Eranz | Hauck - 980715-Globe-Seminar fm: 14/7/98

Globe Eine Architektur für weltweit verteilte Systeme

Franz J. Hauck

IMMD IV, Lehrstuhl für Betriebssysteme Universität Erlangen-Nürnberg

hauck@informatik.uni-erlangen.de http://www4.informatik.uni-erlangen.de/~fzhauck/

1.1 Motivation

- Weltweit verteilte Systeme
 - z.B. WWW, News
- Anforderungen
 - ▲ Skalierbarkeit
 - ▲ uniformes Programmiermodell
 - ▲ Verteilungstranparenz, u. a.:
 - Ortstransparenz
 - Migrationstransparenz
 - Relokationstransparenz
 - Replikationstransparenz

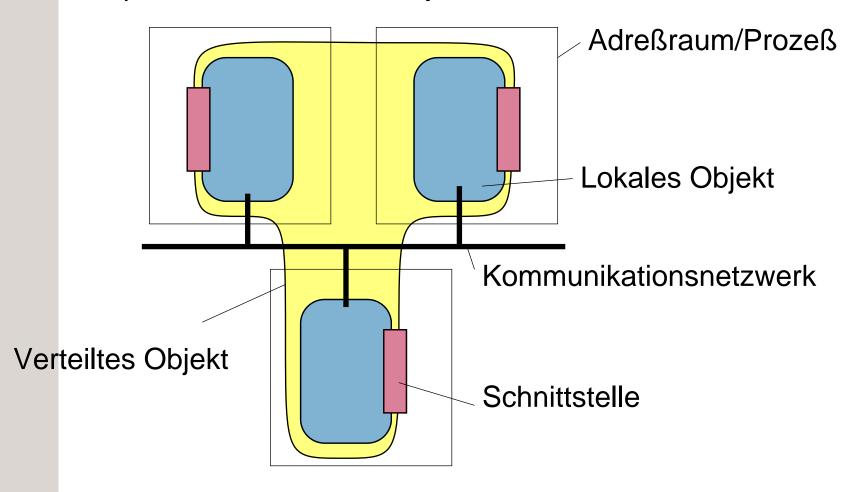
Franz J. Hauck – 980715-Globe-Seminar.fm: 14/7/96

1.2 Motivation

- Heutige Systeme bieten höchsten ein uniformes Modell ...
 - z.B. CORBA
- ... aber keine vollständige Verteilungstransparenz
- Ansatz
 - ▲ partitionierte/fragmentierte Objekte verdecken Replikation und Mobilität

Franz J. Hauck - 980715-Globe-Seminar.fm: 14/7/9

2.1 Objektmodell


- Distributed Shared Object
 - Zustand ist verteilt auf sogenannte Lokale Objekte
 - Jedes Lokale Objekt bietet eine oder mehrere Schnittstelle des Verteilten Objekts an
 - Lokale Objekte kommunizieren miteinander und bilden zusammen das Verteilte Objekt
 - Clients benötigen ein solches Lokales Objekt im eigenen Adreßraum, um das Verteilte Objekt aufzurufen

Franz J. Hauck – 980715-Globe-Seminar fm. 14/7

2.2 Objektmodell

Beispiel eines Verteilten Objekts

Franz J. Hauck – 980715-Globe-Seminar.fm: 14/7/

2.3 Objektmodell

Hinter der Objektschnittstelle wird verborgen:

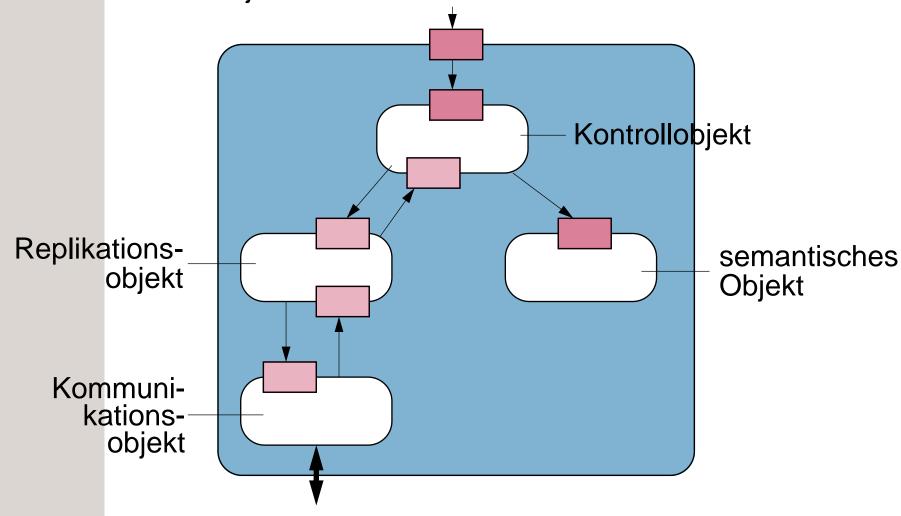
▲ Replikation

Lokale Objekte können beliebige Replikationsstrategien implementieren

▲ Migration

Zustand kann beliebig zwischen den Lokalen Objekten migriert werden

▲ Ort der Ausführung


Ob ein Methodenaufruf in dem Lokalen Objekt bearbeitet wird oder in einem entfernten Teil des Verteilten Objekts ist transparent für den Aufrufer

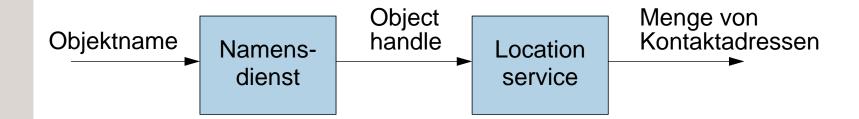
Franz J. Hauck - 980715-Globe-Seminar.fm: 14/7/

3.1 Aufbau eines Lokalen Objekts

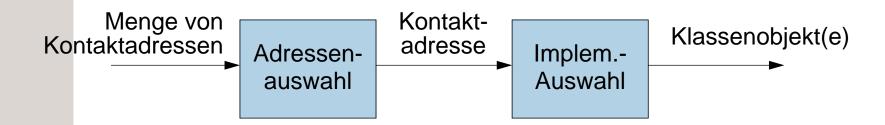
Lokale Objekte bestehen aus mehreren Teilen

Franz J. Hauck – 980715-Globe-Seminar fm. 14/7/98

3.2 Aufbau eines Lokalen Objekts

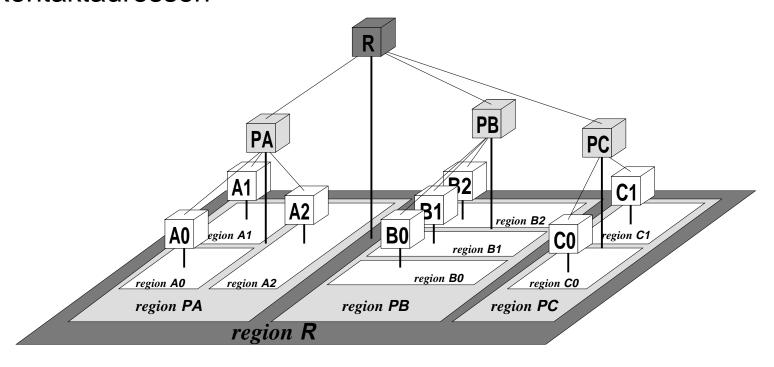

- Semantisches Objekt
 - ▲ beeinhaltet Objektsemantik (Algorithmen, etc.)
- Kommunikationsobjekt
 - ▲ bietet Kommunikationsprimitive an (z.B. RPC, Multicast)
- Replikationsobjekt
 - ▲ implementiert Replikationsstrategie bei replizierten Semantikobjekten (in mehreren Lokalen Objekten)
- Kontrollobjekt
 - ▲ Kontrolliert Interaktion zwischen lokalen und entfernten Aufrufen (außerdem: Marshalling)

. Hauck – 980715-Globe-Seminar.fm: 14/7/98


4 Objektbindung

- Wie kann man Kontakt mit einem Objekt aufnehmen
- → Finden des Objekts

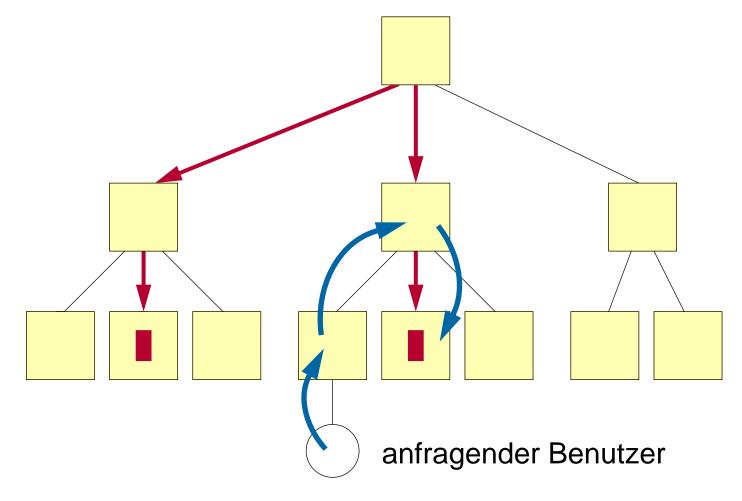
→ Installieren des Lokalen Objekts



© Franz .1 Hauck = 980715-Globe-Seminar fm: 14/7/

5.1 Location service

Weltweiter Dienst zum Auflösen von Object handles in Kontaktadressen


 Jede Kontaktadresse wird in ihrem geographisch zugehörigen Knoten angemeldet

Franz J. Hauck – 980715-Globe-Seminar.fm: 14

5.2 Location service

■ Interne Datenstrukturen

Franz J. Hauck – 980715-Globe-Seminar fm: 14/7/

6 Zusammenfassung

- Globe bietet eine Architektur für weltweit verteilte Systeme
 - Uniformes Model f
 ür verteiltes Programmieren
 - erlaubt flexible Implementierungen
 - bietet Skalierbarkeit

▲ Kritik

- ▲ Aufbau der Lokalen Objekte erscheint im Allgemeinen wenig sinnvoll
- ▲ Forschungsbedarf bei der Implementierung Lokaler Objekt und deren Auswahl beim Binden