Überblick

Energieeffiziente Datenzentren

Motivation Yahoo Compute Coop Temperaturabhängige Lastverteilung Energieeffizientes Hadoop Zusammenfassung

© td MWCC (WS13/14) Energieeffiziente Datenzentren

9-1

Energieeffiziente Datenzentren

- Stand der Kunst vor 10 Jahren
 - Empfehlung der ASHRAE [American Society of Heating, Refrigerating and Air-Conditioning Engineers]
 - Optimale Temperatur f
 ür Datenzentren zwischen 16 und 18°C
 - → Klimaanlagen wurden auf dieses Intervall ausgelegt
- Umdenken seit 2004
 - Empirische Überprüfung der Empfehlung
 - Resultat: Temperaturen um 27 °C ausreichend
- Herausforderungen
 - Wie lässt sich ein Datenzentrum mit "natürlicher" Klimaanlage bauen?
 - Wie kann eine gleichmäßige Durchschnittstemperatur hergestellt werden?
 - Wie lässt sich Anwendungswissen zum Stromsparen nutzen?
- Literatur

Gregory Mone

Redesigning the data center Communications of the ACM, 55(10):14–16, 2012.

Leistungsabhängiger Energieverbrauch

- Energieverbrauchende Komponenten in einem Server
 - Prozessoren
 - Lüfter
 - Arbeitsspeicher
 - Festplatten
 - Sonstige Hardware
- Ziel: **Energieproportionale** Systeme
 - Energieverbrauch eines Rechners ist abhängig von seiner Auslastung
 - Ideal: Kein Stromverbrauch im Leerlauf
- Dynamic Voltage and Frequency Scaling (DVFS)
 - Betriebssystem verwaltet Energieverbrauch von Prozessoren
 - Bei geringer Auslastung: Dynamische Absenkung der Prozessorfrequenz
 - → Energieeinsparung durch vorübergehende Reduktion der Leistungsfähigkeit

MWCC (WS13/14) Energieeffiziente Datenzentren – Motivation

9-2

Yahoo Compute Coop

- Grundkonzept für Klimatisierung
 - Normalfall: Kühlung mittels Umgebungsluft
 - An warmen Tagen: Zusätzliche Kühlung durch Verdunstungskälte
 - Kein Einsatz konventioneller Klimaanlagen
 - Keine Entstehung von Kühlabwasser
- Beispielstandort: Lockport, New York, USA
 - Durchschnittstemperaturen im Juli (heißester Monat): 16 28 °C
 - Erwartungswerte
 - > 27 °C: 212 Stunden pro Jahr
 - > 32 °C: 34 Stunden pro Jahr
 - ullet Ca. 20 km Distanz zu den Niagarafällen o Strom aus Wasserkraft
- Literatur

A. D. Robison et al.

Yahoo! Compute Coop (YCC): A next-generation passive cooling design for data centers Technical Report DE-EE0002899, Yahoo Inc., 2011.

© td MWCC (WS13/14) Energieeffiziente Datenzentren – Yahoo Compute Coop

Kühlung des Datenzentrums

- Einsatz von Ventilatoren
 - Teil der Außenwände des Gebäudes
 - Steuerung des Luftstroms
- Kühlmodus des Datenzentrums abhängig von Außentemperatur
 - 21 29 °C: Nutzung unbehandelter Umgebungsluft
 - Umgebungsluft dringt durch Lüftungsschlitze in den Wänden ins Gebäude ein
 - Einsatz von Luftfiltern
 - Weiterleitung des Luftstroms durch die Server-Schränke
 - Abzug der warmen Luft durch Luftschlitze im "Dachboden"
 - 29-43 °C: Nutzung gekühlter Umgebungsluft
 - Luftstrom wie bei erster Variante
 - Zusätzlich: Kühlung der Luft mittels Verdunstungskälte
 - < 21 °C: Nutzung erwärmter Umgebungsluft</p>
 - Luftstrom wie bei erster Variante
 - Zusätzlich: Rückführung eines Teils der Abluft zur Erwärmung der einströmenden kalten Umgebungsluft

MWCC (WS13/14) Energieeffiziente Datenzentren – Yahoo Compute Coop

9-5

Temperaturabhängige Lastverteilung

Überblick

- Problem
 - Rechner produzieren je nach Auslastung unterschiedlich viel Wärme
 - Kühleffekt abhängig von der Distanz zur Klimaanlage
 - → Aufrechterhaltung einer einheitlichen Raumtemperatur nicht trivial
- Temperaturabhängige Lastverteilung
 - Detaillierte Temperaturmessung: Fläche + unterschiedliche Höhen
 - Platzierung von Prozessen abhängig von erwarteter Wärmeentwicklung
 - Ziele
 - Reduzierung der auftretenden Temperaturunterschiede
 - Minimierung der Höchsttemperatur
 - → Energieeinsparung durch Entlastung der Klimaanlage
- Literatur

Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D. Patel et al. Balance of power: Dynamic thermal management for Internet data centers *IEEE Internet Computing*, 9(1):42–49, 2005.

Einsparungen beim Ressourcenverbrauch

- Power Usage Effectiveness (PUE)
 - Metrik für die Energieeffizienz von Datenzentren
 - $lacktriangleq PUE = rac{Gesamter\ Energieverbrauch}{Energieverbrauch\ der\ IT-Systeme}$
 - Idealwert: 1.0
 - Üblicher Wert für industrielle Datenzentren: Wert zwischen 1,5 und 2,0
 - Bisheriger Bestwert eines Yahoo-Datenzentrums
 - Standort: Wenatchee, Washington, USA
 - PUE-Wert: 1,25
- Datenzentrum in Lockport [Robison et al.]
 - PUE-Wert liegt zwischen 1,08 und 1,11
 - Während mehr als 99 % der Betriebszeit reicht die natürliche Kühlung aus
 - 99 % geringerer Wasserverbrauch als ein wassergekühltes Datenzentrum
 - Nebeneffekt: Verfügbarkeitsgrad von 99,98 %
- Ähnliches Konzept: Facebook (z. B. in Prineville, Oregon, USA)

MWCC (WS13/14) Energieeffiziente Datenzentren – Yahoo Compute Coop

Temperaturabhängige Lastverteilung

Varianten

- Reihenbasierte Lastverteilung [Hier: Reihe = Gruppe von Racks]
 - Erkenntnis: Gleiche Auslastung der Server führt zu "Hot-Spots"
 - Vermeidung von Hot-Spots durch selektive Lastreduzierung
 - Beispielszenario [Sharma et al.]
 - Bei Gleichverteilung der Last
 - * Maximaltemperatur: 36,6 °C
 - * Temperaturunterschiede innerhalb einer Reihe: 10 °C
 - Nach Lastanpassung
 - * Maximaltemperatur: 33,5 °C
 - * Temperaturunterschiede innerhalb einer Reihe: 2°C
 - Ersparnis: 9,6 % geringerer Energieverbrauch für Klimaanlage
- Regionenbasierte Lastverteilung
 - Kompensation von Fehlersituationen (z. B. Teilausfall der Klimaanlage)
 - Migration von Prozessen zwischen verschiedenen Datenzentrumsbereichen
 - Beispielszenario [Sharma et al.]
 - Reduzierung der Maximaltemperatur im Fehlerfall (49,4 °C) um 8 °C
 - Energieersparnis: 14,4 %

Übersicht **GreenHDFS**

- Log-Daten-Analyse eines Yahoo-Hadoop-Cluster im Produktiveinsatz
 - 2600 Server, 34 Millionen Dateien, 6 Petabytes Daten
 - Ergebnisse für eines der Hauptverzeichnisse
 - 99 % der Dateien werden innerhalb von 2 Tagen nach dem Anlegen gelesen
 - 80 % der Dateien werden max. 8 Tage nach dem Anlegen letztmalig gelesen
 - 80 % der Dateien werden später als 20 Tage nach dem letzten Lesen gelöscht
 - Folgerungen
 - "Heiße Phase": Relativ häufige Zugriffe kurz nach dem Anlegen der Daten
 - "Kalte Phase": Anschließende, vergleichsweise lange Phase ohne Zugriffe
- GreenHDFS: Energieeinsparung durch Anpassung an Nutzungsprofil
- Literatur

Rini T. Kaushik, Milind Bhandarkar, and Klara Nahrstedt Evaluation and analysis of GreenHDFS: A self-adaptive, energy-conserving variant of the Hadoop distributed file system Proceedings of the 2nd International Conference on Cloud Computing Technology and Science (CLOUDCOM '10), pages 274-287, 2010.

MWCC (WS13/14) Energieeffiziente Datenzentren – Energieeffizientes Hadoop

Energieeffizientes MapReduce

Covering Subset

- Modifikation der Replikationslogik des verteilten Dateisystems [z. B. HDFS]
 - Definition eines Covering Subset: Untergruppe von Rechnern des Cluster
 - Anpassung des Auswahlmechanismus für Replikate
 - Mindestens ein Replikat jedes Datenblocks muss Teil des Covering Subset sein
 - Selektion der anderen Replikate wie bisher
- Vorteile
 - Covering Subset im Normalfall für Verfügbarkeit ausreichend
 - Sonstige Rechner nur beim Speichern der Ergebnisse erforderlich
- Nachteile
 - Reduzierung des Grads an Parallelität
 - Erhöhte Latenzen sowohl im Normal- als auch im Fehlerfall
- Literatur

Jacob Leverich and Christos Kozyrakis On the energy (in)efficiency of Hadoop clusters Operating Systems Review, 44(1):61-65, 2010.

GreenHDFS

Grundkonzept

- Heiße Zone (Hot Zone)
 - Verwaltung von Daten, die sich gerade in ihrer "heißen Phase" befinden
 - Mehrheit (z. B. 75 % [Kaushik et al.]) der Rechner im Cluster
 - Rechner mit hoher Leistungsfähigkeit
 - Durchgängiger Betrieb der Rechner
- Kalte Zone (Cold Zone)
 - Verwaltung von Daten, die sich gerade in ihrer "kalten Phase" befinden
 - Restliche Rechner im Cluster
 - Rechner mit geringerer Leistungsfähigkeit aber vielen Festplatten
 - Betrieb eines Rechners jeweils nur nach Bedarf (z. B. per Wake-on-LAN)
- Ublicher Lebenszyklus einer Datei
 - Erzeugung in der heißen Zone
 - Bei einem bestimmten Alter der Datei: Migration in die kalte Zone
 - Löschung der Datei in der kalten Zone

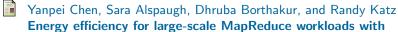
MWCC (WS13/14) Energieeffiziente Datenzentren – Energieeffizientes Hadoop

9 - 10

Energieeffizientes MapReduce

All In

- Phasenweise Bearbeitung von MapReduce-Jobs
 - Gebündelte Ausführung einzelner Jobs auf allen Rechnern
 - Anschließend: Versetzen des kompletten Cluster in den Energiesparmodus
 - Reaktivierung des Cluster zu Beginn der nächsten Phase
- Vorteile
 - Keine Einschränkung der für einen Job verfügbaren Ressourcen
 - Breite Lastverteilung der Dateisystemanfragen möglich
 - Keine Modifikationen am Dateisystem erforderlich
- Nachteile
 - Erhöhte Latenzen für Jobs, die während einer Energiesparphase eintreffen
 - Einzelner Job kann Wechsel in den Energiesparmodus aufhalten
- Literatur


Willis Lang and Jignesh M. Patel **Energy management for MapReduce clusters** Proceedings of the VLDB Endowment, 3(1-2):129-139, 2010.

Übersicht **BEEMR**

- Analyse eines Facebook-Hadoop-Cluster im Produktiveinsatz
 - 3000 Server, 45 Tage, mehr als 1 Million MapReduce-Jobs
 - Tägliche Lastspitzen um Mittag und Mitternacht
 - Identifikation zweier Job-Klassen
 - Interaktive, zeitsensitive Jobs: Ad-hoc-Anfragen von Entwicklern
 - * Eingabedaten decken nur einen kleinen Teil der Gesamtdaten ab
 - * Viele dieser Jobs arbeiten auf denselben bzw. ähnlichen Eingabedaten
 - Nicht-zeitsensitive Batch-Jobs
- Berkeley Energy Efficient MapReduce (BEEMR)
 - Energieeinsparung durch Ausnutzung der Eigenschaften interaktiver Jobs
 - Gebündelte Ausführung von Batch-Jobs
- Literatur

Energy efficiency for large-scale MapReduce workloads with significant interactive analysis Proceedings of the 7th European Conference on Computer Systems (EuroSys '12),

pages 43-56, 2012.

MWCC (WS13/14) Energieeffiziente Datenzentren – Energieeffizientes Hadoop

9-13

Zusammenfassung

- Energieeffiziente Datenzentren
 - Yahoo Compute Coop
 - Verzicht auf konventionelle Klimaanlagen
 - Kühlung durch Umgebungsluft
 - Temperaturabhängige Lastverteilung
 - Reduzierung von Temperaturunterschieden durch Prozessmigration
 - Energieeinsparung durch Entlastung der Klimaanlage
- Energieeffiziente Dateisysteme und Anwendungen
 - GreenHDFS
 - Energieeinsparung durch Anpassung an Nutzungsprofil der Anwendung
 - Heiße Zone: Rechner im Dauerbetrieb
 - Kalte Zone: Betrieb von Rechnern nach Bedarf
 - MapReduce
 - Strategien zur Optimierung des Energieverbrauchs (Covering Set, All In)
 - BEEMR: Ausnutzung von Job-Charakteristika

Grundkonzept

Interaktive Zone

- Kleiner Teil der Rechner im Cluster
- Durchgängiger Betrieb der Rechner
- Vorrangige Bearbeitung interaktiver Jobs

Batch-Zone

- Restlicher Teil des Cluster
- Normalzustand: Rechner im Energiesparmodus
- Periodische Aktivierung aller Rechner zur Abarbeitung von Batch-Jobs
- Rückkehr in den Energiesparmodus sobald alle für die jeweilige Phase eingeplanten Batch-Jobs beendet wurden
- Start eines neuen Jobs
 - Klassifizierung mittels in der Studie ermittelter Schwellenwerte
 - Für interaktive Jobs
 - Überprüfung, ob Eingabedaten bereits in der interaktiven Zone verfügbar
 - Bei Bedarf: Holen der Eingabedaten während der nächsten Batch-Phase

Energieeffiziente Datenzentren – Energieeffizientes Hadoop