].
critical section

2.1 Locks may not Scale

Work on scalable operating systems has shown that there is rea-
son to believe that locks will not offer the desired scalability [8,
20].

Wentzlaff et al. motivate fos with a case study. In it, they test the
performance of the physical page allocator in Linux 2.6.24.7. For
this case study, they used a machine with 16 Intel cores and a total
of 16 GB RAM. Each core allocated one gigabyte each. Then, ev-
ery core touched the first byte on every page of this gigabyte, ensur-
ing that the kernel actually maps the pages into physical memory.
In each run, they modified the number of active cores participating
in the benchmark. Differences in performance depending on core
count were made visible. In summary, the researches made two
conclusions: First, (1) as they increased the number of cores, lock



contention became the biggest cost factor. It was the synchroniza-
tion overhead that consumed the most resources. (2) When more
than eight cores are active in the benchmark, the total execution
time actually increased. The authors argued that synchronization
overhead caused by locks is the reason for this decline in perfor-
mance [20].

At first this benchmark may seem unrealistic. All active cores
are busy requesting memory at high speed. But the authors are
aware of this and make a counterargument. Having all cores on a
system allocate considerable amounts of memory at the same time
is not very realistic. However it is fair to expect 16 cores out of
an available 1,000 to request memory at the same time. Lock con-
tention will be a big factor on many-core systems if software design
remains as it is today.

Such observations were also made in the development of the
Corey operating system [8]. The authors ran a similar benchmark
on a machine with 16 cores. In it, the time taken for acquiring and
then releasing a kernel lock was timed. As the number of active
cores increased, the time for a single lock acquire/release increased
in a linear fashion.

From these two examples we see that using locks offers poor
load scalability. Increasing the number of active cores increases the
contention for locks. This results in a noticeable overhead, that only
grow as core counts increase. OS design indeed needs to consider
the challenge of lock overhead.

2.2 Short Term Remedies

Locks impede scalability. Operating systems used to increase the
granularity of locks to combat this. They long ago stopped using
a single global lock for their global data structures. Instead today
more fine grained locks are used. This allows for higher levels of
parallelism [20].

So one may suggest that using ever more fine grained locks is
enough. But this is not a long term solution: It will not be able to
continue if the number of cores grows as expected. This is because
splitting up already parallelized code very work intensive and also
prone to errors [20]. This shows that simply increasing the granu-
larity of locks will not offer the desired structural scalability.

Another idea could be to increase the performance of locks them-
selves. In Non-scalable locks are dangerous [9] the authors re-
placed simple spin locks in the Linux kernel with more modern
MCS locks [14]. They observe that (1) the required changes are
straight-forward and (2) MCS locks offer the desired load scalabil-
ity in their benchmarks. These benchmarks use up to 28 cores.

Using more sophisticated locks such as the MCS lock can be a
short term remedy, but not a long-term solution. Better performing
locks are not an improvement in structural scalability. Rather they
are an aid that can postpone more fundamental changes in architec-
ture for later [9].

These two traditional approaches can offer some improvements.
But it remains unclear how to design an OS with locks that offers
both good structural and load scalability. It is thus reasonable to
list locks as a problem.

2.3 Avoiding Locks All Together

Using locks impedes scalability. To avoid this problem, the ker-
nel could avoid locking as much as possible. This was proposed for
fos [20] and the Barrelfish operating system [4].

On fos, an OS designed for thousands of cores, every thread runs
on its own core. The designers assume that cores will be so plen-
tiful that dedicating a core to just one thread is reasonable without
running into limitations posed by core count. Should that happen
regardless, the OS falls back to traditional time sharing. Servers

realize typical OS functionality and run on dedicated system cores.
Inspired by online services they are organized in fleets of cores of-
fering the same functionality. One a system with thousands of cores
there will be multiple server cores offering a single system service,
such as memory allocation or network communication [21].

Now for how this results in less locks. Servers do not work in
an preemptive manner. Rather, server cores process requests from
application cores in a sequential manner. Only the server thread
is running on a server core so there is no need for synchroniza-
tion within the core itself. With this approach, no locks are needed
within a core. This avoids the scaling pitfalls of using locks [20].

Global data structures in the kernel remain. The available phys-
ical memory is finite, there needs to be some kind of synchroniza-
tion between servers in a fleet that does not rely on hardware locks.
Wentzlaff et al. propose two possible solutions: (1) Use a dedicated
lock server that offers notional locks, which can be used to synchro-
nize the servers with each other. But because notional locks are not
expected to perform well, algorithms found on distributed systems
should be used instead. With high rates of replication it will hope-
fully be able to service applications in a reasonable amount of time.
As an alternative, (2) using a dedicated core as transaction server
is proposed. The individual servers in the fleet would process the
requests and then only send the result to the transaction server [20].

When fos was first introduced, its implementation was still in an
early state. As such, it was not possible to evaluate the performance
of system services implemented as fleets. Evaluation was possible
only in 2011, when some basic servers were implemented. It in-
cluded a basic network stack, a page allocation service and a read-
only file system. Comparing the performance of these services to a
standard Linux kernel showed comparable performance and better
scalability. For low core counts, fos suffered some overhead losses
compared to Linux (especially the file system implementation). But
as the number of cores increased, fos showed better load scalability
than Linux [21]. In summary, even though some new overhead is
introduced, this approach does seem promising.

Corey [8] takes a less drastic approach to reducing the number of
required locks. Here, applications have to explicitly specify which
resources are shared. On today’s systems it is typical for a program
to consist of multiple threads of execution. All of these threads
share an address space and can mutate state in that address space.
As such, kernel data structures, such as the page table of a process,
need to be protected with locks. If only one thread accesses these
structures, using a global lock is not actually required. In Corey,
this does not happen: Per default, resources are not shared. Only
after issuing a system call indicating the desire to share, e.g. a page
of memory, will it be possible to do so. Only then will these re-
sources be protected by locks. As the system knows exactly which
resources are shared and which are not, these locks can be very fine
grained as supposed to a coarse global lock. This approach reduces
the number of required locks in the kernel.

One of the goals of Corey was to make sharing explicit, so that
no resources are wasted by assuming data to be shared that isn’t.
It is interesting that fos achieves this goal as well. Because fos
only relies on messaging, all sharing is explicit by design: Sharing
requires sending a message and all data that is shared has to be part
of a message [21].

In this section, locks were introduced a threat to scalability. Tra-
ditional approaches to OS development can only offer short term
solutions. In the long run, major architecture changes are required:
These changes try to avoid locking as much as possible to reduce
the damage caused by lock contention.

3. CACHES AND LOCALITY



This next section elaborates the performance impact of having
operating system and application share the same processing core.
Context switches are expensive and disrupt caches. As a solution,
this section will introduce dedicated OS cores, which mean a high
level of locality and great use of caches.

On today’s multi-core machines the OS and applications typi-
cally share the same cores with each other. Processor cores, how-
ever, only have one set of caches, registers and only one translation
lookaside buffer (TLB). Exploiting both caches and TLB is crucial
to good performance. But with every context switch from applica-
tion to OS and vice versa, caches and TLBs lose effectiveness [16].

3.1 Damage Caused by Context Switches

Wentzlaff et al. conducted another case study. Using a mod-
ified version of the x86_64 emulator QEMU, it was possible to
measure cache miss rates and attribute them to either misses of
(1) operating system code, (2) application code or (3) operating
system/application interference. On this emulator they tested De-
bian 4 running the Apache2 web server, which received requests for
a static web page. In this test they noticed that the OS suffers from
cache misses, much more than the application does. Cache misses
related to operating system/application interference were negligi-
ble. These OS cache misses are because of cache interference. The
context switch between OS and application causes this [20].

Serving static web content is something many web servers will
do using the very same software used in this experiment. It is likely
that these cache misses occur a lot on real-life multi-core systems
today.

Wentzlaff et al. finish their case study with a note that these
findings reproduce the results from a similar experiment made in
1988 [3] by Agarwal et al. It should be noted that Agarwal also
contributed to the paper introducing fos. In the 1988 paper, OS
misses also made up a noticeable portion while OS/application in-
terference was negligible. However the difference between OS and
application code was not as pronounced, rather they were about
equal in numbers.

It is not immediately clear how these cache misses are related
to scalability. Imagine a many-core system A that uses the tradi-
tional approach of context switching to another such system B that
does away with context switching in whatever way. Assume that
system B does not introduce any new limits to scalability in its im-
plementation. As the number of cores increases, I do not see how
system A or B will suddenly decrease in relative performance as the
number of cores grows. It seems that there is no threat to structural
scalability posed by context switching. About load scalability, it is
likely that an increase in load of system calls will pose an ever more
damage to performance as the processor is occupied with context
switches. Unfortunately, no such considerations were made by the
authors of this case study.

3.2 Keeping Operating System and Applica-
tion Separated

Poor locality does not pose a challenge to structural scalability.
New many-core computer architectures, however, make it possible
to envision systems that require little context switching between OS
and application, as proposed in fos [20] and Barrelfish [4]. This in-
creases load scalability, because caches can be used to their fullest
potential. As free cores become a commodity, a new approach is to
keep OS and application code separated on different cores.

The fos splits OS and application threads onto different cores.
Server processes dedicated to a core offer OS services, in fact ev-
ery thread runs on a dedicated core. While a scheduler before had
to manage the resource time, now the scheduler is occupied with

managing space. It has to distribute threads onto the physical cores.
Only when the number of threads exceeds the number of cores will
time sharing be needed [20].

No evaluation was made until 2011. Then, the performance of
single-core sharing was compared to that of multi-core communi-
cation. These tests used Linux, not fos, as the kernel. Among oth-
ers, they tested the performance of a web server, directory traversal
and compiling a C library project. The results were that for most
use cases, separating OS and application on different cores does
improve performance. Especially when OS and application run on
the same chip, so they can share L3 caches [5]. If these findings
also apply to more distributed systems like fos is not clear.

Dedicating cores to system functionality is something other op-
erating systems with scalability in mind have also done. Corey
allows applications to dedicate cores to kernel tasks, such as com-
municating with a network interface. Compared to a stock Linux
kernel, Corey was able to display improved network performance
in a synthetic benchmark [8].

The Barrelfish OS also uses dedicated cores, in a fashion like
fos. Baumann et al. argue that dedicated cores are a natural fit
for many-core architectures. Also, it allows exploiting the avail-
able messaging networks. Especially because Baumann et al. be-
lieve that message passing is getting cheaper. In addition, message
passing also offers better support for heterogeneous chip layouts,
something Barrelfish has to handle [4].

In conclusion, we saw that sharing the resources of a core im-
poses high costs in the form of cache misses. As the number of
cores rises, enough are available so that a subset of them can be
dedicated to OS services alone. Such a system is able to take full
advantage of caches, resulting in more efficient use of the available
hardware.

4. RELIANCE ON GLOBAL CACHE COHER-

ENT SHARED MEMORY

Now for the final challenge. Some researches believe that many-
core architectures will not offer cache coherent shared memory [20,
4, 11]. Instead, threads and processes should use messaging for
communication. Because cache coherent shared memory is a use-
ful tool that simplifies parallelizing certain kinds of applications,
operating systems should still offer it to applications, assuming the
hardware supports it.

Many contemporary computer systems offer cache coherent shared
memory. Operating systems running on such hardware can assume
that (1) there exists a single global address space and that (2) the
caches of individual cores can be kept in sync using cache coher-
ence protocols. These cache coherence mechanism are employed
by hardware and remain transparent to software [17, p. 1-5].

4.1 Cache Coherent Shared Memory may not
be Available on Many-Core Systems

The conveniences of cache coherent shared memory may not
continue when we move to many-core systems. This is a trend
observable in current embedded platforms. There, a global cache
coherent shared memory address space is not available. Instead,
cores are able to communicate using message queues [15, 20].

Baumann et al. also expect global cache coherent shared mem-
ory to be a thing of the past. They argue that while it has been a
useful feature before, now it is essential that future OS designs are
able to perform without cache coherent shared memory, exactly be-
cause it is possible that these operating systems will have to run on
hardware without cache coherent shared memory [4].

But why is it that as the number of cores increases, it becomes



ever more expensive to implement cache coherence on hardware?
Choi see three problems with scaling cache coherence to the core
counts of many-cores. (1) Overhead both related to power con-
sumption and latency, (2) a very complex implementation that is
prone to errors and (3) extra space overhead as lots of state needs
to be maintained [11]. These three points illustrate that it is hard to
scale cache coherence up to many cores. Cache coherence there-
fore offers poor structural scalability.

It is not undisputed that cache coherence will disappear in the
future. Some argue that hardware-provided cache coherence is
way too useful to be abandoned and propose new mechanisms that
are supposed to keep cache coherence alive even as core count in-
creases [13].

4.2 Messaging Instead of Cache Coherent Shared
Memory

Some assume that many-core architectures will not offer cache
coherent shared memory. However Borkar explains that they do
offer on-die networks. These networks connect the different cores
with each other. Organized in ring or mesh topologies, they act
in a packet-switching manner [7]. Because cache coherent shared
memory may not be available but message networks will be avail-
able, operating systems designed for many-core systems focus on
messaging instead of shared memory for communication.

The fos does not require cache coherent shared memory in kernel
space. Interaction between OS and application also do not require
cache coherent shared memory. Instead, all such communication
is done with message passing over the on-die network. Message
passing does introduce new latency, but Wentzlaff et al. are hope-
ful that these costs are worth the investment, because using only
inter-core communication avoids the need for context switches. Re-
member that on fos all threads run on their own core with a subset
of all cores serving OS functionality. If an OS used traps to trig-
ger system calls before, now it can use inter-core communication.
With it goes the need for an expensive context switch (around 100
to 300 cycles on modern processors). The alternative, inter-core
messaging, is cheaper. Sending a message is expected to cost in
the range of 15 to 45 cycles, judging from modern embedded ar-
chitectures [20]. How these processor cycles translate to real-life
performance is not topic in the original paper.

Baumann et al. make similar assumptions, and are able to back
up their claims by comparing performance of cache coherent shared
memory access with message passing. For these benchmarks, they
used an AMD machine with 4 CPUs with 4 cores each, totaling
16 cores. First, they had threads dedicated to a single core update
the contents of a small portion of memory. The cache coherence
mechanism on hardware reacted and published these changes to
the other cores. They noticed that as the number of cores grew,
performance worsened, exhibiting poor load scalability. Compar-
ing the performance between one core updating the value and 16
cores, performance dropped by a factor of 40. Second, they tested
inter-core communication, which performed better. Just sending a
message showed no degradation caused by the number of cores at
all. Where delays did occur is when considering not just sending a
message, but also processing it. Here, a linear increase of time is
observed, something the authors attribute to queuing delays [4].

The idea behind message passing is not new. The Mach [2] mi-
crokernel used messaging for communication between applications
and OS in 1986. Development on it lead to the believe that com-
munication through shared memory and communication through
explicit message are dual to each other [22]. The L4 [12] microker-
nel did show that it is possible to implement fast messaging based
on only shared memory. However it is unlikely that a system opti-

Ao Ao Ao A1
Ao S A1 A1 S}
Ao Ao Az Az
S Az Az S
Az Az

Figure 1: An example of application-level cache coherent
shared memory. Each square represents a processor core. The
cores denoted S are running OS services, while the cores de-
noted A; run an application thread with process identifier i. Ap-
plications Ay and A, use cache coherent shared memory within
the application.

mized to do one thing will excel doing the other thing.

In summary, message passing is a viable alternative to cache co-
herent shared memory. Application processes can use messaging
instead of other mechanisms such as traps to communicate with
the OS. Designing an OS like this increases structural scalability,
because no re-engineering is required as core count increases.

4.3 Islands of Cache Coherent Shared Mem-
ory

OS designers are willing to sacrifice global cache coherent shared
address space for application-kernel communication and data struc-
tures internal to the kernel. But there seems to be consensus that
applications should have cache coherent memory available to them,
as long as this is supported by the hardware [21].

As such, fos allows application-level cache coherent shared mem-
ory if the hardware supports it [20]. Figure 1 illustrates a possible
core layout on an OS in the vein of fos. Here, two applications
(denoted Ap and Aj) take advantage of user-level cache coherent
shared memory. The OS server cores denoted S do not use cache
coherent shared memory, they only communicate through explicit
message passing. Application A; does not need cache coherent
shared memory. Depending on the specific needs of an application,
this feature can enabled or omitted.

This approach to user-level cache coherent shared memory em-
ployed by fos is reminiscent to the Hive [10] operating system from
1995. In Hive, cores are split up into individual cells. Within each
of those cells, the cores have cache coherent shared memory avail-
able to them. To communicate with other cells, network packets are
sent. The motivation for Hive, however, was to build a reliable OS.
Faults in hardware or software stay within a cell and do not affect
the whole system.

In summary, we saw that global cache coherent shared mem-
ory is likely to disappear. Instead, messaging is an alternative that
cores can use for communication. If offered by the hardware plat-
form, cache coherent shared memory should still be available to
applications, albeit on a smaller scope.

5. CONCLUSION



The continuing trend for many-core systems will force OS de-
signers to face a number of new challenges and take advantage of
changes in architectures, if they want to build systems that remain
scalable even as load and core count increases. First, locks should
be avoided because lock contention is a threat to scalability. While
there are some short term solutions (e.g. modern locks that per-
form better), a more long-term approach is to design the OS in a
way that avoids locks as much as possible. A proposed way to do
this is to split up OS services onto dedicated cores that process re-
quest for OS functionality (system calls) in a sequential manner.
Second, as cores become a commodity, it is possible to split up ap-
plication and operating system, so that they do not need to share
cores with each other anymore. To do this, a core is dedicated to
every thread on the system. Because only one thread runs on one
a core, no context switching occurs. Caches and TLB can be used
to their fullest potential. Finally, cache coherent shared memory
may not be available on many-core systems. Scaling cache coher-
ence up to many-core systems has many difficulties and embedded
many-core hardware already ships without it. Instead of cache co-
herent shared memory, messaging can be used for OS/application
communication, the dual to shared memory. While the kernel may
have to forgo cache coherent shared memory, applications can still
benefit on it, as long as the hardware offers support for it.

6. REFERENCES

[1] The international technology roadmap for semiconductors
2.0 Executive Report. 2015.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. 1986.

[3] A. Agarwal, J. Hennessy, and M. Horowitz. Cache
performance of operating system and multiprogramming
workloads. ACM Trans. Comput. Syst., 6(4):393-431, Nov.
1988.

[4] R. 1. Andrew Baumann, Paul Barham and T. Harris. The
multikernel: A new OS architecture for scalable multicore
systems. In 22nd Symposium on Operating Systems
Principles. Association for Computing Machinery, Inc.,
October 2009.

[5] A. Belay, D. Wentzlaff, and A. Agarwal. Vote the OS off
your core. 2011.

[6] A. B. Bondi. Characteristics of scalability and their impact
on performance. In Proceedings of the 2Nd International
Workshop on Software and Performance, WOSP ’00, pages
195-203, New York, NY, USA, 2000. ACM.

[7] S. Borkar. Thousand core chips: A technology perspective.
In Proceedings of the 44th Annual Design Automation
Conference, DAC °07, pages 746-749, New York, NY, USA,
2007. ACM.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y.-h.
Dai, et al. Corey: An operating system for many cores. In
OSDI, volume 8, pages 43-57, 2008.

[9] S.Boyd-Wickizer, M. F. Kaashoek, R. Morris, and
N. Zeldovich. Non-scalable locks are dangerous. In
Proceedings of the Linux Symposium, pages 119-130, 2012.

[10] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta. Hive: Fault containment for shared-memory
multiprocessors. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP 95,
pages 12-25, New York, NY, USA, 1995. ACM.

[11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski,

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter, and
C.-T. Chou. Denovo: Rethinking the memory hierarchy for
disciplined parallelism. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International
Conference on, pages 155-166. IEEE, 2011.

J. Liedtke. On micro-kernel construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP *95, pages 237-250, New York, NY, USA,
1995. ACM.

M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip
cache coherence is here to stay. Commun. ACM,
55(7):78-89, July 2012.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst., 9(1):21-65, Feb. 1991.

J. Shalf, J. Bashor, D. Patterson, K. Asanovic, K. Yelick,

K. Keutzer, and T. Mattson. The MANYCORE revolution:
will HPC lead or follow. SciDAC Review, 14:40—49, 2009.
L. Soares and M. Stumm. FlexSC: flexible system call
scheduling with exception-less system calls. In Proceedings
of the 9th USENIX conference on Operating systems design
and implementation, pages 33—46. USENIX Association,
2010.

D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on
memory consistency and cache coherence. Synthesis
Lectures on Computer Architecture, 6(3):1-212, 2011.

H. Sutter. The free lunch is over. Dr. Dobb’s Journal, 30(3),
Feb. 2005.

A. S. Tanenbaum and H. Bos. Modern operating systems.
Pearson Prentice Hall, 3rd international edition, 2009.

D. Wentzlaff and A. Agarwal. Factored operating systems
(fos): The case for a scalable operating system for
multicores. SIGOPS Oper. Syst. Rev., 43(2):76-85, Apr.
20009.

D. Wentzlaff, C. Gruenwald III, N. Beckmann, A. Belay,

H. Kasture, K. Modzelewski, L. Youseff, J. E. Miller, and
A. Agarwal. Fleets: Scalable services in a factored operating
system. 2011.

M. Young, A. Tevanian, R. Rashid, D. Golub, and

J. Eppinger. The duality of memory and communication in
the implementation of a multiprocessor operating system.
SIGOPS Oper. Syst. Rev., 21(5):63-76, Nov. 1987.



