
Architecture of Scalable Operating Systems:
Multikernel

A Paper for KvBK-Seminar
at Friedrich-Alexander-Universität Erlangen-Nürnberg

Rasmus Pfeiffer

ABSTRACT
This paper gives a brief overview of the multikernel operat-
ing system model and uses Barrelfish [5] as example. The
multikernel model tries to provide a solution to the problem
of ever faster changing hardware and with it its scalability
issues. The multikernel model addresses the scalability issue
by using message passing instead of shared memory.

1. INTRODUCTION
Computer hardware is changing faster than ever. To keep

up with this trend, software needs to be more adaptable.
CPUs are getting more and more cores. This introduces
scalability issues like keeping the cache coherent. This is
one reason why future CPUs probably wont have a cache-
coherent system anymore. To solve this problem, the mul-
tikernel operating system model can be used. Which also
helps solving the problem of hardware becoming more and
more diverse. A multikernel OS can run on a heterogeneous
CPU like in AMD’s Skybridge project.

2. MOTIVATION
Current CPU architectures rely on shared memory for

inter-core communication. This also means current oper-
ating systems use the concept of shared memory. There are
already signs that this could change in the future. For exam-
ple Intel’s Xeon Phi processors do not use shared memory
for inter-core communication any more. This is why a new
OS model is needed.

2.1 Number of Cores Increases
In 1978 Lauer and Needham said that massage passing

and shared memory systems were equal and it depends on
the hardware architecture which one is faster [12]. A sim-
ple experiment shows that this is not true anymore. To-
day’s model of shared memory does not scale well as figure
1 shows. The more cores a system has the more complex it
gets to keep the shared memory consistent. Message pass-
ing on the other hand scales a lot better. The performance

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

gain by using caches becomes a performance loss on multi-
core or many-core systems. It takes more time to keep to
cache coherent, than you save by using caches. To prevent
this problem, the multikernel OS architecture uses message
passing on every level possible.

2.2 Diverse Hardware
Hardware is also becoming more and more diverse. AMD’s

Skybridge project for example uses x86 and arm in one
CPU. Operating systems need quite a few changes to run
on such hardware. The multikernel model also acomodates
such hardware and can easily adapted to new and yet un-
known hardware.

Figure 1: Comparison of the cost of updating shared
state using shared memory and message passing [5].

3. SHARED MEMORY VS MESSAGE PASS-
ING

A long time shared memory and message passing were
seen as duals [12]. Although today, with the increasing num-
ber of CPU cores it becomes increasingly clear, that shared
memory introduces problems, which were not considered to
be that harmful to performance as they actually are.



3.1 Performance Comparison
Figure 1 plots the latency against number of cores for

updates of various sizes on a 4x4-core AMD system. The
shared memory cases (SHM1-8) show the latency per opera-
tion (in cycles) for updates, that directly modify 1, 2, 4, and
8 shared cache lines. The cost grows approximately linear.
A single core can update the cache lines quite fast, but 16
cores take a lot longer, because most of the time the CPU
is stalled, because of cache misses.
In the message passing case client threads (MSG1 and MSG8)
call a lightweight remote procedure call [6] (which fits in
single cache line). The cost varies little with the number
of modified cache lines, because they remain in the server’s
local cache. The elapsed time per operation in the server
thread grows linearly with the number of client threads.
The server curve shows time spend performing each update
operation. This excludes queuing delay. This cost is mostly
independent of the number of threads.
Overall the RPC latency is lower than shared memory ac-
cess. Furthermore, with an asynchronous or pipelined RPC
implementation the client processors can avoid stalling on
cache misses. This figure also shows scalability issues with
even a small number of cores. The performance issue of
shared memory arises less from the necessity of using locks,
but from data locality issues [4].
The number of cores in CPUs will grow and with that cache-
coherence protocols will become increasingly expensive. There
are already CPU architectures in development which use
message passing at hardware level or a combination of both
[13].

3.2 Concerns
There are legitimate concerns with a shared nothing model

as the multikernel model. There are two main concerns. The
first is, not being able to access shared data. The second
is, the event-driven programming style resulting from asyn-
chronous messaging.
Shared data makes developing applications easier. Although,
by using shared data, you run in performance and scalability
issues. Experts are already very careful about details such
as lock granularity. By fine-tuning code at low level one
can reduce the performance and scalability issue. Although
current operating systems already use a lot of low level op-
timizations, it is getting more and complex.
The second concern does not apply to modern operating
systems, as they already use an event driven model. Event-
driven models are also already used in other programming
domains like graphical user interface and network services.

4. INTER-PROCESS COMMUNICATION
Efficient inter-process communication is central for the de-

sign of operating systems [7, 10]. One way of efficient inter-
process communication is the User-Level Remote Procedure
Call (URPC) [6].

4.1 User-Level vs Kernel-Based
Kernel-based inter-process communication (IPC) is lim-

ited by the cost of invoking the kernel and reallocating a
processor from one address space to another. On a multi-
core CPU messages can be passed directly between address
spaces, by running the different address space on different
cores, which can be done in URPC.

In URPC messages are sent directly between address spaces,
without invoking the kernel. This avoids unnecessary pro-
cessor reallocation. This preserves cache and TLB context
across calls. When processor reallocation is needed, its over-
head is reduced, because it can be used for several indepen-
dent calls.

4.2 Assumptions
URPC makes two optimistic assumptions. First, the client

has other work to do. Second, the server has, or will have,
a CPU core with which it can service a message. The first
assumption makes it possible to do an inexpensive context
switch between user-level threads during the blocking phase
of a cross-address call. The second assumption enables a
URPC to execute in parallel. The combination of both as-
sumptions minimizes the cost of processor reallocation, by
using one reallocation for multiple URPCs.

5. MULTIKERNEL MODEL
In the multikernel model the OS is structured as dis-

tributed system. Each CPU core runs its own kernel. The
cores communicate using message passing and have no shared
memory. The three main principles of the multikernel model
are:

1. Make all inter-core communication explicit.

2. Make OS structure Hardware-neutral.

3. View state as replicated instead of shared.

5.1 Make all inter-core communication explicit
A multikernel OS uses message passing for inter-core com-

munication. That is why no memory is shared between the
CPU cores, except if it used for message passing. This model
resembles a network. Because of that we can use well known
network optimizations techniques, like pipelining and batch-
ing.

5.2 Make OS structure Hardware-neutral
Because each CPU runs its own kernel, each kernel can

be different. This allows us to only make a small part of
the system hardware dependent. This small part is easily
exchanged for a different hardware dependent code. This is
the reason, that there is very little work to be done, to port
a multikernel OS to new hardware. Which certainly helps
with the ever faster changing world of available hardware
than ever.

5.3 View state as replicated instead of shared
Traditional operating systems use shared data structures

to keep things that need to be accessible to multiple CPU
cores. This data structure is usually protected by locks.
However, in a multikernel OS with no shared memory the
global state of the system needs to be replicated across all
CPU cores. By replicating data across multiple cores the
scalability is improved, because it reduces the overhead of
synchronization. If we apply techniques from distributed
systems, we can even power off parts of the system while
keeping a consistent global state. Which can reduce power
consumption.



Figure 2: Barrelfish structure [5]

6. BARRELFISH
Barrelfish is one implementation which follows the multi-

kernel model. It implements the multikernel model by run-
ning a CPU driver in privileged-mode and a monitor in user
mode on each CPU core as shown in figure 2.

6.1 CPU driver
The CPU driver is single threaded and controls its lo-

cally connected hardware like APIC, MMU, etc. It shares
no state with other cores, this is why it can be completely
event driven. Which also means it is easier to write and also
has less lines of code. The CPU driver is heavily specialized
for the CPU architecture it is running on. It implements a
lightweight, asynchronous same-core inter-process commu-
nication, which delivers a message to a process and unlocks
it.

6.2 Monitors
The monitor is processor-agnostic and manages the system-

wide state. It does most of the work a traditional kernel
does. It keeps the global state of the system replicated across
all CPU-cores means of an agreement protocol.

6.3 Inter-core communication
The multikernel model dictates that all inter-core commu-

nication is explicit. Which means that all communication
between cores is via messages. To problem with current
hardware is that the only mechanism for inter-core commu-
nication is cache-coherent memory. This is why Barrelfish
uses a variant of user-level RPC (URPC) [6].
In Barrelfish URPC is implemented by letting the sender
write a message sequentially into a cache line. The receiver
polls on the last word of the line. This way it is ensured,
that if the receiver reads the cache line while the sender is
writing it, that the receiver never reads a partial message.
This technique needs two round trips across the intercon-
nect: one when the sender starts to invalidate the line in
the receiver’s cache, and one when the receiver fetches the
line from the sender’s cache.
Receiving messages is performed by polling for cartain time
and then asking the monitor the notify the dispatcher if a
message is available. Because the whole system depends
on the performance of the message passing protocol the de-
velopers of Barrelfish compared different protocols for TLB
shootdown, which is a worst case scenario. Figure 3 shows
their result on a 8x4-core AMD system. They compared the
following four protocols.
Broadcast protocol: the master monitor sends a URPC mes-
sage to all cores and then waits for the acknowledgement by
all other cores. This does not scale well due to the cache-
coherence protocol used by AMD64 [8].

Figure 3: Comparison of TLB shootdown protocols
[5]

Unicast protocol: the master sends individual messages to
each core. This performs better, especially on a lower num-
ber of cores and is even faster CPUs with 4-12 cores, but
still scales linear.
Multicast protocol: the master sends a message to the first
core of each processor, which is then forwarded to the other
cores of the processor. This scales in comparison to broad-
cast or unicast.
The NUMA-aware multicast protocol uses URPC buffers
from memory local to the multicast aggregation nodes. The
master sends the first message to the node with the highest
latency. This protocol scales very well. It only shows steps,
when the number of levels in the multicast tree increases.

6.4 Process structure
In Barrelfish a process consists of dispatcher objects, one

on each core it might execute on. Communication on Bar-
relfish is between dispatchers. The dispatchers are scheduled
by the local CPU driver. The CPU driver invokes an up-
call interface, which is provided by each dispatcher. The
threads package of Barrelfish provides user level API similar
to POSIX threads. It provides support for implementing a
traditional application sharing a single process address space
across multiple cores.

6.5 Memory management
Global resources, such as physical memory, must be man-

aged consistently. In the case of physical memory, the sys-
tem has to ensure, that no two processes can acquire the
same region of memory. Barrelfish uses a capability system,
modeled after seL4 [11]. In this model, all memory man-
agement is performed explicitly through system calls that
manipulate capabilities, which are user-level references to
kernel objects or regions of physical memory. It also re-
moves all memory allocation from the CPU driver, so that
it only needs to check the correctness of operations that ma-
nipulate memory regions.
In Barrelfish all virtual memory management is performed
by user-level code. For allocating memory, a user process
first must acquire enough physical memory to store the re-
quired page tables. It then inserts the page table into the
root page table. The CPU driver only checks for the correct-



ness of those operations. After that the process can allocate
more memory and inserts it in its page table.
The monitors coordinate the global consistency of the page
tables. This is implemented by one-phase commit operation
between all monitors [5]. One exception is inserting the page
table into the root page table. This needs to be done in a
two-phase commit.

6.6 Performance

6.7 Compute-bound workloads

Figure 4: OpenMP conjugate gradient [5]

Figure 5: OpenMP 3D fast Fourier transformation
[5]

Figures 4-8 show a comparison between Barrelfish and
Linux using the NAS OpenMP [9] benchmark suite and
SPLASH-2 [3] parallel application test suite. The difference
between Linux and Barrelfish in figures 4 and 6 are explained
by the different implementation of thread libraries. Linux
use a in-kernel implementation and Barrelfish uses a user-
space implementation.
Although those result show a similar performance between
Linux and Barrelfish further testing with real world appli-
cations is need to determine if Barrelfish has comparable

Figure 6: OpenMP integer sort [5]

Figure 7: SPLASH-2 Barnes-Hut [5]

performance to Linux or other multipurpose operating sys-
tems. Those tests only indicate that the development of
Barrelfish is on the right way.

6.8 IO workloads
The performance of an OS is not only determant by its

computing power, but also by how fast it can handle IO. In
today’s systems the most stressful IO is network IO.
The Barrelfish developers first measured the UDP through-
put by comparing Barrelfish to Linux. They used an ap-
plication, that echos the recieved UDP packet back to the
sender. They then measured the throughput by using the
ipbench daemon [14] on e1000 NICs. Barrelfish reached a
throughput of 951.7 Mbit/s and Linux 2.6.26 951 Mbits/s.
Which is almost the maximum the NIC can reach.
Secondly they used a web server serving dynamic and static
content. On Barrelfish they put the webserver on core 3, the
e1000 driver on core 2, and the other system services on core
0. On Linux they did run lighttpd [1]. Barrelfish was able
to answer 18697 requests per second with static content and
Linux 8924 requests per second. The performance difference
is mainly due to Barrelfish avoiding kernel-user crossing, by
running entirely in user space. For the dynamic content they



Figure 8: SPLASH-2 radiosity [5]

did run SQLite [2] on core 1 and reached 3417 requests per
second. The bottleneck in this case was the SQLite server.

7. CONCLUSION
The multikernel model is an interesting idea, to solve the

scalability problems of current operating systems. It already
has an implementation with Barrelfish, which shows that it
is possible, that the multikernel model can perform reason-
ably well in comparison to current operating systems.
Barrelfish is not the only implementation of the multikernel
model. The Invasive Computing project [13] for example
goes a step further and also designs its own hardware.
As good as those concepts may be, they are still concepts
at the moment and we will have to see, if they are accepted
by the computer industry. It will take quite a few years
until anyone can predict, if such a fundamental change for
operating systems will be accepted.

8. ACKNOWLEDGEMENT
Most of this paper was derived from The multikernel: a

new os architecture for scalable multicore systems by A.
Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. [5].

9. REFERENCES
[1] lighttpd webserver. http://www.lighttpd.net.

[2] Sqlite database server. http://www.sqlite.org.

[3] Stanford parallel applications for shared memory
(splash-2).
http://www-flash.stanford.edu/apps/SPLASH/.

[4] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, et al. Experience
distributing objects in an smmp os. ACM Transactions
on Computer Systems (TOCS), 25(3):6, 2007.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new os architecture
for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, pages 29–44. ACM, 2009.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and
H. M. Levy. User-level interprocess communication for
shared memory multiprocessors. ACM Transactions
on Computer Systems (TOCS), 9(2):175–198, 1991.

[7] D. Cheriton. The v distributed system.
Communications of the ACM, 31(3):314–333, 1988.

[8] A. M. Devices. Amd64 architecture programmer’s
manual volume 2: System programming, 2006.

[9] H.-Q. Jin, M. Frumkin, and J. Yan. The openmp
implementation of nas parallel benchmarks and its
performance. 1999.

[10] M. B. Jones and R. F. Rashid. Mach and Matchmaker:
Kernel and language support for object-oriented
distributed systems, volume 21. ACM, 1986.

[11] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. sel4: Formal
verification of an os kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems
principles, pages 207–220. ACM, 2009.

[12] H. C. Lauer and R. M. Needham. On the duality of
operating system structures. ACM SIGOPS Operating
Systems Review, 13(2):3–19, 1979.

[13] J. Teich, J. Henkel, A. Herkersdorf,
D. Schmitt-Landsiedel, W. Schröder-Preikschat, and
G. Snelting. Invasive computing: An overview. In
Multiprocessor System-on-Chip, pages 241–268.
Springer, 2011.

[14] I. Wienand and L. Macpherson. ipbench–a framework
for distributed network benchmarking. AUUGN, page
163, 2004.


