
Lock-free Data Structures
Burak Ok

Friedrich-Alexander-Universität Erlangen-Nürnberg
burak.ok@fau.de

ABSTRACT
�is paper lists the general properties of lock-free data structures.
Furthermore, the advantages and disadvantages is ge�ing discussed.
To demonstrate how to verify a lock-free algorithm, we will take
a look on the lock-free queue proposed by Michael and Sco�[19].
Finally the queue gets compared to other newer lock-free queues
and a simple lock-based queue to show the di�erences regarding
the speed.

1 INTRODUCTION
Processors are ge�ing more and more cores, but the clock speed
and instructions per cycle increase has been at a low rate compared
to the core count [5]. �e programmers need to divide the work
and roles and distribute it to di�erent cores. Sometimes these cores
need to communicate with each other to exchange data and the
programmer has to ensure that the data does not get garbled up.
Many applications use exclusive locks to serialize the access on the
data. �is is �ne as long as the application is not critical for the user
or any other processes. But if, for example, the application was a
part of a nuclear reactor, then missing deadlines or a occurrence of
a deadlock could lead to disastrous outcomes. Fortunately, lock-free
data structures can solve both of these problems.

2 LOCK-FREE PROGRAMMING
In order for a algorithm to qualify as lock-free, it must allow a
thread to complete its task regardless of the state of other threads.
In order to get an overview about lock-free algorithms, the basic
primitives behind the algorithms must be understood. Furthermore,
these algorithms do not only have advantages, but also certain
disadvantages.

2.1 Primitives
A small number of primitives exists, which helps to program lock-
free algorithms. Most of the algorithms uses read-modify-write
primitives. A selection of these primitives gets named and described
brie�y.

Memory barriers Modern compilers and processors can re-
order loads and stores to boost performance. Memory
barriers tells both, the compiler and the processor, to stop
reordering loads and stores for a speci�c critical section.
[1] [6] [2]

test-and-set �e primitive takes a pointer to a boolean vari-
able atomically, sets it to true and returns the old value.
[6]

fetch-and-add �is primitive adds a number to a speci�ed
variable and returning the old value. [6]

linked-load and store-conditional Linked-load reads from
a memory address. A subsequent store-conditional to the

same address only stores the value if the supplied address
did not got wri�en onto. [1]

compare-and-swap �is is a most used primitive. It only
stores a value to an address if it has a given value. [6]

2.2 Advantages
Lock-free algorithms can have a signi�cantly higher throughput
than their lock based counterparts when being under heavy load. If
a thread is holding a lock for a critical section and gets preempted,
every other thread can not progress further. All threads have to wait
until the lock-owning thread gets scheduled again and hopefully
unlocks the lock. In the lock-free algorithm, other threads can try
to change the shared variable and succeed if no other thread did
before. �e original thread that wanted to modify the variable now
has to loop at least once more and try it again.

�ere can not be any deadlocks by de�nition[4]. �is is really
important for any critical task and distributed system. It easily
solves the issue when a thread hangs, gets killed or a computing
node in a distributed system is not accessible any more while hold-
ing a remote lock. �ere are many possibilities to create deadlocks
when working with locks. �e problems ranges from the basic
philosophers problem[11] to more complex problems like priority
inversion[16]. Finding and implementing a smart deadlock preven-
tion algorithm for these issues is not easy and requires additional
developing time, runtime and memory. Even then the prevention
algorithm might �nd deadlocks but can create another ”kind” of
deadlock: the livelock [23]. A livelock happens when two threads
are aware that a deadlock could occur, thus trying to dodge the
possibility of a deadlock and which results in another deadlock situ-
ation and so on. �at is why most of the noncritical applications are
take the li�le risk of a deadlock instead of dealing with the problem.
�is is known as the Ostrich Algorithm[21]. Even the UNIX and
Windows operating systems are not handling all possible deadlocks
that can occur[3].

2.3 Disadvantages
Lock-free does not mean wait-free. �erefore a slower thread
can starve if other faster ones are progressing. Lock-free has
only the property of a guaranteed global throughput making slow
threads su�er from this, whereas wait-free guarantees per-thread
progress[4]

Since CAS is the most used primitive in lock-free algorithms
[10] you probably have to deal with the ABA-Problem. An example
helps to describe the underlying issue. Both graphics in Figure 1 are
visualizing a stack. �e Top of Stack points to the �rst node of
the stack and every node points to its successor. If thread 1 wants
to pop() from the stack, it needs to copy the Top of Stack pointer
and its successor, as seen in 1) of Figure 1. �en the thread is ge�ing
preemptively unscheduled. Meanwhile another thread can pop()
and push() as many times as it wants. A�er all these operations,

Figure 1: ABA-Problem in a stack implementation

there is a possibility that the stack could look like 2) in Figure 1.
When thread 1 gets scheduled again and runs, it would compare
its saved value of Top of Stack to the actual Top of Stack, to
check if the stack got modi�ed. Since Top of Stack points to the
same address in 1) and 2), the thread does not know that the stack
got changed. It swings the Top of Stack pointer to node G and
the nodes Q, F and H will get lost.

Writing lock-free code is di�cult. �ere are many primitives
to choose from and everyone of them has its own hazards [7].
Even Michael and Sco� found several bugs in some of the lock-free
queues while benchmarking their queue against alternative ones
[19].

3 MICHAEL-SCOTT QUEUE
One of the queues proposed by Michael and Sco� is lock-free. �e
pseudo code is divided into three segments. Listing 9 shows the
structures and the initialization for the queue, Listing 19 inserts a
new element into the tail of the queue and Listing 23 dequeues the
head and returns it, if one exists.

To solve the ABA-Problem the structure pointer t in listing 9 is
storing a modi�cation counter next to the pointer. �e algorithm
needs either an access to a double-word CAS to swap both values
atomically or the pointer and counter have to share a single word.
When the modi�cation counter is combined with the pointer, it
implies that the pointer can not be a ”real” pointer. �e counter gets
incremented every time a new value got wri�en into the pointer.
�is does not solve the ABA-Problem but it makes it really unlikely
to occur since the counter has to completely wrap up to get the
same bit pa�ern.

Internally the queue uses a singly linked list, with pointers to
the head and tail, to store the data. To avoid special cases with
an empty list, the linked-list contains always at least one node.
When dequeuing, the algorithm actually removes the front node
but writes the value from the former second node into pvalue
(D12).

For this algorithm, the authors has noted that the free() used
in line (D19) should not be compared to the release of dynamic
memory provided by operating systems. It has to release the node
to a special maintained list for the linked-list otherwise a use-a�er-
free bug will follow [19]. �e issue with memory reclamation and

the ABA-Problem got elegantly solved with Hazard-Pointers in a
later paper [18]. In short, Hazard-Pointers are a per-thread list of
currently used pointers. If a thread wants to delete a node and
reclaim its memory, it has to look into every other Hazard-Pointer-
List whether the list contains the pointer or not.

3.1 Linearizability
A data structure is linearizable when the changes to the structure
appears to be instantaneous for an external observer [12]. �e
presented queue is linearizable, because there is a speci�c opera-
tion in both methods, enqueue() and dequeue(), where the queue
changes its state.

For enqueue() the operation is at line (E9). Even though the
CAS line does not change the Tail to the newest element, it points
the next pointer to the newly enqueued node. Every operation that
requires the correct Tail will advance it to the next element in the
linked list until the next pointer of a node is NULL. So the enqueue
seems to happen instantaneous.

�e operation in dequeue(is at line (D13). Here the Head
pointer is ge�ing pointed at the node which the next pointer of the
dequeued node pointed to.

3.2 Safety
�e safety property states that something bad never happens and
the data structure never enters an invalid state [20]. It is one of the
two properties of lock-free algorithms mentioned in the paper. For
this queue, Michael and Sco� set �ve requirements which needs to
be satis�ed [19]:

(1) �e linked list is always connected.
(2) Nodes are only inserted a�er the last node in the linked

list.
(3) Nodes are only deleted from the beginning of the linked

list.
(4) Head always points to the �rst node in the linked list.
(5) Tail always points to a node in the linked list.

A�er the initial call to initialize() in Listing 9, all of the re-
quirements are satis�ed. To show that enqueue() and dequeue()
do not break any requirements, Michael and Sco� shows by induc-
tion that all of them are still satis�ed.

(1) �e linked list is always connected because the next
pointer of a node is only set once when a new node is
inserted a�er it (2). No node is ge�ing deleted besides the
one pointed to by Head (3)

(2) A new node will only get inserted at the back of the linked
list. Tail always points to a node in the linked list (5). �e
new node will get linked a�er the node who has a NULL
next pointer (2)

(3) Nodes are only deleted from the beginning of the linked
list. �e node pointed to by Head is the �rst node in the
linked list(4).

(4) Head always points to the �rst node in the linked list.
�e only line that changes Head is line (D13) and the new
node it is pointing to is its successor next. Head also never
points to NULL, because if the linked list has only one node
(D6) the dequeue() function will return without deleting
anything (D8)

structure pointer_t {ptr: pointer to node_t, count: unsigned integer}

structure node_t {value: data_type, next: pointer_t}

structure queue_t {Head: pointer_t, Tail: pointer_t}

initialize(Q: pointer to queue_t)

node = new_node() # Allocate a free node
node->next.ptr = NULL # Make it the only node in the linked list
Q->Head = Q->Tail = <node, 0> # Both Head and Tail point to it

Listing 1: De�nitions and Initialization

�e structures and initialization for the MSQ
enqueue(Q: pointer to queue_t, value: data type)

E1: node = new_node() # Allocate a new node from the free list
E2: node->value = value # Copy enqueued value into node
E3: node->next.ptr = NULL # Set next pointer of node to NULL
E4: loop # Keep trying until Enqueue is done
E5: tail = Q->Tail # Read Tail.ptr and Tail.count together
E6: next = tail.ptr->next # Read next ptr and count �elds together
E7: if tail == Q->Tail # Are tail and next consistent?
E8: if next.ptr == NULL # Was Tail pointing to the last node?
E9: if CAS(&tail.ptr->next, next, <node, next.count+1>) # Try link node at the end of the linked list
E10: break # Enqueue is done. Exit loop
E11: endif

E12: else # Tail was not pointing to the last node
E13: CAS(&Q->Tail, tail, <next.ptr, tail.count+1>) # Try to swing Tail to the next node
E14: endif

E15: endif

E16: endloop

E17: CAS(&Q->Tail, tail, <node, tail.count+1>) # Try swing Tail to inserted Node
Listing 2: Enqueue

�e function enqueues a new node into the back of the MSQ
dequeue(Q: pointer to queue_t, pvalue: pointer to data type): boolean

D1: loop # Keep trying until Dequeue is done
D2: head = Q->Head # Read Head
D3: tail = Q->Tail # Read Tail
D4: next = head.ptr->next # Read Head.ptr−>next
D5: if head == Q->Head # Are head, tail, and next consistent?
D6: if head.ptr == tail.ptr # Is queue empty or Tail falling behind?
D7: if next.ptr == NULL # Is queue empty?
D8: return FALSE #�eue is empty, couldn't dequeue
D9: endif

D10: CAS(&Q->Tail, tail, <next.ptr, tail.count+1>) # Tail is falling behind. Try to advance it
D11: else # No need to deal with Tail

Read value before CAS, otherwise another dequeue might free the next node
D12: *pvalue = next.ptr->value

D13: if CAS(&Q->Head, head, <next.ptr, head.count+1>) # Try to swing Head to the next node
D14: break # Dequeue is done. Exit loop
D15: endif

D16: endif

D17: endif

D18: endloop

D19: free(head.ptr) # It is safe now to free the old dummy node
D20: return TRUE #�eue was not empty, dequeue succeeded

Listing 3: Dequeue

�e function dequeues a node from the front of the MSQ

(5) Tail always points to a node in the linked list. It never
lags behind Head (D6). It also never points behind the end
of the linked list. (E13) advances Tail only if it already
checked that there is a valid next pointer for the node
(E8). (E17) only happens when an enqueue was successful
(E10). (D10) only gets executed if Head and Tail points to
the same node (D6) and that same node has a predecessor
(D7)

3.3 Liveness
Liveness is described as that something desirable has to happen
sometime [20]. In order to show that enqueue() and dequeue()
is lock-free, it is necessary to prove that a thread only has to loop
a �nite amount of times even if another thread has modi�ed the
queue and successfully queued or dequeued an item. �erefore, all
conditions which can lead to a loop needs to be veri�ed.

(E7) �e condition only fails if the local variable tail is not
pointing to the queues Tail anymore. �is happens when
the Tail gets swung to the next node which implies that
another thread must have succeeded.

(E8) �e condition fails if the next node has a successor,
which means another thread has successfully enqueued a
new node. If that happens (E13) will try to swing Tail to
the next node. �is will prevent the thread from waiting
for another thread to update the Tail pointer.

(E9) �e CAS only fails if another thread queued a node before
it.

(D5) �e condition only fails if Head is pointing to another
node as when it was read in (D2). �is means that another
thread has successfully dequeued a node.

(D6) �e condition only succeeds if Head and Tail are point-
ing to the same node. �ere are two possible situations
where this can occur. First possibility is that the queue
could be empty, what means that there is only one item in
the list (D7). In that case the algorithm returns FALSE. If
this is not the case then the Tail pointer must be lagging
behind. In order to �x this the Tail is ge�ing set to the
next pointer of the current node. �is only happens if
there was an enqueue but the Tail did not get updated yet
(E17)

(D13) �e CAS only fails if the Head pointer is not pointing
to the value read in (D2). �erefore another thread had
successfully dequeued an item.

4 EVALUATION
I benchmarked the Michael-Sco��eue (MSQ) against newer lock-
free queues. �ese queues consists of the Moir �eue (MOQ) [17],
which is a slightly optimized MSQ, the Basket�eue (BAQ) [13],
which has buckets as nodes which can store multiple items, and the
Optimistic �eue (OPQ) [15], which implements a doubly-linked
list and enqueues to the head instead of the tail. All of these queue
implementations are provided by the libcds library wri�en by Max
Khizhinsky [14]. �e evaluation also covers a lock-based queue
(LBQ), whose implementation uses a simple mutex wrapper around
the std::deque from C++.

(a) Original test with 2 processes per processor

(b) iteration count = 150

(c) iteration count = 400
�e y-axis is cropped to 5 - 17

Figure 2: Benchmarks

For the benchmark i slightly modi�ed the methodology of the
original paper [19]. Every thread is enqueuing an item into the
shared queue, then doing some ”other” work, dequeuing an item
and �nally doing the same ”other” work. Every thread executes the
loop bnum items/thread countc times. �e ”other” work consists
of spinning in an empty loop iteration count times. On one hand i
chose 150 for the iteration count to simulate a light workload and
on the other hand i chose 400 to simulate a higher workload. High
values are not interesting since the benchmark is supposed to stress
enqueues and dequeues. To achieve a high runtime, the number of

items was set to 20′000′000. In the original benchmark, the total
runtime of the ”other” work was subtracted from the total runtime
of the benchmark. Since it is very hard to accurately measure the
runtime of small and fast code segments, I choose not to subtract it.

�e processor used in this benchmark is an Intel® Xeon® E3-
1230 v2, which is a 4 core processor with Hyper-�reading. �e
tests got compiled with g++ 6.2 with the -03 �ag and were run on
Ubuntu 16.10.

�e graphs in Figure 2 shows benchmarks results, where 2a is
one of the three original graphs from the paper which had slightly
di�erent se�ings than this benchmark. �e ”other” work consisted
of spinning in a loop for about 6 µs, the item count was 1′000′000
and the tests ran on a 12 core processor. �e MSQ was tested
against three lock-free queue implementations: Valois queue(VAQ)
[22], Mellor-Crummey queue (MCQ) [8] and the queue proposed
by Prakash, Lee and Johnson(PLJ). For a be�er comparison to my
benchmarks, I picked the graph which is running two processes per
processor. �is assures that the workload is not pro�ting from core
exclusivity nor is overloading them. �e proposed MSQ outper-
formed the other queues in every aspect, be it on a single core or on
twelve. �e huge performance impact that every queue got on two
cores from one is because of all the cache misses that the processors
are experiencing now [19]. Before that, all queues were completely
cached on the cores L1-Cache and did not have to synchronize with
other caches. However the algorithm run-time drops back to 6.7
seconds at three cores, since it already experienced cache problems
and no other performance impact happens. �e completion time
keeps rising only a li�le bit and scales linealy to 12 processors. �e
PLJ and VAQ are analogue to the ms queue. �ey just have a higher
constant addend in the run time complexity. Only the MC queue
did not scale lineally, but instead seems to rise exponentially.

Note that in the following two graphs, 2b and 2c, the workload
did not get subtracted. Figure 2b shows time consumption for a
light workload. �e lock-based queue is more than 30% faster than
the lock-free ones when only 1 to 2 threads are running. �e reason
behind it being faster is the much lower operation count required
for the thread to perform an enqueue or dequeue. It only has to
lock a shared mutex, enqueue/dequeue the item and �nally unlock
the mutex, whereas the lock-free variants do not use mutexes,
but have to check multiple conditions and handle them properly.
Additionally if one or more conditions fail, the thread has to loop
and start over to try another time.

Every algorithm scales well and almost has a perfect speedup up
to 8 threads. However the time to completion for the LBQ does not
decrease a�er using 3 thread pairs. Instead it takes more time to
complete the test, since the contention for the lock is bo�lenecking
more than the speedup of parallelism is bene�ting. �is problem
is compelling the completion time of the simple lock queue to rise
a�er 3 thread pairs and stagnates at around 7.3 seconds, which is
over twice the time of all lock-free queues.

When the workload increases, as shown in Figure 2c, the dif-
ferences are ge�ing smaller, since the thread spents the majority
of the time on ”other” work instead of modifying the queue. �e
lock-based queue is once again faster when the contention for the
lock is low. �e LBQ gets overtaken by the lock-free queues at 6
thread pairs instead of 4. In general less contention for the lock,
the faster is the lock-based one, because of fewer operations.

Two spikes occur during the test. �e �rst spike takes place
between 4 and 5 thread pairs, a�er the processor has to run the
thread on a hyper-threaded core instead of a ”real” core. �e second
spike is a�er 8 cores when there are no more logical cores le� to
run all threads parallel. �e benchmarks were run with up to 16
thread pairs to see how the algorithms are reacting when the thread
is not dedicated to a logical core.

All in all, the MSQ is a relatively fast lock-free data structure
despite its age. In comparison, the modern queues are only as good
as the MSQ. �e bad performance of modern queues is because the
benchmark only simulates a speci�c workload. For example, the
maximum of the queues size is only as large as the thread-count, the
enqueuers and dequeuers were mixed and balanced. �e modern
queues have be�er performance.

�e BAQ always has a higher runtime than the other lock-free
queues. A basket is an ordered list of groups [13]. When there is
high contention there is a possibility that many threads can work on
other baskets, which decreases the contention for the single items,
resulting in faster operations. �e basket-queue has a dynamic
number of baskets, which increases if a contention was detected
and decreaseswhen there are nomore items le� in that basket. Since
there are very few baskets in the test, the advantages it gets from it
could not overcome the overhead of the baskets management.

�e OPQ is as fast as the MSQ. To get be�er performance, the
OPQ enqueues on the Head and dequeues from the Tail. �is way
it saves one CAS, which takes an order of magnitude longer than a
simple store, because it needs to take exclusive ownership of a cache
line and completely �ushes the write bu�er of a processor [15]. To
�x the reverse direction of the dequeues, the nodes need to have
a prev pointer to the predecessor. �e prev pointer is not stored
atomically, so there is the possibility of corruption. If a prev pointer
is found to be inconsistent a fixList method will resolve the issue
by iterating from the Head to the Tail and se�ing the correct prev
pointers. �e result will be the corrected queue, since the next
pointers are guaranteed to be consistent. Since fixList needs to
iterate through the whole list, the cost of calling this function is
relatively high, but it is compensated by the fact that the calling
frequency to the method is very low. prev only gets inconsistent
when there are long delays. �e test can contain some delays and
this is why the OPQ is not faster than the MSQ. �e authors of the
OPQ paper observed the same result in this workload scenario [15].

�e MOQ is a simple ms-queue where the CAS is replaced by
special load-links and store-conditionals. �e x86 Platform does
not have these primitives, thus it has to get emulated with CAS [9].
Even then, the performance is up par with the ms-queue

5 SUMMARY
Many people claim that lock-free algorithms can solve all their
problems, but it is by no means a silver bullet. All in all the lock-
free data structures are a great tool to avoid serious hazards when
dealing with parallel algorithms. �ey are also performing be�er
than lock-based algorithms in some scenarios as seen in the evalu-
ation where a simple lock-based queue outperformed all lock-free
implementations up to 6 thread pairs. �is is why someone should
always measure before replacing lock-based algorithms and even

then the right type of lock-free algorithm should be chosen, since
many are specialized to a speci�c use-case.

In summary the Michael-Sco� queue is an elegant and easy to
understand lock-free queue. Despites its age, it is still faster than
newer lock-free queues in a workload with balanced enqueuers and
dequeuers.

REFERENCES
[1] ARM Architecture Reference Manual. h�ps://www.scss.tcd.ie/∼waldroj/3d1/

arm arm.pdf. Accessed: 2017-01-16.
[2] C++ International Standard. h�p://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2014/n4296.pdf. Accessed: 2017-01-16.
[3] Chapter 03. h�p://users.cis.�u.edu/∼sadjadi/Teaching/Operating%20Systems/

Lectures/Chapter-03.ppt. Accessed: 2017-01-16.
[4] De�nitions of Non-blocking, Lock-free and Wait-free. h�ps:

//www.justso�waresolutions.co.uk/threading/non blocking lock free
and wait free.html. Accessed: 2017-01-17.

[5] �e Free Lunch Is Over: A Fundamental Turn Toward Concurrency in So�ware.
h�p://www.gotw.ca/publications/concurrency-ddj.htm. Accessed: 2017-01-16.

[6] Intel® 64 and IA-32 Architectures So�ware Developer’s Manual, Volume 2 (2A,
2B, 2C & 2D): Instruction Set Reference, A-Z. h�p://www.intel.de/content/
dam/www/public/us/en/documents/manuals/64-ia-32-architectures-so�ware-
developer-instruction-set-reference-manual-325383.pdf. Accessed: 2017-01-16.

[7] Lock-Free Code: A False Sense of Security. h�p://www.drdobbs.com/cpp/lock-
free-code-a-false-sense-of-security/210600279. Accessed: 2017-01-09.

[8] 1987. De�nitions of Non-blocking, Lock-free and Wait-free. h�ps:
//www.cs.rice.edu/∼johnmc/papers/cqueues-mellor-crummey-TR229-
1987.pdf. Accessed: 2017-01-17.

[9] James H. Anderson and Mark Moir. 1995. Universal Constructions for Multi-
object Operations. In Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing (PODC ’95). ACM, New York, NY, USA,
184–193. DOI:h�p://dx.doi.org/10.1145/224964.224985

[10] David Dice, Danny Hendler, and Ilya Mirsky. 2013. Lightweight Contention
Management for E�cient Compare-and-swap Operations. In Proceedings of the
19th International Conference on Parallel Processing (Euro-Par’13). Springer-Verlag,
Berlin, Heidelberg, 595–606. DOI:h�p://dx.doi.org/10.1007/978-3-642-40047-
6 60

[11] E. W. Dijkstra. 1971. Hierarchical ordering of sequential processes. Acta Infor-
matica 1, 2 (1971), 115–138. DOI:h�p://dx.doi.org/10.1007/BF00289519

[12] Maurice P. Herlihy and Jeanne�e M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. DOI:h�p://dx.doi.org/10.1145/78969.78972

[13] Moshe Ho�man, Ori Shalev, and Nir Shavit. 2007. �e Baskets �eue. Springer
Berlin Heidelberg, Berlin, Heidelberg, 401–414. DOI:h�p://dx.doi.org/10.1007/
978-3-540-77096-1 29

[14] Max Khizhinsky. A C++ library of Concurrent Data Structures. commit-id:
03601c4b049873992f30f269b131e0f0f19742e5. h�ps://github.com/khizmax/libcds.
Accessed: 2016-12-26.

[15] Edya Ladan-Mozes and Nir Shavit. 2008. An optimistic approach to lock-free FIFO
queues. Distributed Computing 20, 5 (2008), 323–341. DOI:h�p://dx.doi.org/
10.1007/s00446-007-0050-0

[16] Butler W. Lampson and David D. Redell. 1980. Experience with Processes
and Monitors in Mesa. Commun. ACM 23, 2 (Feb. 1980), 105–117. DOI:
h�p://dx.doi.org/10.1145/358818.358824

[17] Victor Luchangco, Mark Moir, and Nir Shavit. 2003. On the Uncontended Com-
plexity of Consensus. Springer Berlin Heidelberg, Berlin, Heidelberg, 45–59. DOI:
h�p://dx.doi.org/10.1007/978-3-540-39989-6 4

[18] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (June 2004), 491–504. DOI:
h�p://dx.doi.org/10.1109/TPDS.2004.8

[19] Maged M. Michael and Michael L. Sco�. 1996. Simple, Fast, and Practical
Non-blocking and Blocking Concurrent �eue Algorithms. In Proceedings of
the Fi�eenth Annual ACM Symposium on Principles of Distributed Computing
(PODC ’96). ACM, New York, NY, USA, 267–275. DOI:h�p://dx.doi.org/10.1145/
248052.248106

[20] Susan Owicki and Leslie Lamport. 1982. Proving Liveness Properties of Concur-
rent Programs. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 455–495. DOI:
h�p://dx.doi.org/10.1145/357172.357178

[21] Andrew Tanenbaum. 2009. Modern operating systems. (2009).
[22] John David Valois. 1996. Lock-free Data Structures. Ph.D. Dissertation. Troy, NY,

USA. UMI Order No. GAX95-44082.
[23] Dieter Zöbel. 1983. �e Deadlock Problem: A Classifying Bibliography.

SIGOPS Oper. Syst. Rev. 17, 4 (Oct. 1983), 6–15. DOI:h�p://dx.doi.org/10.1145/
850752.850753

https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://users.cis.fiu.edu/~sadjadi/Teaching/Operating%20Systems/Lectures/Chapter-03.ppt
http://users.cis.fiu.edu/~sadjadi/Teaching/Operating%20Systems/Lectures/Chapter-03.ppt
https://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
https://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
https://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
https://www.cs.rice.edu/~johnmc/papers/cqueues-mellor-crummey-TR229-1987.pdf
https://www.cs.rice.edu/~johnmc/papers/cqueues-mellor-crummey-TR229-1987.pdf
https://www.cs.rice.edu/~johnmc/papers/cqueues-mellor-crummey-TR229-1987.pdf
http://dx.doi.org/10.1145/224964.224985
http://dx.doi.org/10.1007/978-3-642-40047-6_60
http://dx.doi.org/10.1007/978-3-642-40047-6_60
http://dx.doi.org/10.1007/BF00289519
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/978-3-540-77096-1_29
http://dx.doi.org/10.1007/978-3-540-77096-1_29
https://github.com/khizmax/libcds
http://dx.doi.org/10.1007/s00446-007-0050-0
http://dx.doi.org/10.1007/s00446-007-0050-0
http://dx.doi.org/10.1145/358818.358824
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/357172.357178
http://dx.doi.org/10.1145/850752.850753
http://dx.doi.org/10.1145/850752.850753

	Abstract
	1 Introduction
	2 Lock-free Programming
	2.1 Primitives
	2.2 Advantages
	2.3 Disadvantages

	3 Michael-Scott Queue
	3.1 Linearizability
	3.2 Safety
	3.3 Liveness

	4 Evaluation
	5 Summary
	References

