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ABSTRACT
Today’s many-core systems require scalable applications.
So�ware needs to be able to use the concurrent computation
potential o�ered by a large number of cores. However the
scalability of many applications is limited by data locality
and the performance of lock algorithms. To improve both lo-
cality and lock performance, Lozi et al. propose the concept
of Remote Core Locking (RCL) [3]. �is paper summarises
the functionality of RCL and analyses the benchmarks con-
ducted by Lozi et al. On the one hand, RCL improves the
locality of shared data by migrating critical sections to a ded-
icated server core. RCL also o�ers higher scalability, as no
communication between all threads is required. Instead all
threads communicate pairwise with the server core. On the
other hand RCL has drawbacks including false serialisation
of independent critical sections, as well as reduced locality of
private client data. Lozi et al.’s benchmarks partly substanti-
ate the impact of these advantages and drawbacks. Neverthe-
less RCL allows for signi�cant performance improvements
on some applications.

CCS CONCEPTS
•Computing methodologies →Concurrent computing
methodologies;

1 INTRODUCTION
�eperformance of concurrent applications on today’smany-
core systems relies on the scalability of these applications.
To use the computation potential of many core hardware, ap-
plications must achieve a high level of parallelism. However,
many concurrent algorithms and data structures depend on
locks as a means of synchronisation. �ese locks guard criti-
cal sections. By concept critical sections provide linearisable
access to shared data. In order to access shared data, an algo-
rithm must �rst acquire the respective lock. Acquiring locks
introduces contention between the threads of a concurrent
program [5]. Accessing shared data in the respective critical
section induces locality issues between the current thread
and the thread that previously held the lock. According to
Verghese et al. data locality is potentially the most important
performance issue on shared memory architectures [6]. Re-
mote core locking (RCL) provides both reduced contention as
well as increased shared data locality. RCL migrates critical

sections to a dedicated server core and replaces lock based
synchronisation by a request array. Each thread has one re-
quest structure in this array. �reads thus no longer compete
for a lock. Instead, each thread requests access to a critical
section bywriting to its own request structure. �e execution
of critical section on the dedicated core causes the shared
data to remain local to this core and thus improves the local-
ity of this shared data. Similar approaches to critical section
migration are taken byHendler et al.’s �at combining (FC) [1]
and Suleman et al.’s accelerated critical sections (ACS) [4].
First, FC does not propose a general lock implementation.
Instead it implements certain concurrent data structures. �e
locking functionality of FC is similar to RCL. In di�erence
to RCL, FC uses the knowledge of the implemented data
structure in its critical section server. �is allows the FC
server to combine concurrent requests to reduce their over-
all execution time. A general lock implementation like RCL
cannot provide this feature. Furthermore, FC does not have
a dedicated server core for a critical section. Instead, the
role of the server is passed on between normal clients. �is
impedes data locality compared to RCL. Second, Suleman
et al.’s ACS is a hardware based algorithm, unlike RCL and
FC, which are entirely implemented in so�ware. Suleman et
al.’s approach describes an asymmetric many core architec-
ture with new instructions. �ese instructions implement
requests similar to those used in RCL. ACS, FC and RCL have
one decisive functional di�erence. RCL can handle blocking
inside critical sections, whereas FC and ACS require non-
blocking critical sections. �is makes RCL less intrusive to
use in legacy applications. Lozi et al. also developed two
tools to assist programmers in transforming applications to
use RCL. First, a pro�ler that selects which locks of an appli-
cation might pro�t from using RCL. Second, a reengineering
tool that can automatically rewrite critical sections to use
RCL. Given these two assets, changing a legacy application
into one using RCL locks requires very li�le understanding
of the application code. �is paper further discusses the
implementation of RCL, its advantages and drawbacks, an
evaluation of Lozi et al.’s benchmarks and �nally an outlook
on possible future improvements of RCL.

2 RCL IMPLEMENTATION
A RCL lock consists of two parts. One part is a server that
o�ers execution of critical sections. �e other part consists
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Fig. 1: Critical sections with POSIX locks vs. RCL.
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Fig. 2: The request array. Client c2 has requested execu-
tion of the critical section implemented by foo.

to implement using RCL and a reengineering tool that
rewrites the associated critical sections.

2.1 Core algorithm
Using RCL, a critical section is replaced by a remote
procedure call to a procedure that executes the code of
the critical section. To implement the remote procedure
call, the clients and the server communicate through an
array of request structures, specific to each server core
(Fig. 2). This array has size C · L bytes, where C is a
constant representing the maximum number of allowed
clients (a large number, typically much higher than the
number of cores), and L is the size of the hardware cache
line. Each request structure reqi is L bytes and allows
communication between a specific client i and the server.
The array is aligned so that each structure reqi is mapped
to a single cache line.

The first three machine words of each request reqi con-
tain respectively: (i) the address of the lock associated
with the critical section, (ii) the address of a structure
encapsulating the context, i.e., the variables referenced
or updated by the critical section that are declared by the
function containing the critical section code, and (iii) the
address of a function that encapsulates the critical section
for which the client ci has requested the execution, or
NULL if no critical section is requested.

Client side To execute a critical section, a client ci first
writes the address of the lock into the first word of the
structure reqi, then writes the address of the context struc-
ture into the second word, and finally writes the address
of the function that encapsulates the code of the critical
section into the third word. The client then actively waits

for the third word of reqi to be reset to NULL, indicating
that the server has executed the critical section. In order
to improve energy efficiency, if there are less clients than
the number of cores available, the SSE3 monitor/mwait
instructions can be used to avoid spinning: the client will
sleep and be woken up automatically when the server
writes into the third word of reqi.

Server side A servicing thread iterates over the re-
quests, waiting for one of the requests to contain a non-
NULL value in its third word. When such a value is found,
the servicing thread checks if the requested lock is free
and, if so, acquires the lock and executes the critical sec-
tion using the function pointer and the context. When the
servicing thread is done executing the critical section, it
resets the third word to NULL, and resumes the iteration.

2.2 Profiling
To help the user decide which locks to transform into
RCLs, we have designed a profiler that is implemented as
a dynamically loaded library and intercepts calls involv-
ing POSIX locks, condition variables, and threads. The
profiler returns information about the overall percentage
of time spent in critical sections, as well as about the
percentage of time spent in critical sections for each lock.
We define the time spent in a critical section as the total
time to acquire the lock (blocking time included), execute
the critical section itself, and release the lock. It is mea-
sured by reading the cycle counter before and after each
critical section, and by comparing the total measured time
in critical sections with the total execution time, for each
thread. The overall percentage of time spent in critical
sections can help identify applications for which using
RCL may be beneficial, and the percentage of time spent
in critical sections for each lock helps guide the choice
of which locks to transform into RCLs. For each lock,
the profiler also produces information about the number
of cache misses in its critical sections, as these may be
reduced by the improved locality of RCL.

Fig. 3 shows the profiling results for 18 applications, in-
cluding Memcached v1.4.6 (an in-memory cache server),
Berkeley DB v5.2.28 (a general-purpose database), the
9 applications of the SPLASH-2 benchmark suite (par-
allel scientific applications), and the 7 applications of
the Phoenix v2.0.0 benchmark suite (MapReduce-based
applications) with the “medium” dataset.1 Raytrace and
Memcached are each tested with two different standard
working sets, and Berkeley DB is tested with the 5 stan-
dard transaction types from TPC-C. A gray box indicates

1More information about these applications can be found
at the following URLs: http://memcached.org (Memcached),
http://www.oracle.com/technetwork/database/berkeleydb (Berke-
ley DB), http://www.capsl.udel.edu/splash (SPLASH-2) and
http://mapreduce.stanford.edu (Phoenix2).
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Figure 1: �e request array. Client c2 has requested execu-
tion of the critical section implemented by foo [3].

of several clients that requests such executions. �is sec-
tion �rst presents the structures used to communicate be-
tween the client and the server, then the transformation of
an ordinary lock into an RCL lock in a client and �nally the
implementation of the server.

Client-Server-Communication
�e server for an RCL lock manages an array of request
structures. �is array contains one request for each pos-
sible client, as shown in �gure 1. Such a request consists
of three content �elds and padding to occupy exactly one
hardware cache line. �e �rst �eld points to the actual lock
guarding the critical section. �e second �eld points to a
context structure given by the client. �e last �eld points
to the function that encapsulates the critical section. �e
context contains the parameters for this function. In �gure 1
client c2 requests execution of the function foo. foo contains
a critical section provided by the shown server. �is section
is guarded by the lock lock1. To request the execution, c2
must perform four steps. First, store the context in a context
structure. Second, store the address of lock1 to its request
line. �ird, write the address of the context to its request.
Last, store the address of foo to its request. �e change of
the function �eld is recognised by the server. �e function
address must be the last of these writes to the request line.
�e order of writes ensures that the server reads all updated
values of this line. Finally, the client must wait for the server
to execute its request, by spinning on the function �eld until
the server resets it to NULL. On the other side of the commu-
nication, the server continuously awaits requests (Listing
3). It iterates over the request array and executes pending
requests. �e server identi�es pending requests by the value
of their function �elds. A request line with a function ad-
dress unequal to NULL represents a pending request. A�er
�nishing the execution of a request, the server writes NULL
to the request’s function �eld and thus signals completion
to the client. �e server then continues to iterate over the
request array.

Listing 1: Critical section from raytrace/workpool.c [3].
1 GetJob(…, int pid) {
2 […]
3 lock(global lock(pid))
4 wpentry = get workpool entry(pid)
5 if not wpentry exists then
6 state = WORK POOL EMPTY
7 unlock(global lock(pid))
8 return WORK POOL EMPTY
9 set workpool entry(wpentry−>next)
10 unlock(global lock(pid))
11 […]
12 }

Listing 2: Transformed critical section [3].
1 function(void ∗context) {
2 context−>wpentry = get workpool entry(context−>pid)
3 if not context−>wpentry exists then
4 state = WORK POOL EMPTY
5 return 1
6 set workpool entry(wpentry−>next)
7 return 0
8 }
9
10 GetJob(…, int pid) {
11 […]
12 context = { pid }
13 ret = rcl request(global lock(pid), context, &function)
14 if ret == 1 then
15 return WORK POOL EMPTY
16 […]
17 }

Client Side
On the client side the programmer transforms an ordinary
lock into an RCL lock. Listing 1 shows a critical section
before and listing 2 a�er transformation. �e lock guards a
critical section. �e client encapsulates this critical section
in a closure [2]. �e closure contains the code of the critical
section and all necessary parameters. �is implements migra-
tion of this section to the server. �e client builds a context
data structure (line 12, listing 2) containing the parameters
for this extracted function. �e context combines all local
variables required by the closure. �e client requests a server
to execute the closure and continues when the server signals
completion of the closure. In case of �ne-grained locking,
one critical section can have more then one code paths to
release its lock. �e server must tell the client on which path
to continue. �e server encodes this in the return value of
the critical section. �e client then switches over this return
value (line 14, listing 2) and continues on the correct path.

Server Side
�e server consists of a management thread, a backup thread
and at least one servicing thread. Servicing threads execute
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Listing 3: RCL server: Servicing thread [3].
1 servicing thread() {
2 while true do
3 timestamp = server−>timestamp
4 server−>alive = 1
5 foreach request in server−>request array do
6 if request−>function != NULL and
7 local CAS(request−>lock, FREE, LOCKED) then
8 if request−>function != NULL then
9 request−>context =
10 request−>function(request−>context)
11 request−>function = NULL
12 unlock(request−>lock)
13 }

Listing 4: RCL server: Management thread [3].
1 management thread(…) {
2 while true do
3 if server−>alive == 0 then
4 if free threads < 1 then
5 spawn servicing thread()
6 atomic(free threads++)
7 server−>alive = 1
8 loop: while true do
9 foreach cur in servicing threads do
10 if cur−>timestamp < server−>timestamp then
11 cur−>timestamp = server−>timestamp
12 elect(cur)
13 break loop
14 server−>timestamp++
15 else
16 server−>alive = 0
17 sleep until(timeout)
18 }

requests containing a non-NULL function �eld as listing 3
shows. If a servicing thread blocks or spins during execution
of a request, the server must ensure another servicing thread
is available to execute new incoming requests. Servicing
threads signal their availability by se�ing the alive �ag of
the server (line 4, listing 3) every time they �nish iterating
over the request array. �e �rst purpose of the management
thread is to ensure at least one servicing thread is available at
all times. When all servicing threads are blocked, the backup
thread is scheduled by the operating system and wakes up
the management thread. A spinning servicing thread pre-
vents the backup thread from being scheduled. �erefore
the management thread must regularly check availability of
the servicing threads. Lines 16 and 3-5 respectively show the
management thread sleeping for a �xed amount of time and
spawning a new servicing thread if necessary. �e manage-
ment runs at highest priority and thus preempts any other
thread when it wakes up.
Running several servicing threads introduces two new

problems. First the threads need to synchronise execution

of requests. Hence a servicing thread acquires the lock as-
sociated with a request before executing it and releases the
lock a�erwards (lines 7, 12, listing 3). Each critical section
provided by the server has one unique lock. �e addresses
of these locks are stored in each request of the respective
critical section. �e locks are only acquired by the servicing
threads running on the server core and are implemented as
a local CAS operation. Unlike ordinary locks, this local CAS
operation has negligible performance impact and does not
in�uence the scalability of the number of clients. Second the
server must ensure responsiveness of all servicing threads.
To avoid preemption of a servicing thread while it is execut-
ing a critical section, Lozi et al. the POSIX FIFO scheduling
policy of the operating system scheduler. �is allows the
running servicing thread to execute requests uninterruptedly
until it is blocked or until the management thread wakes
up. If the running servicing thread spins within a critical
section, the management thread must instruct the operating
system to schedule a di�erent servicing thread in order to
avoid starvation. �e management thread uses timestamps
to guarantee that every servicing thread is scheduled even-
tually (lines 10-14, listing 4). Each servicing thread and the
server itself has one timestamp. �e management thread
�rst selects the �rst thread with a lower timestamp than the
server. Second, the management thread sets this servicing
thread’s timestamp to the one of the server and elects this
servicing thread to be scheduled. �ird, if no servicing thread
has a lower timestamp, the management thread increments
the server’s timestamp.

3 ADVANTAGES AND DRAWBACKS
When a multithreaded application accesses shared data, the
application must synchronise the data between its threads.
Synchronisation can be done through a critical section guarded
by an ordinary lock. In this case one thread acquires the lock
and then modi�es the data. �e modi�cation is done in the
cache of the core the thread is running on. When another
thread running on a di�erent core then acquires the lock,
this core’s cache is invalid. �e CPUmust copy the data from
the �rst cache to the second. According to Lozi et al. [3] this
lack of locality is the main disadvantage of ordinary locks
compared to RCL locks. A multithreaded application using
RCL also has to synchronise its shared data. �is application
also uses critical sections guarded by locks. But the threads
of this application request the execution of a critical section
from an RCL server core. �e CPU has to copy this request
from the core of the client thread to the server core. A server
thread then modi�es the shared data. �e shared data is only
modi�ed by the threads of this server. �e server threads
always run on one speci�c server core. �erefore the shared
data in this core’s cache remains valid. �is allows the RCL
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Spinlock N Bad (672889) Very Bad (+53.0 misses) N Good (1288) Bad (+5.2)
POSIX 1 Medium (73024) Bad (+3.8 misses) 1 Medium (1826) Bad (+4.0)
MCS 1 Medium (63553) Bad (+4.0 misses) 1 Good (1457) Bad (+4.8)
Flat Combining ε Medium (50447) Good (+0.3 misses) 1 Bad (15060) Medium (+2.4)
RCL 0 Good (16682) Good (+0.0 misses) 0 Good (1494) Good (+0.0)

(c) Comparison of the lock algorithms

Fig. 7: Microbenchmark results. Each data point is the average of 30 runs.

one cache line, as the data remains on the RCL server.
At low contention, each request is served immediately,
and the performance difference is also quite low. At
higher contention, each critical section has to wait for
the others to complete, incurring an increase in execution
time of roughly 47 times the increase at low contention.
Like RCL, Flat Combining has few or no extra cache
misses at high contention, because cache lines stay with
the combiner, which acts as a server. At low contention,
the number of extra cache misses is variable, because
the combiner often has no other critical sections to ex-
ecute. These extra cache misses increase the execution
time. POSIX and MCS have 4 extra cache misses when
reading the 4 extra cache lines, and incur a corresponding
execution time increase. Finally, Spinlock is particularly
degraded at high contention when accessing 5 cache lines,
as the longer duration of the critical section increases the
amount of time the thread spins, and thus the number of
CAS it executes.

To estimate which locks should be transformed into
RCLs, we correlate the percentage of time spent in criti-
cal sections observed using the profiler with the critical
section execution times observed using the microbench-
mark. Fig. 8 shows the result of applying the profiler
to the microbenchmark in the one cache line case with
POSIX locks.4 To know when RCL becomes better than
all other locks, we focus on POSIX and MCS: Flat Com-
bining is always less efficient than RCL and Spinlock is

4Our analysis assumes that the targeted applications use POSIX
locks, but a similar analysis could be made for any type of lock.

only efficient at very low contention. We have marked
the delays at which, as shown in Fig. 7(a), the critical
section execution time begins to be significantly higher
when using POSIX and MCS than when using RCL. RCL
becomes more efficient than POSIX when 20% of the
application time is devoted to critical sections, and it be-
comes more efficient than MCS when this ratio is 70%.
These results are preserved, or improved, as the number of
accessed cache lines increases, because the execution time
increases more for the other algorithms than for RCL.
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Fig. 8: CS time in the microbenchmark with POSIX locks.

4.2 Application performance

The two metrics offered by the profiler, i.e. the time spent
in critical sections and the number of cache misses, do
not, of course, completely determine whether an applica-
tion will benefit from RCL. Many other factors (critical
section length, interactions between locks, etc.) affect
critical section execution. We find, however, that using
the time spent in critical sections as our main metric and
the number of cache misses in critical sections as a sec-
ondary metric works well; the former is a good indicator

8

Figure 2: Results of the microbenchmark [3].

servicing threads to execute critical sections without waiting
for the CPU to copy shared data between caches. However
the CPU still has to copy the request from the client core
to the server core. �is request is the private data of the
thread running on the client core. �e private data consists
of the request line itself, the referenced context structure and
the code of the function that is requested. �e code of the
requested function never changes. �e code therefore can
remain valid in the server’s cache. �e request line is a single
cache line that the CPU must copy to the server for every
request. �e size and validity of the context structure depend
on the application. Suleman et al. conclude that their RCL
like algorithm can improve overall performance of an appli-
cation, when the improved locality of shared data outweighs
the decreased locality of private data [4]. RCL also comes
with very li�le synchronisation overhead. For clients, the
synchronisation overhead consists of writing one cache line.
For the server, the overhead consists of one management
thread, that wakes up regularly and iterates once over the
list of servicing threads, and the servicing threads that each
iterate over the request array of constant size. Especially no
global CAS operation is necessary when executing a critical
section. �e CAS in line 7 of the servicing thread (listing 3)
operates on cache local memory. It is therefore much faster
than CAS operation accessing shared memory. Above all
other overhead the main disadvantage of RCL in overhead
comes from the server itself taking up one core on which no
clients can run. On the other hand many concurrent algo-
rithms are not perfectly scalable. �is intrinsically limits the
number of threads an application needs to reach its scalabil-
ity peak. Today’s many core systems o�er enough cores to
assign one core to every thread of such an application. �is
makes the disadvantage of a dedicated server core insigni�-
cant. Another disadvantage of RCL is the possibility of false

Listing 5: Critical section in microbenchmark [3].
1 thread() {
2 while true do
3 foreach line in context cache lines do
4 ∗line++
5 rcl request(global lock,
6 context cache lines,
7 critical section)
8 }
9 critical section(void ∗context cache lines) {
10 foreach line in context cache lines do
11 ∗line++
12 foreach line in shared cache lines do
13 ∗line++
14 }

serialisation. �is occurs when one RCL server core serves
multiple independent critical sections. �e server core can
be busy with serving many requests for one critical section.
�is delays the execution of a request for a di�erent criti-
cal section. An application using ordinary locks is able to
concurrently execute such independent critical sections.

4 EVALUATION
Lozi et al. evaluated the impact of the advantages and draw-
backs of RCL. Lozi et al. conducted 18 benchmarks commonly
used to test the performance of lock implementations as well
as one self-made microbenchmark.

Microbenchmark
�e microbenchmark runs on a 48-core machine having
four 12-core Opteron 6172 processors, running Ubuntu 11.10
(Linux 3.0.0), with gcc 4.6.1 and glibc 2.13 [3]. Each lock is
tested with 48 threads. Each thread modi�es context cache
lines, executes its critical section and then spins for a �xed

4
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Fig. 9: Best performance for each type of lock relative to the best performance for POSIX locks.

of contention, and the latter of data locality.
To evaluate the performance of RCL, we have mea-

sured the performance of applications listed in Fig. 3 with
the lock algorithms listed in Fig. 7. Memcached with Flat
Combining is omitted, because it periodically blocks on
condition variables, which Flat Combining does not sup-
port. We present only the results for the applications (and
locks) that the profiler indicates as potentially interesting.
Replacing the other locks has no performance impact.

Fig. 9(a) presents the results for all of the applications
for which the profiler identified a single lock as the bot-
tleneck. For RCL, each of these applications uses only
one server core. Thus, for RCL, we consider that we use
N cores if we have N−1 threads and 1 server, while we
consider that we use N cores if we have N threads for the
other lock algorithms. The top of the figure (xα : n/m)
reports the improvement α over the execution time of the
original application on one core, the number n of cores
that gives the shortest execution time (i.e., the scalability
peak), and the minimal number m of cores for which RCL
is faster than all other locks. The histograms show the
ratio of the shortest execution time for each application
using POSIX locks to the shortest execution time with
each of the other lock algorithms.5

Fig. 9(b) presents the results for Berkeley DB with 100
clients (and hence 100 threads) running TPC-C’s Order
Status and Stock Level transactions. Since MCS cannot
handle more than 48 threads, due to the convoy effect, we
have also implemented MCS-TP [12], a variation of MCS
with a spinning timeout to resist convoys. In the case of
RCL, the two most used locks have been placed on two
different RCL servers, leaving 46 cores for the clients.
Additionally, we study the impact of the number of simul-
taneous clients on the number of transactions treated per
second for Stock Level transactions (see Fig. 11).

Performance analysis For the applications that spend
20-70% of their time in critical sections when using

5For Memcached, the execution time is the time for processing
10,000 requests.

POSIX locks (Raytrace/Balls4, String Match, and Mem-
cached/Set), RCL gives significantly better performance
than POSIX locks, but in most cases it gives about the
same performance as MCS and Flat Combining, as pre-
dicted by our microbenchmark. For Memcached/Set,
however, which spends only 54% of the time in criti-
cal sections when using POSIX locks, RCL gives a large
improvement over all other approaches, because it sig-
nificantly improves cache locality. When using POSIX
locks, Memcached/Set critical sections have on average
32.7 cache misses, which roughly correspond to accesses
to 30 shared cache lines, plus the cache misses incurred
for the management of POSIX locks. Using RCL, the 30
shared cache lines remain in the server cache. Fig. 10
shows that for Memcached/Set, RCL performs worse than
other locks when fewer than four cores are used due to the
fact that one core is lost for the server, but from 5 cores
onwards, this effect is compensated by the performance
improvement offered by RCL.

 0

 1

 2

 3

 4

 5

 6

 5  10  15  20

Sp
ee

du
p

Number of cores

POSIX SL MCS RCL

Fig. 10: Memcached/Set speedup.

For most of the applications that spend more than 70%
of their time in critical sections when using POSIX locks
(Radiosity, Raytrace/Car, and Linear Regression), RCL
gives a significant improvement over all the other lock
algorithms, again as predicted by our microbenchmark.
Matrix Multiply, however, spends over 90% of its time
in critical sections when using POSIX locks, but shows
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Figure 3: Results of legacy benchmarks.

amount of time. �e spinning time is used to simulate di�er-
ent levels of contention. For RCL 47 threads are spawned to
leave one for the server. �e critical section accesses both
the context cache lines and the shared data cache lines. Ac-
cessing a cache line means incrementing its content. �e
critical section iterates over all cache lines it has to access
as listing 5 shows. Lozi et al. executed the microbenchmark
with one and �ve shared cache lines, but do not mention
the number of context cache lines. �e RCL server also only
serves one critical section. �is prevents false serialisation.
Figure 2 shows the results of the microbenchmark. For one
cache line access per critical section at high contention RCL
outperforms all other tested locks. Lozi et al. conclude this
is due to the absence of CAS in the RCL implementation.
At low contention RCL performs comparable to all other
locks except �at combining. Lozi et al. give no explanation
why looses its performance advantage. When accessing �ve
cache lines per critical section RCL outperforms all other
locks on all contention levels. According to Lozi et al. this is
due to the improved locality of shared data in RCL and the
increase in cache misses in other lock implementations.

Legacy Benchmarks
�e remaining 18 benchmarks include Memcached, Berkeley
DB, the 9 applications of the SPLASH-2 benchmark suite and
the 7 applications of the Phoenix2 benchmark suite. Lozi
et al.’s pro�ler identi�es 8 of these applications to have a
single lock as bo�leneck, which can be improved by RCL.�e
results of these 8 benchmarks are shown in �gure 3 (a). �e
top of the �gure (xα : n/m) reports the improvement α over
the execution time of the original application on one core, the
number n of cores that gives the shortest execution time (i.e.,
the scalability peak), and the minimal number m of cores for
which RCL is faster than all other locks [3]. m is especially
also given when RCL is not faster than all other locks. �is
is seen on String Match where RCL is outperformed by �at
combining and MCS. Lozi et al. give no explanation why

RCL performs badly on this benchmark. On Memcached Set,
Linear Regression, Radiosity and Raytrace Car RCL performs
signi�cantly be�er than all other lock implementations. On
the remaining 3 benchmarks RCL performs comparable to
MCS, even though the pro�ler identi�es these applications
to be improvable with RCL. Berkeley DB Order Status and
Stock Level are not identi�ed by the pro�ler. Regardless
RCL outperforms all other locks by a large margin on these
two benchmarks as �gure 3 (b) shows. According to Lozi et
al. this is because their pro�ler cannot measure the hybrid
Test-And-Set/POSIX locks used in Berkeley DB.

In summary the benchmarks presented by Lozi et al. show
varying improvements from RCL. Even in the worst shown
case RCL still performs comparable to all other locks. Lozi et
al. do not present the results of the remaining 8 benchmarks.
�ey state transformation to RCL has no performance impact
on these benchmarks.

5 CONCLUSIONS
RCL is a lock implementation with minimal synchronisa-
tion overhead. It improves shared data locality by serialising
critical sections on a dedicated core. �e improved locality
allows RCL to outperform all other tested ordinary lock im-
plementations in certain scenarios. Lozi et al. developed a
pro�ling and a reengineering tool. �e pro�ling tool decides
which locks in an application are likely to be improvable with
RCL. Even though Lozi et al.’s benchmarks do not prove their
pro�ler to be highly reliable. �e reengineering tool then
transforms these locks into RCL locks. RCL performs com-
parable or be�er than all lock implementations presented
in Lozi et al.’s benchmarks. In the future RCL might be
improved by dynamically adjusting itself at runtime. �is
includes migrating locks between several server for dynamic
load balancing and avoidance of false serialisation, as well as
switching between RCL and ordinary locking at runtime [3].
Some locks can only bene�t from RCL at certain points dur-
ing runtime. Dynamic adjustments would allow RCL to also
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improve these locks. RCL might also be improvable by in-
corporating the combining feature of �at combining [1].
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