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ABSTRACT

Today’s many-core systems require scalable applications.
Software needs to be able to use the concurrent computation
potential offered by a large number of cores. However the
scalability of many applications is limited by data locality
and the performance of lock algorithms. To improve both lo-
cality and lock performance, Lozi et al. propose the concept
of Remote Core Locking (RCL) [3]. This paper summarises
the functionality of RCL and analyses the benchmarks con-
ducted by Lozi et al. On the one hand, RCL improves the
locality of shared data by migrating critical sections to a ded-
icated server core. RCL also offers higher scalability, as no
communication between all threads is required. Instead all
threads communicate pairwise with the server core. On the
other hand RCL has drawbacks including false serialisation
of independent critical sections, as well as reduced locality of
private client data. Lozi et al’s benchmarks partly substanti-
ate the impact of these advantages and drawbacks. Neverthe-
less RCL allows for significant performance improvements
on some applications.
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1 INTRODUCTION

The performance of concurrent applications on today’s many-
core systems relies on the scalability of these applications.
To use the computation potential of many core hardware, ap-
plications must achieve a high level of parallelism. However,
many concurrent algorithms and data structures depend on
locks as a means of synchronisation. These locks guard criti-
cal sections. By concept critical sections provide linearisable
access to shared data. In order to access shared data, an algo-
rithm must first acquire the respective lock. Acquiring locks
introduces contention between the threads of a concurrent
program [5]. Accessing shared data in the respective critical
section induces locality issues between the current thread
and the thread that previously held the lock. According to
Verghese et al. data locality is potentially the most important
performance issue on shared memory architectures [6]. Re-
mote core locking (RCL) provides both reduced contention as
well as increased shared data locality. RCL migrates critical

sections to a dedicated server core and replaces lock based
synchronisation by a request array. Each thread has one re-
quest structure in this array. Threads thus no longer compete
for a lock. Instead, each thread requests access to a critical
section by writing to its own request structure. The execution
of critical section on the dedicated core causes the shared
data to remain local to this core and thus improves the local-
ity of this shared data. Similar approaches to critical section
migration are taken by Hendler et al.’s flat combining (FC) [1]
and Suleman et al’s accelerated critical sections (ACS) [4].
First, FC does not propose a general lock implementation.
Instead it implements certain concurrent data structures. The
locking functionality of FC is similar to RCL. In difference
to RCL, FC uses the knowledge of the implemented data
structure in its critical section server. This allows the FC
server to combine concurrent requests to reduce their over-
all execution time. A general lock implementation like RCL
cannot provide this feature. Furthermore, FC does not have
a dedicated server core for a critical section. Instead, the
role of the server is passed on between normal clients. This
impedes data locality compared to RCL. Second, Suleman
et al’s ACS is a hardware based algorithm, unlike RCL and
FC, which are entirely implemented in software. Suleman et
al’s approach describes an asymmetric many core architec-
ture with new instructions. These instructions implement
requests similar to those used in RCL. ACS, FC and RCL have
one decisive functional difference. RCL can handle blocking
inside critical sections, whereas FC and ACS require non-
blocking critical sections. This makes RCL less intrusive to
use in legacy applications. Lozi et al. also developed two
tools to assist programmers in transforming applications to
use RCL. First, a profiler that selects which locks of an appli-
cation might profit from using RCL. Second, a reengineering
tool that can automatically rewrite critical sections to use
RCL. Given these two assets, changing a legacy application
into one using RCL locks requires very little understanding
of the application code. This paper further discusses the
implementation of RCL, its advantages and drawbacks, an
evaluation of Lozi et al.’s benchmarks and finally an outlook
on possible future improvements of RCL.

2 RCL IMPLEMENTATION

A RCL lock consists of two parts. One part is a server that
offers execution of critical sections. The other part consists
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Figure 1: The request array. Client c; has requested execu-
tion of the critical section implemented by foo [3].

of several clients that requests such executions. This sec-
tion first presents the structures used to communicate be-
tween the client and the server, then the transformation of
an ordinary lock into an RCL lock in a client and finally the
implementation of the server.

Client-Server-Communication

The server for an RCL lock manages an array of request
structures. This array contains one request for each pos-
sible client, as shown in figure 1. Such a request consists
of three content fields and padding to occupy exactly one
hardware cache line. The first field points to the actual lock
guarding the critical section. The second field points to a
context structure given by the client. The last field points
to the function that encapsulates the critical section. The
context contains the parameters for this function. In figure 1
client ¢, requests execution of the function foo. foo contains
a critical section provided by the shown server. This section
is guarded by the lock lockl1. To request the execution, c,
must perform four steps. First, store the context in a context
structure. Second, store the address of lock1 to its request
line. Third, write the address of the context to its request.
Last, store the address of foo to its request. The change of
the function field is recognised by the server. The function
address must be the last of these writes to the request line.
The order of writes ensures that the server reads all updated
values of this line. Finally, the client must wait for the server
to execute its request, by spinning on the function field until
the server resets it to NULL. On the other side of the commu-
nication, the server continuously awaits requests (Listing
3). It iterates over the request array and executes pending
requests. The server identifies pending requests by the value
of their function fields. A request line with a function ad-
dress unequal to NULL represents a pending request. After
finishing the execution of a request, the server writes NULL
to the request’s function field and thus signals completion
to the client. The server then continues to iterate over the
request array.
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Listing 1: Critical section from raytrace/workpool.c [3].

GetJob(..., int pid) {

lock(global lock(pid))
wpentry = get_workpool_entry(pid)
if not wpentry exists then
state = WORK_POOL_EMPTY
unlock(global lock(pid))
return WORK_POOL_EMPTY
set_workpool_entry(wpentry—>next)
unlock(global lock(pid))

(]
}

Listing 2: Transformed critical section [3].
function(void *context) {

context—>wpentry = get_workpool_entry(context—>pid)
if not context—>wpentry exists then

state = WORK_POOL_EMPTY

return 1
set_workpool_entry(wpentry—>next)
return 0

}
GetJob(..., int pid) {

context = {pid }
ret = rcl_request(global lock(pid), context, &function)
if ret == 1 then

return WORK_POOL_EMPTY
[...]
}
Client Side

On the client side the programmer transforms an ordinary
lock into an RCL lock. Listing 1 shows a critical section
before and listing 2 after transformation. The lock guards a
critical section. The client encapsulates this critical section
in a closure [2]. The closure contains the code of the critical
section and all necessary parameters. This implements migra-
tion of this section to the server. The client builds a context
data structure (line 12, listing 2) containing the parameters
for this extracted function. The context combines all local
variables required by the closure. The client requests a server
to execute the closure and continues when the server signals
completion of the closure. In case of fine-grained locking,
one critical section can have more then one code paths to
release its lock. The server must tell the client on which path
to continue. The server encodes this in the return value of
the critical section. The client then switches over this return
value (line 14, listing 2) and continues on the correct path.

Server Side

The server consists of a management thread, a backup thread
and at least one servicing thread. Servicing threads execute
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Listing 3: RCL server: Servicing thread [3].

servicing_thread() {
while true do
timestamp = server—>timestamp
server—>alive = 1
foreach request in server—>request_array do
if request—>function != NULL and
local CAS(request—>lock, FREE, LOCKED) then
if request—>function != NULL then
request—>context =
request—>function(request—>context)
request—>function = NULL
unlock(request—>lock)

Listing 4: RCL server: Management thread [3].
management_thread(...) {
while true do
if server—>alive == 0 then
if free_threads < 1 then
spawn_servicing_thread()
atomic(free_threads++)
server—>alive = 1
loop: while true do
foreach cur in servicing_threads do
if cur—>timestamp < server—>timestamp then
cur—>timestamp = server—>timestamp
elect(cur)
break loop
server—>timestamp++
else
server—>alive = 0
sleep_until(timeout)

requests containing a non-NULL function field as listing 3
shows. If a servicing thread blocks or spins during execution
of a request, the server must ensure another servicing thread
is available to execute new incoming requests. Servicing
threads signal their availability by setting the alive flag of
the server (line 4, listing 3) every time they finish iterating
over the request array. The first purpose of the management
thread is to ensure at least one servicing thread is available at
all times. When all servicing threads are blocked, the backup
thread is scheduled by the operating system and wakes up
the management thread. A spinning servicing thread pre-
vents the backup thread from being scheduled. Therefore
the management thread must regularly check availability of
the servicing threads. Lines 16 and 3-5 respectively show the
management thread sleeping for a fixed amount of time and
spawning a new servicing thread if necessary. The manage-
ment runs at highest priority and thus preempts any other
thread when it wakes up.

Running several servicing threads introduces two new
problems. First the threads need to synchronise execution

of requests. Hence a servicing thread acquires the lock as-
sociated with a request before executing it and releases the
lock afterwards (lines 7, 12, listing 3). Each critical section
provided by the server has one unique lock. The addresses
of these locks are stored in each request of the respective
critical section. The locks are only acquired by the servicing
threads running on the server core and are implemented as
a local CAS operation. Unlike ordinary locks, this local CAS
operation has negligible performance impact and does not
influence the scalability of the number of clients. Second the
server must ensure responsiveness of all servicing threads.
To avoid preemption of a servicing thread while it is execut-
ing a critical section, Lozi et al. the POSIX FIFO scheduling
policy of the operating system scheduler. This allows the
running servicing thread to execute requests uninterruptedly
until it is blocked or until the management thread wakes
up. If the running servicing thread spins within a critical
section, the management thread must instruct the operating
system to schedule a different servicing thread in order to
avoid starvation. The management thread uses timestamps
to guarantee that every servicing thread is scheduled even-
tually (lines 10-14, listing 4). Each servicing thread and the
server itself has one timestamp. The management thread
first selects the first thread with a lower timestamp than the
server. Second, the management thread sets this servicing
thread’s timestamp to the one of the server and elects this
servicing thread to be scheduled. Third, if no servicing thread
has a lower timestamp, the management thread increments
the server’s timestamp.

3 ADVANTAGES AND DRAWBACKS

When a multithreaded application accesses shared data, the
application must synchronise the data between its threads.
Synchronisation can be done through a critical section guarded
by an ordinary lock. In this case one thread acquires the lock
and then modifies the data. The modification is done in the
cache of the core the thread is running on. When another
thread running on a different core then acquires the lock,
this core’s cache is invalid. The CPU must copy the data from
the first cache to the second. According to Lozi et al. [3] this
lack of locality is the main disadvantage of ordinary locks
compared to RCL locks. A multithreaded application using
RCL also has to synchronise its shared data. This application
also uses critical sections guarded by locks. But the threads
of this application request the execution of a critical section
from an RCL server core. The CPU has to copy this request
from the core of the client thread to the server core. A server
thread then modifies the shared data. The shared data is only
modified by the threads of this server. The server threads
always run on one specific server core. Therefore the shared
data in this core’s cache remains valid. This allows the RCL
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Figure 2: Results of the microbenchmark [3].

servicing threads to execute critical sections without waiting
for the CPU to copy shared data between caches. However
the CPU still has to copy the request from the client core
to the server core. This request is the private data of the
thread running on the client core. The private data consists
of the request line itself, the referenced context structure and
the code of the function that is requested. The code of the
requested function never changes. The code therefore can
remain valid in the server’s cache. The request line is a single
cache line that the CPU must copy to the server for every
request. The size and validity of the context structure depend
on the application. Suleman et al. conclude that their RCL
like algorithm can improve overall performance of an appli-
cation, when the improved locality of shared data outweighs
the decreased locality of private data [4]. RCL also comes
with very little synchronisation overhead. For clients, the
synchronisation overhead consists of writing one cache line.
For the server, the overhead consists of one management
thread, that wakes up regularly and iterates once over the
list of servicing threads, and the servicing threads that each
iterate over the request array of constant size. Especially no
global CAS operation is necessary when executing a critical
section. The CAS in line 7 of the servicing thread (listing 3)
operates on cache local memory. It is therefore much faster
than CAS operation accessing shared memory. Above all
other overhead the main disadvantage of RCL in overhead
comes from the server itself taking up one core on which no
clients can run. On the other hand many concurrent algo-
rithms are not perfectly scalable. This intrinsically limits the
number of threads an application needs to reach its scalabil-
ity peak. Today’s many core systems offer enough cores to
assign one core to every thread of such an application. This
makes the disadvantage of a dedicated server core insignifi-
cant. Another disadvantage of RCL is the possibility of false
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Listing 5: Critical section in microbenchmark [3].

thread() {
while true do
foreach line in context_cache_lines do
=line++
rcl_request(global lock,
context_cache_lines,
critical_section)

critical _section(void «context_cache lines) {
foreach line in context_cache_lines do
=line++
foreach line in shared_cache_lines do
«line++

serialisation. This occurs when one RCL server core serves
multiple independent critical sections. The server core can
be busy with serving many requests for one critical section.
This delays the execution of a request for a different criti-
cal section. An application using ordinary locks is able to
concurrently execute such independent critical sections.

4 EVALUATION

Lozi et al. evaluated the impact of the advantages and draw-
backs of RCL. Lozi et al. conducted 18 benchmarks commonly
used to test the performance of lock implementations as well
as one self-made microbenchmark.

Microbenchmark

The microbenchmark runs on a 48-core machine having
four 12-core Opteron 6172 processors, running Ubuntu 11.10
(Linux 3.0.0), with gcc 4.6.1 and glibc 2.13 [3]. Each lock is
tested with 48 threads. Each thread modifies context cache
lines, executes its critical section and then spins for a fixed
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Figure 3: Results of legacy benchmarks.

amount of time. The spinning time is used to simulate differ-
ent levels of contention. For RCL 47 threads are spawned to
leave one for the server. The critical section accesses both
the context cache lines and the shared data cache lines. Ac-
cessing a cache line means incrementing its content. The
critical section iterates over all cache lines it has to access
as listing 5 shows. Lozi et al. executed the microbenchmark
with one and five shared cache lines, but do not mention
the number of context cache lines. The RCL server also only
serves one critical section. This prevents false serialisation.
Figure 2 shows the results of the microbenchmark. For one
cache line access per critical section at high contention RCL
outperforms all other tested locks. Lozi et al. conclude this
is due to the absence of CAS in the RCL implementation.
At low contention RCL performs comparable to all other
locks except flat combining. Lozi et al. give no explanation
why looses its performance advantage. When accessing five
cache lines per critical section RCL outperforms all other
locks on all contention levels. According to Lozi et al. this is
due to the improved locality of shared data in RCL and the
increase in cache misses in other lock implementations.

Legacy Benchmarks

The remaining 18 benchmarks include Memcached, Berkeley
DB, the 9 applications of the SPLASH-2 benchmark suite and
the 7 applications of the Phoenix2 benchmark suite. Lozi
et al’s profiler identifies 8 of these applications to have a
single lock as bottleneck, which can be improved by RCL. The
results of these 8 benchmarks are shown in figure 3 (a). The
top of the figure (xa : n/m) reports the improvement a over
the execution time of the original application on one core, the
number n of cores that gives the shortest execution time (i.e.,
the scalability peak), and the minimal number m of cores for
which RCL is faster than all other locks [3]. m is especially
also given when RCL is not faster than all other locks. This
is seen on String Match where RCL is outperformed by flat
combining and MCS. Lozi et al. give no explanation why

RCL performs badly on this benchmark. On Memcached Set,
Linear Regression, Radiosity and Raytrace Car RCL performs
significantly better than all other lock implementations. On
the remaining 3 benchmarks RCL performs comparable to
MGCS, even though the profiler identifies these applications
to be improvable with RCL. Berkeley DB Order Status and
Stock Level are not identified by the profiler. Regardless
RCL outperforms all other locks by a large margin on these
two benchmarks as figure 3 (b) shows. According to Lozi et
al. this is because their profiler cannot measure the hybrid
Test-And-Set/POSIX locks used in Berkeley DB.

In summary the benchmarks presented by Lozi et al. show
varying improvements from RCL. Even in the worst shown
case RCL still performs comparable to all other locks. Lozi et
al. do not present the results of the remaining 8 benchmarks.
They state transformation to RCL has no performance impact
on these benchmarks.

5 CONCLUSIONS

RCL is a lock implementation with minimal synchronisa-
tion overhead. It improves shared data locality by serialising
critical sections on a dedicated core. The improved locality
allows RCL to outperform all other tested ordinary lock im-
plementations in certain scenarios. Lozi et al. developed a
profiling and a reengineering tool. The profiling tool decides
which locks in an application are likely to be improvable with
RCL. Even though Lozi et al.’s benchmarks do not prove their
profiler to be highly reliable. The reengineering tool then
transforms these locks into RCL locks. RCL performs com-
parable or better than all lock implementations presented
in Lozi et al’s benchmarks. In the future RCL might be
improved by dynamically adjusting itself at runtime. This
includes migrating locks between several server for dynamic
load balancing and avoidance of false serialisation, as well as
switching between RCL and ordinary locking at runtime [3].
Some locks can only benefit from RCL at certain points dur-
ing runtime. Dynamic adjustments would allow RCL to also



improve these locks. RCL might also be improvable by in-
corporating the combining feature of flat combining [1].
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