
Dynamic Software Updates for C Applications

Sebastian Hahn

Friday 27th June, 2014

Software Update

“There are two ways to write error-free programs; only the third
one works.”

— Alan Perlis

sh DSU for C (AKSS — SS 2014) Dynamic Software Update 2 – 29

Dealing with the third way

(Currently accepted) solution: Software updates

Updating software is easy!

sh DSU for C (AKSS — SS 2014) Dynamic Software Update 3 – 29

Dealing with the third way

(Currently accepted) solution: Software updates

Updating software is easy!

sh DSU for C (AKSS — SS 2014) Dynamic Software Update 3 – 29

Agenda

Dynamic Software Update for C Server applications

Implementations
Ginseng
Stump (Ginseng-MT)
Kitsune

Results

sh DSU for C (AKSS — SS 2014) Dynamic Software Update for C Server applications 4 – 29

Goals & Challenges of DSU

Full state transfer without restart

allow updating entire software
... not just small bugfixes

Updates should be ”fast”

during normal operation and during updating
... but no realtime requirements

Assist programmers in generating an update

Support multithreaded applications

Robustness against programmer mistakes

sh DSU for C (AKSS — SS 2014) Dynamic Software Update for C Server applications 5 – 29

DSU tool overview

Guarantee representation consistency

only one version of a function active at any point in time
⇒ restrict updates to points where call stack is short

Tool-based approaches

automatically insert code to take care of the update
ease the process of creating patches
detect programmer mistakes

Use of a runtime to manage updates

call into runtime to check for updates
trigger runtime externally

sh DSU for C (AKSS — SS 2014) Dynamic Software Update for C Server applications 6 – 29

Agenda

Dynamic Software Update for C Server applications

Implementations
Ginseng
Stump (Ginseng-MT)
Kitsune

Results

sh DSU for C (AKSS — SS 2014) Implementations 7 – 29

Ginseng

Supports DSU for single-threaded applications

Lazy approach to updating

Published in 2006

sh DSU for C (AKSS — SS 2014) Implementations –Ginseng 8 – 29

Function indirection & type wrapping

Function indirection

F

other_func

G

F_v1

F_v2

G_v1

function pointers

F()

Type wrapping

v1

Structure
version 1

original
padding

v2

Structure
version 2

remaining
padding

sh DSU for C (AKSS — SS 2014) Implementations –Ginseng 9 – 29

Update points

User specifies
update points

Safety analysis

Ginseng
Runtime

Update request

Event loop

Program startup

Program termination

Update points

sh DSU for C (AKSS — SS 2014) Implementations –Ginseng 10 – 29

Loop extraction

Ginseng
Runtime

Update request

Event loop

Program startup

Program termination

extracted
function

v1

extracted
function

v2

extracted
finalizer

v1

extracted
finalizer

v2

v

fake loop

Small example

void f o o (f l o a t g) {
i n t x = 2 ;
L1 : whi le (1) {

i f (++x == 8)
break ;

}
}

sh DSU for C (AKSS — SS 2014) Implementations –Ginseng 11 – 29

s t ruc t L 1 l s { f l o a t ∗g ; i n t ∗x ; } ;

i n t L 1 l o o p (i n t ∗ r e t , s t ruc t L 1 l s ∗ l s) {
∗(l s−>x) = ∗(l s−>x) + 1 ;
i f (∗ (l s−>x) == 8) return 0 ;
e l s e return 1 ;

}

void f o o (f l o a t g) {
i n t x = 2 ; i n t r e t v a l ; i n t r e t c o d e ;
s t ruc t L 1 l s l s = { &g , &x } ;
whi le (1) {

r e t c o d e = L 1 l o o p (& r e t v a l , &l s) ;
i f (r e t c o d e == 0) break ;
e l s e i f (r e t c o d e == 1) continue ;
e l s e return (r e t v a l) ;

}
}

Updated applications

vsftpd - 13 versions (3 years), 25% slowdown

sshd - 11 versions (3 years), 32% slowdown

Zebra - 5 versions (4 years), 12% slowdown

Observations

Patch application takes less than 5 ms
Memory usage increases during update streak

Evaluation

Ginseng was able to update all tested applications
Moderate slowdowns for tested applications
Workflow: Add updatability to an application late in development

sh DSU for C (AKSS — SS 2014) Implementations –Ginseng 13 – 29

STUMP (Ginseng-MT)

Same basic architecture as Ginseng

Improvements for multi-threaded applications

Published in 2009

sh DSU for C (AKSS — SS 2014) Implementations – Stump (Ginseng-MT) 14 – 29

Update points

Simple update points impractical

Threads block for a long time

Deadlock potential

Solution: update windows
update
point

update
window

sh DSU for C (AKSS — SS 2014) Implementations – Stump (Ginseng-MT) 15 – 29

Relaxed synchronization

Check in with runtime

Wait for all threads

t1 t2 t3

time of update

t2
blocks

sh DSU for C (AKSS — SS 2014) Implementations – Stump (Ginseng-MT) 16 – 29

Updated applications

Icecast - 5 versions, 7% slowdown

Memcached - 4 versions, 5% slowdown

Space Tyrant - 7 versions, no slowdown

Observations & evaluation

All tests are performed in an I/O bound state
Memory usage increases by 46% for SpaceT
Not much has changed compared to Ginseng

sh DSU for C (AKSS — SS 2014) Implementations – Stump (Ginseng-MT) 17 – 29

Kitsune

Whole-program updates

Borrows from UpStare and Ginseng

Code publicly available (github) since early 2014

Published in 2012

sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 18 – 29

Whole-program updates

Update entire state at once

Halt execution until update is complete

Works seamlessly for many multi-threaded applications

Higher update complexity

State conversion

programmer has to provide transition functions
tools can support the generation of these functions
stack reconstruction

sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 19 – 29

Toolchain

v1.c kitc gcc -c

xfgenv1.xf
gcc

-shared

v1.sov0.ts

rt.a

sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 20 – 29

Update process

Update preparation

Use Unix signals - SIGUSR2 is often unused
Block threads as they reach update points

Update execution

Once all threads are blocked, link new library
Call main function of new code

execute update-specific conversion functions
reconstruct stack
Unload old code & stack
hand off execution to specific continuation point

sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 21 – 29

C example

i n t c f o o , c bar , c s i z e ; // c o n f i g
i n t ∗mapping ; // a r r a y o f c o n f i g o p t i o n s
i n t main () a t t r i b u t e ((k i t s u n e n o t e l o c a l s)) {

i n t main sock , c l i e n t s o c k ;
k i t s u n e d o a u t o m i g r a t e () ;
i f (! k i t s u n e i s u p d a t i n g ()) {

l o a d c o n f i g () ;
mapping = m a l l o c (c s i z e ∗ 4) ; }

i f (! MIGRATE LOCAL(m ain so ck))
ma in so ck = s e t u p c o n n e c t i o n () ;

whi le (1) {
k i t s u n e u p d a t e (” main ”) ; // c a l l runt ime
c l i e n t s o c k = g e t c o n n e c t i o n (m a in so ck) ;
c l i e n t l o o p (c l i e n t s o c k) ;

}
}
sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 22 – 29

xfgen example

s t ruc t l i s t {
i n t key ; i n t v a l ; s t ruc t l i s t ∗ n e x t ;

} ∗mapping ;

mapping −> mapping : {
i n t key ;
$out = NULL ;
f o r (key = 0 ; key < $oldsym (c s i z e) ; key++) {

i f ($ i n [key] != 0) {
$newtype (s t ruc t l i s t) ∗ c u r =

m a l l o c (s i z eo f ($newtype (s t ruc t l i s t))) ;
cur−>key = key ;
cur−>v a l = $ i n [key] ;
cur−>n e x t = $out ;
$out = c u r ;

} } }
sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 23 – 29

Updated applications

csftpd - 14 versions

Tor - 13 versions

redis - 5 versions

Memcached - 7 versions

Icecast - 7 versions

Observations

No overhead during non-update usage across the board
High memory requirement during update, but freed afterwards
Updates can be delayed significantly by sleeping threads

sh DSU for C (AKSS — SS 2014) Implementations –Kitsune 24 – 29

Challenges for updating Tor

Tor is a networked application

connections should not be interrupted by an upgrade
large amounts of state for connection handling

Tor heavily employs cryptography

busy relays are CPU-bound
crypto mostly implemented in third-party libraries

Large codebase (76k LoC) with extensive changes

still only 159 lines added for Kitsune
transformation specification also less than 200 lines

Tor already uses the SIGUSR2 signal

Use existing Tor controller infrastructure

sh DSU for C (AKSS — SS 2014) Implementations –Updating Tor with Kitsune 25 – 29

Evaluation

Kitsune enables DSU without measurable runtime overhead

Updates are fast even though complete approach is chosen

Workflow: Integrate DSU as main concern during development

sh DSU for C (AKSS — SS 2014) Implementations –Updating Tor with Kitsune 26 – 29

Agenda

Dynamic Software Update for C Server applications

Implementations
Ginseng
Stump (Ginseng-MT)
Kitsune

Results

sh DSU for C (AKSS — SS 2014) Results 27 – 29

Discussion of results

All three tools are effective

Update streaks possible for all tested applications

All tools support the programmer in ensuring update safety

Kitsune is available for user under LGPL

Kitsune appears to be the most mature and stable tool

sh DSU for C (AKSS — SS 2014) Results 28 – 29

Ideas for future work

Implement updates for Tor spanning multiple release series

Multi-process applications?

Updates of NUMA-applications?

Questions?

sh DSU for C (AKSS — SS 2014) Results 29 – 29

Ideas for future work

Implement updates for Tor spanning multiple release series

Multi-process applications?

Updates of NUMA-applications?

Questions?

sh DSU for C (AKSS — SS 2014) Results 29 – 29

	Dynamic Software Update for C Server applications
	Implementations
	Ginseng
	Stump (Ginseng-MT)
	Kitsune

	Results

