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ABSTRACT

The RCU synchronization mechanism has been the subject
of a fair amount of research over the past few years. This
paper takes a look at RCU from a application-oriented per-
spective and surveys the usage of RCU in real-world systems.
The first part of this work deals with the Linux RCU API
while the second part discusses user-level implementations.
In addition, this paper contrasts the advantages and draw-
backs of using RCU, helping system developers in the choice
of the proper synchronization primitives.

1. A SHORT INTRODUCTION TO RCU

The purpose of this section is to familiarize the reader
with the theoretic foundations of RCU which are required
to understand the rest of this paper. After a brief overview
of the main properties of RCU, we will introduce the concept
of grace periods which is of crucial importance to RCU. The
sections ends with a short example.

RCU (read-copy-update) is a synchronization mechanism
that allows readers to unconditionally make forward pro-
gress, even in the presence of updaters. Because of this pro-
perty, RCU differs greatly from conventional mutual exclu-
sion synchronization techniques such as read-write locks in
which write operations cause a blockade of all readers [3].
RCU thus allows concurrency between multiple readers and
a single updater (multiple updaters must be serialized with
other mechanisms such as spinlocks).

Conceptually, the fundamental idea of RCU is to maintain
multiple versions of objects and ensure that each version re-
mains intact as long as there are readers that hold references
to it and use the data contained in that version of the ob-
ject [10]. RCU also provides efficient mechanisms to publish
new versions of an object and for detecting when old ver-
sions can safely be freed. The main objective of RCU is to
supply low-overhead read-side primitives in order to make
read operations as fast as possible. In addition, readers must
not adhere to complicated locking protocols and can avoid
precautions such as disabling interrupts.

A RCU implementation must ensure that a version of a
data structure is not destroyed as long as there exist threads
with read access to it. Of course, the question that now ari-
ses is how RCU can determine that no more readers are
accessing a given version of a data object in order to free
the associated memory. The answer is best described using
a graphical representation (see Figure 1). In this graphic, a
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Figure 1: Graphical explanation of RCU and the
concept of grace periods (time increases to the right)

Linux kernel module is being accessed by two readers (’Cli-
ents’). In this case, RCU protects the reader threads against
module unloads. The slanted arrows represent invocations
and responses from the module. To guard against race con-
ditions, RCU uses the following strategy: The access opera-
tions performed by the client threads each form a so-called
read-side critical section. The thread performing the unload
now simply has to wait for the completion of all read-side
critical sections that were entered before the start of the wri-
te operation. This allows ongoing operations to finish [7]. A
read-side critical section is said to be pre-existing with re-
spect to an update when its commencement falls before the
start of the update. The time interval between the publica-
tion of a new version of a data element and the completion
of the last pre-existing read-side critical section is referred
to as grace period.

Any read access which started after the module unloading
invocation, such as Operation 2B, is informed that the mo-
dule is no longer available. Therefore, at the end of the grace
period, it is guaranteed that no more readers have access to
the data element in question and the module can safely be
unmapped. As long as all read-side critical section have a
finite duration, the grace period will always complete.

One final challenge remains: To implement RCU we need
a reliable method to determine the end of the grace period.
There are several possible strategies to accomplish this. The
most well known method takes an indirect approach based
on monitoring thread context switches. It requires read-side
critical sections to be non-preemptable and non-blocking. In
this approach, the end of the grace period has arrived when



each CPU has performed at least one context switch, since
no context switches are allowed in read-side critical sections.

Let us look at an example application of RCU: Consider
as an example the case of modifying an element of a single-
linked list, a data structure frequently used within the Linux
kernel. Using RCU, the writer thread first creates a copy of
the element to be modified and then sets its data members
to their new values. After that, the updater uses RCU’s pu-
blication facilities to atomically adjust the next pointer of
the previous element, guaranteeing that subsequent readers
traversing the list can only see the modified element. Now
the updating thread waits until all pre-existing readers that
still access the old version of the list element have relin-
quished their pointers to it. When that has occurred, the
grace period is over and the writing thread can free the old
element.

It has to be emphasised that RCU’s approach to synchro-
nization is inherently pessimistic in nature. It is possible
that an updating thread is impeded even though there no
pre-existing read-side operations exist on the data element
that is to be updated. The updater has to wait until all pre-
existing read-side critical sections (on all data elements in
the system) have been completed [7]. However, this strategy
does not rely on atomic operations (such as reference coun-
ters for kernel modules). It drastically improves reader-side
scalability because the execution overhead imposed by the
synchronization primitives is constant.

2. RCUIN THE LINUX KERNEL

Traditionally, most of the use cases of RCU centered around
synchronization within operating system kernels because the-
se systems include many read-intensive data structures that
profit highly from RCU'’s read-side performance. The first
operating system to incorporate RCU was DYNIX/ptx 2.1
(released in 1993) [9]. However, the real breakthrough of
RCU was its introduction into the Linux kernel in 2002 with
kernel version 2.5.43 [11].

The oldest Linux systems with multiprocessor support
used a big kernel lock (BKL), a single global lock that had to
be acquired by each thread upon entering kernel space to se-
rialize execution. This approach resulted in an unacceptable
performance degradation on multi-core systems. Through
the use of RCU and other techniques such as fine-grained
locks and lock-free data structures, developers were able to
greatly increase concurrency [8]. Today, RCU is present in
almost every kernel subsystem. This section presents the de-
sign and implementation of Linux’s RCU primitives, stati-
stics for RCU usage within the kernel and example RCU
applications.

2.1 Design of Linux RCU primitves

RCU is implemented as a library within the Linux kernel
which includes the following basic primitives [8]:

e rcu_read_lock/rcu_read_unlock: Threads call these
two functions upon entering or exiting a RCU read-side
critical section, respectively.

e synchronize_rcu: Waits until all pre-existing read-
side critical sections have completed but does not pre-
vent new read-side critical sections from starting. The-
re is also a non-blocking version of this function which
asynchronously executes a callback once existing RCU
critical sections have completed.
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Figure 2: Usage statistics of the RCU API in the
Linux kernel over time

e rcu_dereference/rcu_assign_pointer: These functi-
ons are necessary to to prevent that a reader gains
access to a data element before it has been complete-
ly initialized by the writer. Together, these primitives
enforce the required memory barrier instructions and
compiler directives to ensure correct ordering when ac-
cessing pointers to data elements.

In addition to the functions above, the Linux RCU API
also includes provisions for dealing with common use cases
and data structures, such as reading or mutating the ele-
ments of a linked list.

To determine the end of grace periods, Linux uses context
switches, as discussed in Section 1. One benefit of this ap-
proach is that is does not explicitly require communication
between readers and callers of synchronize_rcu. Rough-
ly speaking, Linux’s RCU primitives are implemented as
follows: In preemptable systems, on the one hand, a call
to rcu_read_lock disables preemption on the calling CPU
while rcu_read_unlock restores the preemption status. This
satisfies the requirement that threads inside a read-side cri-
tical section may not context switch. Since the preemption
flag is CPU-local, no race conditions exist when setting the
variable.

For non-preemtable systems, on the other hand, the two
delimiter functions generate no code at all, resulting in an
optimal read-side performance. synchronize_rcu simply waits
for all cores to execute a context switch.

Of course, the actual implementation is more intricate
than the one sketched above since it also has to deal with
interrupts, CPU hot-plugging and other hazards [10]. The
implementation for real-time systems is also quite different.
In principal, however, it can be stated that the Linux RCU
design delays synchronize_rcu callers a little longer than
necessary in an effort to reduce the overhead of read-side
critical sections [8].

2.2 Linux RCU usage statistics

Since its introduction into the kernel, the usage of the
RCU API facilities within Linux has skyrocketed (see Figure
2). As of December 2016, there are 12,729 invocations of
RCU primitives within the kernel [6]. This increase can in
part be attributed to the fact that many uses of read-write
locks were replaced by RCU.



In 2012, McKenney et al. undertook a detailed investiga-
tion of the distribution of RCU API calls among the various
kernel subsystems [8]. They found that the networking stack
and the kernel-based virtual machine were the most intensi-
ve RCU users since they contain many read-intensive data
structures that are especially suited to RCU (for example,
the device configuration and routing within the networking
system). The architecture-specific code (arch) uses RCU the
least. This can in part be explained by the requirement to
update hardware state in place. For example, it is not pos-
sible for updaters to create new versions of actual hardware
registers while pre-existing readers access the old version.

However, if we compare RCU to other synchronization
mechanism in the Linux kernel such as spinlocks and se-
maphores, we discover that RCU’s usage only accounts for
about 10 percent of calls to synchronization primitives. This
can be attributed to the fact that RCU is a highly speciali-
zed technique for concurrent accesses to read-intensive data
structures [6]. Furthermore, RCU still requires traditional
locking to serialize multiple updaters.

2.3 RCU usage examples

In Section 1, we already illustrated the basic principles of
RCU with an example from the Linux kernel, namely the dy-
namic unloading of kernel modules. We now look at another
application of RCU within the Linux NMI (non-maskable
interrupt) subsystem. NMIs are a special kind of hardwa-
re interrupts that can not be ignored using the normal in-
terrupt masking facilities. They can signal non-recoverable
hardware errors needing immediate attention. Additionally,
they are often used for debugging purposes.

In Linux, it is possible to define handler functions for
NMIs by installing them in the NMI handler table. RCU
is used to protect the NMI handler table from concurrent
updaters. In this case, the readers are CPUs that execute a
NMI handler. When unregistering an NMI handler, it must
be assured that its code remains intact as long as there are
CPUs executing it in order to prevent access to invalid me-
mory.

Figure 3 shows a pseudocode implementation of the Li-
nux NMI system using RCU synchronization. Once on NMI
occurs, the interrupted CPU calls handle_NMI in order to
gain read access to the NMI handler table. Updaters make
calls to (un)register_nmi_handler to manipulate the table
and to remove and insert NMI handlers. The handler table
is implemented as a double-linked list.

We know take a closer look at each function. Once an
NMI has been delivered to a CPU, the resulting call to
handle_nmi accesses the NMI handler table (nmi_list) in
a read-side critical section (note the two delimiting functi-
ons). The rcu_list_for_each function is part of the RCU
API. It iterates over each element of the double-linked list
by calling rcu_dereference for each list element. Each NMI
handler is then executed within a critical section by calling
cb for each of them (cb stands for the callback function).

The other two functions defined in Figure 3 manipula-
te the list and allow to register and unregister NMI hand-
lers. Updaters use the spinlock (nmi_list_lock) to seria-
lize themselves. Both rcu_list_add and rcu_list_remove
call rcu_assign_pointer to safely communicate the change
of the pointer value to the reader (using the required me-
mory order barriers and compiler directives). In addition,
unregister_nmi_handler also invokes synchronize_rcu to

rcu_list_t nmi_list;
spinlock_t nmi_list_lock;

void handle_nmi ()

{
rcu_read_lock ();
rcu_list_for_each(&nmi_list , handler_t cb)
b ();
rcu_read_unlock ();
}

void register_nmi_handler (handler_t cb)

spin_lock(&nmi_list_lock);
rcu_list_add(&nmi_list , cb);
spin_unlock(&nmi_list_lock);
}

void unregister_nmi_handler (handler_t cb)

spin_lock (&nmi_list_lock );
rcu_list_remove (cb);
spin_unlock(&nmi_list_lock);
synchronize_rcu ();

Figure 3: Usage of RCU to protect the NMI handler
table

await the completion of pre-existing critical sections. Upon
its return all calls to the handler have finished [8].

Implementing an NMI handler table in this fashion has
multiple advantages. It guarantees high performance and
using the RCU primitives imposes a low execution overhead
since rcu_read_lock/rcu_read_unlock execute in a deter-
ministic amount of time. In addition, the RCU approach is
not prone to deadlocks, allowing the dynamic registration of
NMI handlers which was not possible in previous kernel ver-
sions. Using a conventional locking technique, a thread hol-
ding the lock could be interrupted in register_nmi_handler
by an NMI which would lead to a call to handle_nmi. This
function would also attempt to acquire the lock, leading to
a deadlock.

Several other applications for RCU within Linux have be-
en described in various research papers, including the Virtu-
al File System (VFS) dentry cache [8] or the System V IPC
mechanism which uses RCU as an alternative to read-write
locks [2].

3. DISCUSSION OF RCU

This section presents the concurrency situations for which
RCU is best suited and also addresses some of the problems
with using RCU that may lead to a different choice of syn-
chronization mechanism.

Since RCU’s distinguishing property is the support for
concurrent readers in the presence of updaters, RCU can
lead to massive performance gains on read-intensive data
structures. McKenney et al. [7] have provided a rule of thumb:
A data structure is read-intensive if
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holds where f is ratio of updates to total acesses and ncpu
is the number of CPUs in the system. With eight CPUs,



f should be far less than 0.125. In general, RCU is inade-
quate for data structures with a high number of modificati-
ons since it might delay updaters far longer then necessary.
A RCU grace period can extend for multiple milliseconds
which might be intolerably high for some applications [4].
In addition, RCU should not be used for CPU-bound code
[7].

A big advantage of RCU is its low storage overhead. For
example, the Linux RCU provisions for delimiting critical
sections do not introduce any variables at all. The execution
overhead for RCU is also quite miniscule (or even inexistent
in the case of non-preemptive Linux systems), and even more
importantly, deterministic. This is especially beneficial for
real-time systems.

Additionally, the execution overhead for RCU critical sec-
tions remains constant even if the number of CPUs increases.
The relatively high scalability of RCU is a great improve-
ment over conventional locking strategies [8].

One drawback of RCU is the fact that readers might ha-
ve access to stale data. When an updater has modified a
list element, pre-existing readers still see the old state. An
application developer must determine if this behaviour can
be tolerated. One approach is the use of a flag to identify
outdated information, allowing a reader to take appropriate
measures.

Another disadvantage of RCU is the fact that it requires
multiple version of data elements to be maintained in case an
update occurs. Depending on the size of a data element, this
can considerably increase the memory overhead. To reduce
memory consumption, is is possible to limit the maximum
number of versions of data structure by letting the writer
threads hold the semaphore protecting the updates during
the grace period [10].

Finally, we should examine if RCU adheres to task priori-
ties which is especially important for designers of real-time
systems. Here, we can also see that no strength comes wi-
thout a weakness: On the one hand, RCU is immune to prio-
rity inversions involving read-side primitives. On the other
hand, a high-priority process can be blocked by low-priority
readers waiting for the elapse of a grace period [4].

In summary, RCU can best play out its strengths when
used in conjunction with read-mostly data structures sin-
ce RCU favours readers over writers. Additional benefits of
RCU are the low storage overhead and the obedience to rea-
der task priorities. For some applications, however, RCU can
be an ill-suited choice. The include update-intensive data
structures or applications that cannot tolerate the momen-
tary inconsistencies imposed by RCU updates.

4. USER-LEVEL RCU

Though RCU has been mostly used for synchronization
within operating system kernels in the past, various resear-
chers have undertook efforts to make the benefits of RCU
available to user-level applications as well. However, devel-
opers face several challenges when attempting to implement
RCU primitives outside the kernel.

One problem is that most kernel-level implementations
assume that threads cannot be preempted while executing a
read-side critical section. This assumption does not hold in
userspace. Making kernel RCU primitives directly available
to user applications is also not a good option for various
reasons. For example, it has to be prevented that a thread
can hang the entire system by staying in a critical section

indefinitely. In addition, the induced system call overhead
would render all performance benefits of RCU void [3].

McKenney et al. addressed these problems in their user-
space RCU library (URCU) which was released in 2009 and
is now available in several Linux distributions (in Debian, for
example, as liburcu2) [5]. This library lets the user choose
between several different implementations of RCU (called
"flavors’) depending on the requirements of his application.
Each of them tackles the challenges involved in making RCU
available in userspace in a different way. Currently, URCU
includes the following implementations:

o quiescent-state-based RCU (QSBR): Like the Linux ker-
nel implementation, QSBR provides almost zero-cost
reads. However, it requires threads to periodically an-
nounce that they are in a quiescent state. QSBR uses
these announcements to approximate the length of read-
side critical section. This approach severely restricts
application design, making it impossible to use within
libraries.

o Memory-barrier-based RCU: This is a general purpose
RCU implementation that can be used in almost any
software environment since it does not require quie-
scent state announcements. However, it imposes a hig-
her read-side overhead because the rcu_read_(un)lock
primitives contain memory barriers. It also requires
readers to track the nesting of critical sections. Con-
ceptually, the implementation divides grace periods in-
to two different phases, with phase change being initia-
ted when a writer thread calls synchronize_rcu. Rea-
der threads save a snapshot of the current phase value
upon entering an outermost RCU critical section.

e Signal-based RCU: In this approach, the updater sends
POSIX signals to the reader threads. It therefore re-
quires reserving one signal for RCU. However, the im-
plementation can dispense with memory barriers in
read-side primitives, making reads almost as fast as
with QSBR. Additionally, the signal-based approach
compels threads to register themselves before entering
their first read-side critical section.

When selecting the right 'flavor’ for his application, a de-
veloper must therefore perform a trade-off between optimi-
zing the performance of read operations and imposing a mi-
nimum amount of changes to existing code.

Several possible application scenarios for RCU have alrea-
dy been proposed, including the LTTng tracer or the BIND
domain-name server. LTTng [1] is a userspace tracer that
carries out performance analysis and assesses the interaction
between userspace applications and the Linux kernel. Since
it cannot enforce changes to existing user-level applications,
it cannot use the QSBR approach discussed above. However,
the memory-barrier-based implementation is an option.

Another use case for URCU is BIND, which is the de-facto
standard for DNS software on the Internet. BIND is encoun-
tering suboptimal scalability with multiple processors. Since
domain names are often read but seldom updated, user-level
RCU implementation could improve performance. Others
have suggested benefits of RCU for financial applications
[3].



5. CONCLUSION

RCU is a synchronization mechanism designed to optimize
the performance of read operations. It provides wait-free and
low overhead reads with deterministic execution time. These
beneficial properties go to the expanse of writers which can
be delayed for a considerable period of time. Closely related
to RCU is the concept of grace periods which ensures that
a version of a data structure remains intact as long as it is
accessed by readers.

RCU is widely used in the Linux kernel in various sub-
systems since many internal kernel data structures are read-
intensive. More recently, a userlevel RCU implementation
was developed to broaden the range of possible RCU appli-
cations.

The papers of Paul E. McKenney [7] [8] provide a compre-
hensive survey of the usage scenarios of RCU and discuss the
different RCU implementations. They also include detailed
performance comparisons.
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