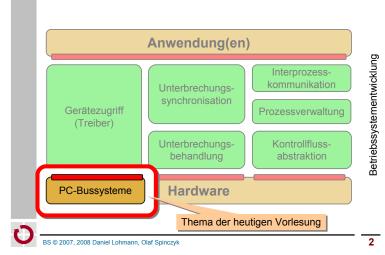
Betriebssysteme (BS)

PC-Bussysteme

Daniel Lohmann

Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme



Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

Rückblick - Bussysteme im PC

seit es PCs gibt wurden die Anforderungen an den Systembus kontinuierlich größer:

Bussystem	PC	ISA	VLB	MCA	EISA	
CPUs	ab 8088	ab 286	ab 386	ab 386	ab 386	
typischer Takt	4,7 MHz	8 MHz	25-50 MHz	10-25 Mhz	8,33 MHz	
Multi-Master	nein	nein	ja (Version 2)) ja	ja	
Busbreite	8 Bit	16 Bit	32/64 Bit	32 Bit	32 Bit	
Adressraum	1 MB	16 MB	4 GB	4 GB	4 GB	
Transferrate	1 MB/s	4-5 MB/s	40/64 MB/s (Burst)	40 MB/s (Burst)	33 MB/s (Burst)	

BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyk

- 5

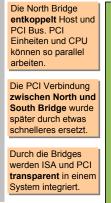
Agenda

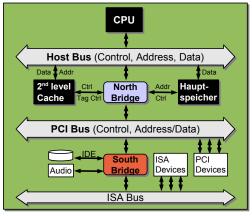
- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

Rückblick - Bussysteme im PC

seit es PCs gibt wurden die Anforderungen an den Systembus kontinuierlich größer:

Bussystem	PCI	AGP	PCI-X	PCI Express	Hypertransport
CPUs	ab 486	ab 486	ab P6	ab PIV (Xeon)	ab Hammer (AMD)
typischer Takt	33/66 MHz	66 MHz	bis 133 MHz	(variabel)	(variabel)
Multi-Master	ja	nein (max 1 Gerät)	ja	Punkt zu Punkt	ja, verschiedene Topologien möglich
Busbreite	32/64 Bit	32 Bit	32/64	bis zu 32 lanes	bis zu 32 links
Adressraum	4 GB/16 EB	4 GB	4 GB/16 EB	4 GB/16 EB	4 GB/16 EB
Transferrate	132/528 MB/s (Burst)	n × 266 MB/s (1x, 2x,8x)		2,5 GBit/s (Burst, pro lane)	1,6 GBit/s (Burst, pro link)

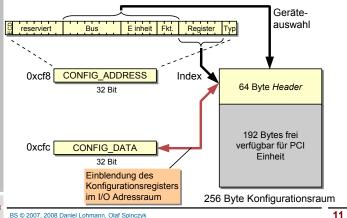



BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyk

6

PCI-basierte PC Systeme

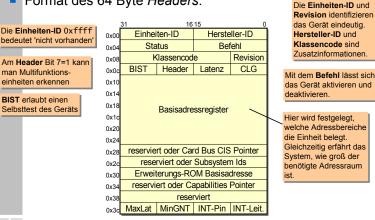
typische Architektur der ersten PCI Systeme:


PCI – die wichtigsten Daten

- Version 1.0 der Spezifikation von Intel (1991)
 - seit 1993 kommen die Spezifikationen von der PCI SIG
- 32/64 Bit, gemultiplexter Adress-/Datenbus
- im Burst Modus max. 132 MB/s bzw. 264 MB/s
- CPU-Typ unabhängig
 - PCI gibt es auch in Sparc, Alpha, ARM und PowerPC Systemen
- 4 Interruptleitungen (INTA-D)
- Skalierbarkeit durch Bridges und Multifunktionseinheiten
- Multi-Master Fähigkeit (besser als der klassische DMA)
- Schema zur Erkennung und Konfigurierung von Geräten (Ressourcenzuweisung)

Der PCI Konfigurationsadressraum (1)

beim PC wird der Konfigurationsadressraum indirekt über I/O-Ports angesprochen:

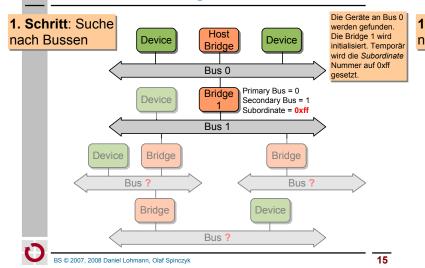


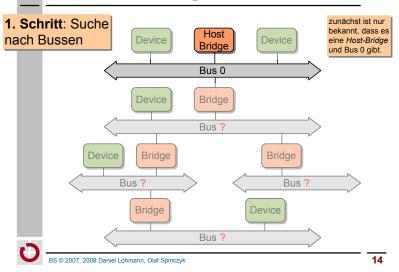
Interaktion mit PCI Geräten

Der PCI Konfigurationsadressraum (2)

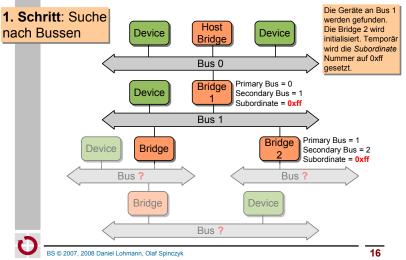
PCI Initialisierung

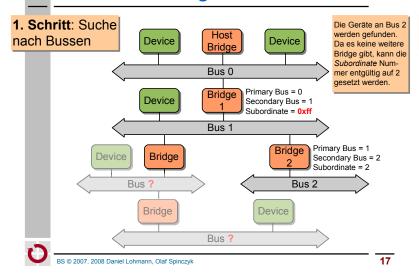
bevor PCI Geräte durch ihre Gerätetreiber angesprochen werden können, muss folgendes erfolgt sein:

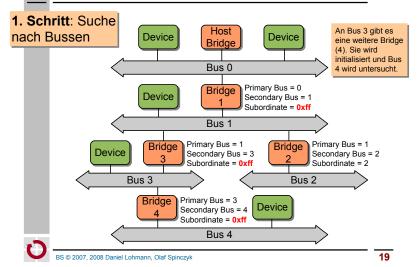

- Konfigurierung der Basisadressregister der Geräte
- Konfigurierung der PCI-Bridges
 - Speicherfensterregister hängt von den Geräten unterhalb ab!
 - Busnummern (Primary, Secondary, Subordinate)
 - Subordinate ist die Nummer des letzten Busses unterhalb (downstream) der Bridge
- Das BIOS bzw. Betriebssystem muss die PCI Busstruktur schrittweise erforschen und initialisieren
 - bereits belegte Busnummern und Adressbereiche dürfen auf keinen Fall doppelt vergeben werden!

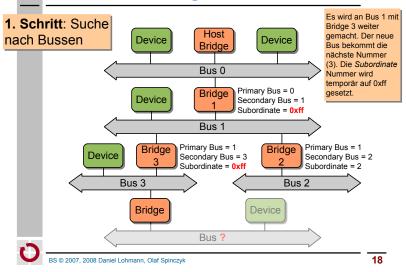

BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyk

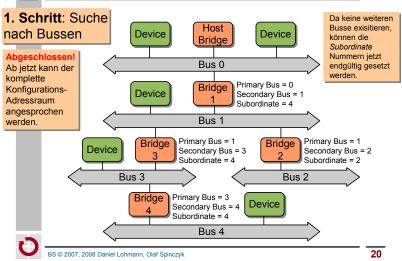
13


PCI Initialisierung unter Linux


PCI Initialisierung unter Linux


PCI Initialisierung unter Linux


PCI Initialisierung unter Linux


PCI Initialisierung unter Linux

PCI Initialisierung unter Linux

PCI Initialisierung unter Linux

PCI Initialisierung unter Linux

Algorithmus:

 Ausrichtung der aktuellen I/O und Speicheradressen auf die n\u00e4chste 4K bzw. 1M Grenze **2. Schritt**: Zuweisung der Adressen

- für jedes Gerät des akt. Busses (in aufsteigender Reihenfolge der I/O Speicher-Anforderungen):
 - Reservierung der I/O und Speicheradressen
 - Aktualisierung der globalen I/O und Speicherzeiger
 - Initialisierung und Aktivierung des Geräts
- rekursive Anwendung des Algorithmus für alle angeschlossenen Bridges
- Ausrichtung der resultierenden Adressen (wie oben)
- Programmierung und Aktivierung der Bridge

BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyl

21

Das PCI BIOS - im Protected Mode

- das BIOS32 Service Directory erlaubt (im Prinzip) den Zugriff auf beliebige BIOS Komponenten
- es liegt irgendwo im Bereich von 0xE0000-0xFFFFF

Offset	Größe	Beschreibung
0x00	4 Bytes	Signatur "_32_"
0x04	4 Bytes	physikalische Einstiegsadresse (für call)
0x08	1 Byte	BIOS32 Version (0)
0x09	1 Byte	Länge der Datenstruktur / 16 (1)
0x0a	1 Byte	Prüfsumme
0x0b	5 Byte	reserviert (0)

 mit dem BIOS32 Service kann man testen, ob ein PCI BIOS vorhanden ist.

Das PCI BIOS - Überblick

- Festlegung durch PCI SIG (1993, Vorlage von Intel 1991)
- auf PCs normalerweise vorhanden, bei anderen Rechnertypen eher selten anzutreffen
- konfiguriert die PCI Bridges und Geräte beim Systemstart
 - minimal, falls ein "Plug&Play Betriebssystem" installiert ist
 - sonst komplett
- nach dem Booten erlaubt das PCI BIOS ...
 - die Suche von PCI Geräten nach Geräteklasse oder Typ
 - den Zugriff auf den Konfigurationsadressraum
- der Zugriff erfolgt über ...
 - den BIOS Interrupt 0x1a (Real Mode)
 - das "BIOS32 Service Directory" (Protected Mode)

BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyk

22

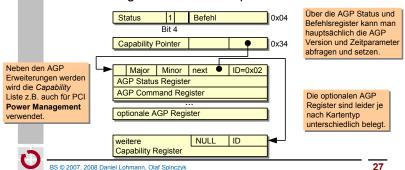
Das PCI BIOS - Funktionsumfang

folgende Funktionen umfasst das PCI-BIOS laut Spezifikation:

	Funktionsname	Argumente	Resultate
	PCI BIOS Present	-	ja/nein, letzte Busnr., InitMechanismus
	Find PCI Device	Device ID, Vendor ID, Index	Bus/Dev./Func. Nr.
	Find PCI Class Code	Class Code, Index	Bus/Dev./Func. Nr.
П	Generate Special Cycle	Bus Nr.	-
П	Get Interrupt Routing Opt.	Pufferspeicher	Routing Möglichkeiten
	Set PCI Hardware Interrupt	Bus Nr., Device Nr., IntPin, IntNr.	-
	Read Configuration Byte/Word/DWord	Bus/Dev./Func./Reg. Nr.	gelesenes Byte/Word/DWord
	Write Configuration Byte/Word/DWord	Bus/Dev./Func./Reg. Nr., zu schreibendes Byte/Word/DWord	-

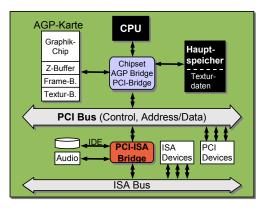
Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung



BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyk

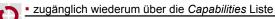
25


AGP - Initialisierung

- AGP Karte und *Bridge* präsentieren sich im System wie eine PCI-to-PCI *Bridge* und ein normales PCI Gerät
 volle Software-Kompatibilität
- spezielle AGP Register lassen sich über die *Capability* Liste im Konfigurationsraum ansprechen:

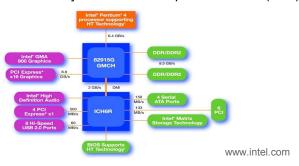
AGP - Hardware

- Accellerated Graphics Port (1997)
- schnelle 1:1 Anbindung einer (3D) Graphikkarte
 - (theoretische) N x 266 MB/s Transferrate für AGP 1x, 2x, 4x, ...


Ö

PCI-X (eXtended)

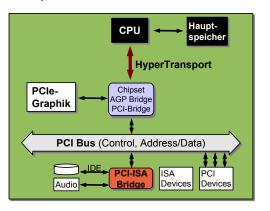
- Erweiterung des PCI Busses (1999)
 - von der PCI Special Interest Group (SIG) im PCI 3.0 Standard festgeschrieben
- erlaubt eine größere Bandbreite bei voller Kompatibilität
 - der PCI-X Bus benutzt den Arbeitsmodus des langsamsten Geräts


	PCI-Kartentyp		PCI (konventionell)			PCI-X	
	Bus-Frequenz		33 MHz	33 MHz	66 MHz	66 MHz	133 MHz
	Spannung		5 V	3,3 V/univ.	3,3 V/univ.	3,3 V/univ.	3,3 V/univ.
Mainboard							
	PCI	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz
	PCI	66 MHz	-	33 MHz	66 MHz	33/66 MHz	33/66 MHz
	PCI-X	66 MHz	-	33 MHz	33/66 MHz	66 MHz	66 MHz
	PCI-X	100 MHz	-	33 MHz	33/66 MHz	66 MHz	100 MHz
	PCI-X	133 MHz	-	33 MHz	33/66 MHz	66 MHz	133 MHz

neben der Takterhöhung gibt es auch Split Transactions

PCI Express

- ... hat technisch wenig mit dem PCI Bus zu tun
- bidirektionale, serielle Punkt-zu-Punkt Verbindungen
 - Bandbreite pro Lane je Richtung: 512 MB/s, 8GB/s bei x16!
- ein typisches PC System mit PCI Express Geräten (i915)

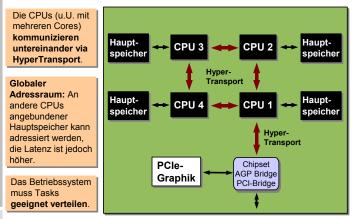

HyperTransport

- Versionen 1.0 (2001), 1.1, 2.0 und 3.0 (2006)
 - · Konsortium: u.a. AMD, Apple, Cisco, NVIDIA, Sun
- bidirektional, Punkt-zu-Punkt, Links mit 2-32 Bit, Taktung bis zu 2,6GHz (DDR)
- je nach Version und Konfiguration bis zu 20,8 GB/s
 - bei aktuellen AMD Sockel-939-Prozessoren: HT 2.0 mit 4GB/s
- Gerätekonfiguration wie bei PCI
- weitere Anwendungen neben FSB-Ersatz
 - CPU-Kommunikation in AMD-Multiprozessor-Systemen
 - Chipsatz-Kommunikation (Northbridge
 ⇔ Southbridge)
 - Kommunikation mit Coprozessoren: HTX
- Konkurrenz in den Startlöchern
 - Intel QuickPath Interconnect (Ende 2008, 24-32 GB/s)

BS © 2007, 2008 Daniel Lohmann, Olaf Spinczyk

HyperTransport

- (AMD-)CPU integriert Speichercontroller und L2-Cache
- standardisierte Kommunikation mit North Bridge: HyperTransport


Ö

29

31

HyperTransport in MP-Systemen

NUMA (Non-Uniform Memory Architecture)

Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

PS @ 2007, 2009 Daniel Lehmann, Olaf Spinozuk

Zusammenfassung

- im Bereich der PC Bussysteme dominiert seit Jahren PCI
- die neuesten Entwicklungen (PCI Express) haben kaum noch Ähnlichkeit mit dem PCI Bus von 1991
 - serielle Punkt-zu-Punkt Verbindungen und Switches
- neben den physikalischen Eigenschaften definiert PCI auch ein Programmiermodell
 - I/O- und Speicheradressräume
 - Konfigurierung und Initialisierung über Konfigurationsadressraum
 - Bus-Hierarchien
- auch die neuesten Entwicklungen sind auf der Ebene des Programmiermodells zu PCI kompatibel

33

© 2007, 2008 Daniel Lohmann, Olaf Spinczyk