Überblick

Aufbau einer Datenspeicher-Cloud

Motivation Windows Azure Storage Zusammenfassung

MWCC (WS14/15)

Aufbau einer Datenspeicher-Cloud

6-1

Windows Azure Storage

- Anforderungen
 - Starke Konsistenz
 - Globaler Namensraum
 - Kein Datenverlust bei Katastrophen
 - Niedrige Kosten
- Windows Azure Storage
 - Einheitliches Speichersystem für unterschiedliche Nutzdaten
 - Trennung des Datenspeichers vom Rest der Cloud
 - Rückgriff auf das Domain Name System (DNS)
 - Georeplikation über mehrere Datenzentren
- Literatur

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan et al. Windows Azure Storage: A highly available cloud storage service with strong consistency. Proceedings of the 23rd Symposium on Operating Systems Principles (SOSP '11), S. 143-157, 2011.

Motivation

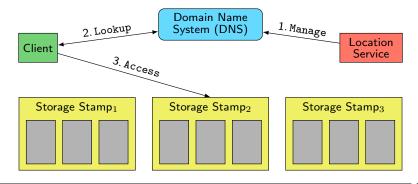
- Weltumspannendes System zur Speicherung von Daten
 - Heterogenes Nutzungsverhalten
 - Eigene Dienste des Cloud-Betreibers vs. Anwendungen unabhängiger Nutzer
 - Nutzung als Zwischenspeicher vs. Langzeitspeicherung von Daten
 - Verwaltung strukturierter vs. unstrukturierter Daten
 - Ort der Datenspeicherung
 - Global: Latenzüberlegungen, Rechtliche Bestimmungen,...
 - Lokal: Art der Anbindung an die Rechen-Cloud desselben Anbieters
 - Großes Spektrum an möglichen Fehlersituationen
 - Defekte einzelner Rechnerkomponenten (z. B. Festplatten)
 - Ausfall ganzer Datenzentren
- Herausforderungen
 - Welche Datenstrukturen soll die Datenspeicher-Cloud anbieten?
 - Wie feingranular bestimmt ein Nutzer den Speicherort seiner Daten?
 - Wie tiefgreifend sollen die Maßnahmen zum Schutz vor Datenverlust sein?

MWCC (WS14/15) Aufbau einer Datenspeicher-Cloud – Motivation

6-2

Adressierung von Datenobjekten

- Verfügbare Datenobjekte
 - Blobs
 - Tabellen
 - Warteschlangen
- Typischer Einsatz von Objekten
 - Eingabedaten: Blobs
 - Zwischenergebnisse und Ausgabedaten: Blobs oder Tabellen
 - Koordinierung: Warteschlangen
- Globaler partitionierter Namensraum


[Protokoll]://[Konto].[Dienst].core.windows.net/[Partition]/[Objekt]

- Protokoll: http bzw. https
- Kontoname des Nutzers (→ Speicherort) als Teil des DNS-Host-Namens
- Dienst: blob, table oder queue
- Identifikation eines Objekts mittels Partitions- und Objektname

Architektur

- Storage-Stamp
 - Gruppe aus mehreren Racks mit insgesamt 30 Petabytes Speicher
 - lacks Racks besitzen eigene Netzwerk- und Stromanbindungen ightarrow Fehlerdomänen
 - Stamp von außen über eine eigene IP-Adresse erreichbar
- Ortsdienst
 - Zuordnung von Nutzerkonten zu Stamps
 - Stamp-Auswahl für neue Konten
 - Aktualisierung der Stamp-Adressen im DNS

MWCC (WS14/15)

Aufbau einer Datenspeicher-Cloud - Windows Azure Storage

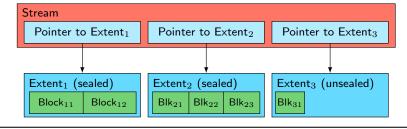
6-5

Replikation

- Replikation innerhalb eines Stamp (Intra-Stamp Replication)
 - Aufgabe des Stream-Layer
 - Synchrone Replikation während des Schreibvorgangs
 - Speicherung der Replikate in unterschiedlichen Fehlerdomänen
 - Replikation auf Binärdaten-Ebene
 - Typischer Replikationsfaktor: 3
 - Im Fehlerfall: Rekonfigurierung der Replikatgruppe
- Replikation zwischen Stamps (Inter-Stamp Replication)
 - Aufgabenverteilung
 - Ortsdienst: Nutzerkonto-spezifische Konfiguration
 - Partition-Layer: Durchführung
 - Asynchrone Replikation im Hintergrund [Vergleiche: Einsatzszenario von Google's B4.]
 - Replikation auf Objektebene
 - Durchschnittlich ca. 30s nach dem Schreibvorgang
 - Typischer Replikationsfaktor: 2
 - Im Fehlerfall: Failover durch Anpassung des DNS-Eintrags eines Kontos

Storage-Stamp

- Front-End-Layer
 - Authentifizierung eintreffender Anfragen
 - Weiterleitung von Anfragen an den Partition-Layer
- Partition-Layer
 - Verwaltung von Blobs, Tabellen und Warteschlangen
 - Zusammenfassung kleiner Objekte
 - Aufteilung großer Objekte in Partitionen
 - Verwaltung von Partitionen
 - Einteilung und Zuordnung zu Servern
 - Lastverteilung zwischen Servern
 - Replikation über mehrere Stamps
- Stream-Layer
 - Direkter Zugriff auf Festplatten
 - Bereitstellung von *Datenströmen (Streams)*
 - Stamp-interne Replikation



MWCC (WS14/15) Aufbau einer Datenspeicher-Cloud – Windows Azure Storage

Stream-Layer

Interne Datenstrukturen

- Block
 - Kleinste Dateneinheit für Lese- und Schreibaufrufe (variable Größe)
 - Periodische Überprüfung der Datenintegrität mittels Checksummen
- Extent
 - NTFS-Datei mit aufeinander folgenden Blöcken
 - Zustände
 - Unversiegelt (unsealed): **Anhängen** weiterer Blöcke möglich
 - Versiegelt (sealed): Nur noch lesender Zugriff erlaubt
- Stream
 - Liste von Referenzen auf Extents
 - Nur der letzte Extent eines Stream ist unversiegelt

Stream-Layer

Komponenten

Stream-Layer

Schreiben von Daten - Normalfall

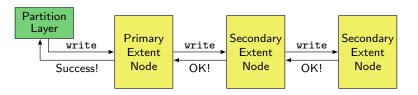
- Extent-Nodes
 - Datenspeicherknoten
 - Aufgaben
 - Speicherung von Extents und ihren Checksummen
 - Abbildung von Extent-Offsets zu Blöcken
 - Mehrere Festplatten pro Rechner
- Stream-Manager
 - Verwaltungsknoten
 - Aufgaben
 - Erzeugung von Extents und Zuordnung zu Extent-Nodes
 - Überwachung der Extent-Nodes
 - Extent-Replikation zur Kompensation nach Hardware-Ausfällen
 - Garbage-Collection für nicht mehr referenzierte Extents
 - Verwaltung von Stream- und Extent-Informationen im Hauptspeicher
 - Replikation des Stream-Manager-Zustands

[Vergleiche: Aufgabenverteilung zwischen Komponenten im Google File System]

© td MWCC (WS14/15)

Aufbau einer Datenspeicher-Cloud – Windows Azure Storage

6-


Stream-Layer Schreiben von Daten – Fehlerfall

Fehlersituationen (Beispiele)

- Fehlermeldung, dass ein Extent-Node nicht erreichbar war
- Fehlende Erfolgsbestätigung innerhalb einer vordefinierten Zeitspanne
- → Partition-Layer kontaktiert Stream-Manager
- Ausnahmebedingtes Versiegeln des aktuellen Extent
 - Stream-Manager befragt Extent-Nodes nach aktuellem Extent-Offset
 - Versiegelung des Extent am kleinsten genannten Offset
- Anlegen eines (Ersatz-)Extent
 - Auswahl einer neuen Gruppe von Extent-Nodes
 - Wiederholung der Anhängeoperation
- Anmerkungen
 - Alle als "erfolgreich hinzugefügt" bestätigten Daten bleiben erhalten
 - Ein einmal geschriebener Block wird u. U. mehrmals gespeichert
 - ightarrow Partition-Layer muss mit solchen Konsistenzgarantien umgehen können

Anlegen eines neuen Extent Partition-Layer weist Stream-

- Partition-Layer weist Stream-Manager an, einen neuen Extent zu erstellen
- Stream-Manager wählt drei Extent-Nodes (einen Primary- und zwei Secondary-Knoten) aus verschiedenen Fehlerdomänen aus
- Hinzufügen eines Blocks zu einem Extent [Vergleiche: Schreiben im Google File System]
 - Partition-Layer sendet Block an Primary
 - Primary zuständig für Koordinierung des Schreibaufrufs
 - Auswahl des Offset im Extent
 - Weiterleitung der Anfrage an die Secondaries
 - Primary sendet Erfolgsbestätigung an Partition-Layer
 - → Schreiben eines Blocks erfolgt ohne Einbeziehung des Stream-Manager

© td MWCC (WS14/15

Aufbau einer Datenspeicher-Cloud - Windows Azure Storage

6-10

Stream-Layer

Optimierungen

- Optimierung von Schreibzugriffen
 - Problem
 - Intra-Stamp-Replikation erfolgt synchron o direkter Einfluss auf Antwortzeit
 - Primary muss auf Bestätigungen von Secondaries warten
 - Bestätigung kann erst erfolgen, wenn der Block persistent gesichert wurde
 - ightarrow Instabile Antwortzeiten in Überlastsituationen ("hiccups")
 - Lösung
 - Einsatz einer zusätzlichen Festplatte (Journal-Drive)
 - Doppelte Ausführung jeder Schreiboperationen: Journal-Drive + Daten-Disk
 - Senden der Bestätigung sobald einer der beiden Aufrufe erfolgreich war
- Lastbalancierung für Leseanfragen
 - Festlegung einer zeitlichen Schranke für die Bearbeitung einer Anfrage
 - Senden der Anfrage an einen für den Block zuständigen Extent-Node
 - Extent-Node schätzt ab, ob sich die zeitlichen Schranke einhalten lässt
 - Falls ja: Bearbeitung der Anfrage
 - Falls nein: Sofortige Ablehnung der Anfrage
 - Bei Ablehnung: Neuer Versuch bei anderem Extent-Node

Partition-Layer

Komponenten

Zentrale Datenstruktur: Objekttabelle

[Vergleiche: Google's Bigtable

- Speicherung sehr großer Datenmengen [→ Petabytes]
- Aufteilung in disjunkte Range-Partitions
- Beispiele
 - Account-Table: Verwaltung von Informationen über Nutzerkonten
 - Blob-Table: Tabelle mit allen Blobs eines Stamp
 - Partition-Map-Table: Zuordnung von Range-Partitions zu Objekttabellen

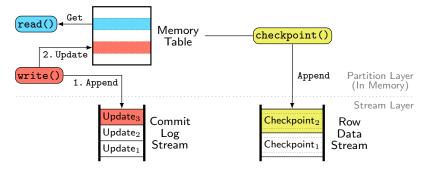
Komponenten

- Lock-Service
 - Vergleiche: Chubby Lock Service [Siehe spätere Vorlesung.]
 - Vergabe von Leases für Range-Partitions an Partition-Server
- Partition-Server
 - Verwaltung der ihm zugeteilten Range-Partitions
 - Persistente Speicherung von Daten mittels Stream-Layer
- Partition-Manager
 - Zuweisung von Range-Partitions zu Partition-Servern
 - Mehrere Instanzen pro Stamp: Auswahl eines Anführers per Lock-Service

MWCC (WS14/15) Aufbau einer Datenspeicher-Cloud – Windows Azure Storage

6-13

Partition-Layer


Lastbalancierung

- Migration einer Range-Partition von PS_A nach PS_B [PS: Partition-Server]
 - 1. Der Partition-Manager weist PS_A an, die Partition zu migrieren
 - 2. PS_A erstellt Sicherungspunkt der Partition
 - 3. Partition-Manager aktualisiert die Partition-Map-Table
 - 4. PS_B lädt Range-Partition
- Teilung einer von PS_C verwalteten Range-Partition P
 - 1. Der Partition-Manager weist PS_C an, die Partition zu teilen
 - 2. *PS_C* erstellt Sicherungspunkt von *P*
 - 3. PS_C erzeugt die Datenstrukturen für die Partitionsteile P_1 und P_2 basierend auf den Inhalten der Datenstrukturen von P
 - 4. PS_C verwaltet sowohl P_1 als auch P_2
 - 5. Partition-Manager aktualisiert die Partition-Map-Table
 - 6. P₁ oder P₂ wird auf einen anderen Partition-Server migriert
- Zusammenlegung zweier Range-Partitions: Umkehrung zur Teilung

Partition-Layer

Partition-Server

- Kombination aus flüchtigen und persistenten Datenstrukturen
 - *Memory-Table* für effizienten Lesezugriff
 - Commit-Log-Strom zum Schutz vor Datenverlust

- Erstellen von Sicherungspunkten
 - Auslöser: Commit-Log / Memory-Table erreichen eine bestimmte Größe
 - Erzeugen eines Sicherungspunkts aus dem Inhalt der Memory-Table
 - Aufräumen des Commit-Log

MWCC (WS14/15) Aufbau einer Datenspeicher-Cloud – Windows Azure Storage

6 - 14

Zusammenfassung

- Windows Azure Storage
 - Datenspeichersystem der Microsoft-Cloud
 - Replikation auf zwei Ebenen
 - Synchrone Replikation über verschiedene Fehlerdomänen eines Stamp
 - Asynchrone Georeplikation über mehrere Storage-Stamps
 - Failover zwischen Storage-Stamps durch DNS-Rekonfigurierung
- Stream-Layer
 - Beschränkung auf eine Art von Schreiboperation: Anhängen von Daten
 - Ähnliche Konsistenzgarantien wie beim Google File System
 - Optimierungen zur Kompensation von Lastschwankungen
- Partition-Layer
 - Verwaltung von Objekten in sehr großer Tabellen
 - Effiziente Kombination aus flüchtigen und persistenten Datenstrukturen
 - Lastbalancierung: Abgabe von Zuständigkeiten für Tabellenabschnitte

