
Rebootless Security Patches for the
Linux Kernel

Caglar Ünver
30.05.2014

 2

MotivationMotivation

Why do we care about updates on the flyWhy do we care about updates on the fly

● More than 90% of the attacks exploit known security vulnerabilities

● Important bugfixes and security updates roughly every month

● Delaying the updates: a great security risk

● Reboots: Service outage, administrator supervision needed (sysadmins working on
weekends)

ChallengesChallenges

● Commodity kernels do not have well defined boundaries between their modules
and components

● Some modules are always busy

 3

OutlineOutline

1. Classification of Kernel Updates

● Updating Code Only

● Updating Code and Existing Data

2. DynAMOS - The Basic Approach

● Quiescence Detection

● Binary Rewriting

● Redirection Table

3. LUCOS - Using Virtualization for Live Updates

● State Transfer

4. Ksplice - Hot Updates at Object Code Level

● Pre-post Differencing and Run-pre Matching

5. Conclusion and Discussion

 4

1. Classification of Kernel Updates1. Classification of Kernel Updates

● Updating Code OnlyUpdating Code Only

● Updating Code and Existing DataUpdating Code and Existing Data

2. DynAMOS - The Basic Approach

● Quiescence Detection

● Binary Rewriting

● Redirection Table

3. LUCOS - Using Virtualization for Live Updates

● State Transfer

4. Ksplice - Hot Updates at Object Code Level

● Pre-post Differencing and Run-pre Matching

5. Conclusion and Discussion

 5

Classification of Kernel Updates (1)Classification of Kernel Updates (1)

Updates that modify the code onlyUpdates that modify the code only
● Keeps the existing data structures unchanged

● May introduce new data structures, global variables

● Easy to patch, if there are no semantic changes

 6

Classification of Kernel Updates (2)Classification of Kernel Updates (2)

Updates that modify the code and existing Updates that modify the code and existing
datadata

● Existing data structures will be changed

● State transfer from the old to the new data needed

● What if the semantic of the patched code is changed?

 7

Classification of Kernel Updates (3)Classification of Kernel Updates (3)

Changing the semantic of the code

void foo()

{

...

 do

 {

...

unlock(semaphore);

...

lock(semaphore);

...

 } while(someVar)

return;

}

void foo()

{

...

 do

 {

...

lock(semaphore);

...

unlock(semaphore);

...

 } while(someVar)

return;

}

 8

1. Classification of Kernel Updates

● Updating Code Only

● Updating Code and Existing Data

2. DynAMOS - The Basic Approach2. DynAMOS - The Basic Approach

● Quiescence DetectionQuiescence Detection

● Binary RewritingBinary Rewriting

● Redirection TableRedirection Table

3. LUCOS - Using Virtualization for Live Updates

● State Transfer

4. Ksplice - Hot Updates at Object Code Level

● Pre-post Differencing and Run-pre Matching

5. Conclusion and Discussion

 9

DynAMOS (1)DynAMOS (1)

QuiescenceQuiescence
● If no parts of the resource are in use, either by sleeping

processes or partially-completed transactions

● No function can be idle on the stack.

● Updating modules in quiescence state is easier

● Some processes never reach quiescence state (e.g.
Process scheduler)

 10

DynAMOS (2)DynAMOS (2)

Quiescence DetectionQuiescence Detection
● Function Usage Counters (but

not sufficient e.g. do_exit)

● Stack-walkthrough Method (Has
side effects)

 11

DynAMOS (3)DynAMOS (3)

Binary RewritingBinary Rewriting
● Adds jump instruction at the top

of the function

● Make sure that no thread
context or interrupt context is
executing in the first 5 or 6 bytes
of the function Function_V1 Function_V2

First 5 or 6
Bytes

Virt. Addr JumpJump

 12

DynAMOS (4)DynAMOS (4)

State Tansfer is needed:State Tansfer is needed:
● Existing data structures changed

● Semantic of the function changed

● Updated unit not in quiescence state

 13

1. Classification of Kernel Updates

● Updating Code Only

● Updating Code and Existing Data

2. DynAMOS - The Basic Approach

● Quiescence Detection

● Binary Rewriting

● Redirection Table

3. LUCOS - Using Virtualization for Live Updates3. LUCOS - Using Virtualization for Live Updates

● State TransferState Transfer

4. Ksplice - Hot Updates at Object Code Level

● Pre-post Differencing and Run-pre Matching

5. Conclusion and Discussion

 14

LUCOS (1)LUCOS (1)

● Virtual Machine
Monitor(VMM) controls
system resources

● VMM intercepts and
emulates memory and I/O
accesses

VMExitVMExit

 15

LUCOS (2)LUCOS (2)

● Quiescence state is not a prerequisiteQuiescence state is not a prerequisite

● Manual patch creation

● Patch files: Code + data structures as loadable kernel
modules

 16

LUCOS (3)LUCOS (3)

● Update Manager loads
kernel modules for the
patched function(s) and
data structure(s)

Code Data

Function1
V1

Data1 V1

Data1 V2

VMM Update Server

Function1
V2

VM

 17

LUCOS (4)LUCOS (4)
● Update Manager iterates all

kernel threads and makes
sure that none of them is
executing in the first 5
bytes of the function

● Update Manager inspects
kernel call stacks for
counting threads executing
in the patch code

● Control is passed to Update
Server via hypercall

● Update Server applies
binary rewriting for inserting
jump and for replacing
return address of the
function

Code Data

Function1
V1

Data1 V1

Data1 V2

VMM Update Server

Function1
V2

VM

 Apply Apply
 the patchthe patch

 (Hypercall) (Hypercall)

 18

LUCOS (5)LUCOS (5)

● Memory virtualization
techniques provided by x86
architecture – Shadow
paging & NPT/EPT

● Update Server resumes the
VM

● Old function accesses to
old data

Code Data

Function1
V1

Data1 V1

Data1 V2

VMM Update Server

(1) Write (1) Write
AccessAccess

Function1
V2

VM

 19

LUCOS (6)LUCOS (6)

● Memory access intercepted

● Update Server checks if
VM is accessing to either
versions of the data

Code Data

Function1
V1

Data1 V1

Data1 V2

VMM Update Server

(1) Write (1) Write
AccessAccess

(2) (2)
VMExit VMExit

Function1
V2

VM

 20

LUCOS (7)LUCOS (7)

● Update Server invokes
state transfer function to
maintain data consistency

Code Data

Function1
V1

Data1 V1

Data1 V2

VMM Update Server

 (3) State(3) State
 TransferTransfer

(1) Write (1) Write
AccessAccess

(2) (2)
VMExit VMExit

Function1
V2

VM

 21

LUCOS (8)LUCOS (8)

● Usage information of the
old function and data is
updated via callbacks

● Callbacks are invoked in
the context of VMM

● Update Server terminates
the patch when the old
function and data is not in
use

Code Data

Function1
V1

Data1 V1

Data1 V2

VMM Update Server

 Terminate Terminate
the patchthe patch

 (Hypercall) (Hypercall)

Function1
V2

VM

FunctionFunction
 returns. returns.
Invoke Invoke
callbackcallback

(Hypercall)(Hypercall)

 22

1. Classification of Kernel Updates

● Updating Code Only

● Updating Code and Existing Data

2. DynAMOS - The Basic Approach

● Quiescence Detection

● Binary Rewriting

● Redirection Table

3. LUCOS - Using Virtualization for Live Updates

● State Transfer

4. Ksplice - Hot Updates at Object Code Level4. Ksplice - Hot Updates at Object Code Level

● Pre-post Differencing and Run-pre MatchingPre-post Differencing and Run-pre Matching

5. Conclusion and Discussion

 23

Ksplice (1)Ksplice (1)

● Ksplice Inc. :Created by four MIT students based on a
master's thesis

● Provides prebuilt and tested updates for the Red Hat,
CentOS, Debian, Ubuntu and Fedora Linux distributions

● Acquired by Oracle on 21 July 2011

● Used by over 700 customers running more than 100,000
production systems at that time

 24

Ksplice (2)Ksplice (2)

● Creating patches manually: quite complex and error prone

● Automatic patch creation

● Analysis at the Executable and Linkable Format (ELF)
object code layer

➢ Doesn't matter if it's C or Assembly code

➢ Inlined functions detected

● Most of the Linux security patches do not make semantical
changes to data structures

 25

Ksplice (3)Ksplice (3)

● Input:
➢ Original source (pre source) of the running kernel (buggy).

➢ The code in the running kernel (run code) (buggy).

➢ Source of the patched kernel (post source).

● Preparation
➢ Compile the pre source and post source using -ffunction-
sections and -fdata-sections compiler options (gcc)

➢ Pre and post object files created

 26

Ksplice (4)Ksplice (4)
Pre-post Differencing and Run-pre MatchingPre-post Differencing and Run-pre Matching

Steps:Steps:
● Compare the pre and post object files

● Detect and replace kernel functions that have been
changed

● Calculate symbols

● Detect quiescence state

● Patch

 27

Ksplice (5) pre-post differencingKsplice (5) pre-post differencing

Post object
files

Pre object
filesDiffDiff

Post code
functions

that differed

Pre code
optimization

unit that
differed

 Extract Extract
 diffdiff

 Extract Extract
 diffdiff

Primary module

 Link with generic Link with generic
 Kernel moduleKernel module

● Primary module has
unresolved symbols

 28

Ksplice (6) run-pre matchingKsplice (6) run-pre matching

● Reversing what the
Linker did

● Symbol tables of Linux
Kernel is not used

● Allows accessing to
every symbol in the
kernel

● Actually, Linux Kernels
without any symbol
tables can be patched.

 29

Ksplice (7)Ksplice (7)

Quiescence Detection:Quiescence Detection:
● Calls stop_machine for detecting quiescence state:

Makes patching atomic. Causes 0.7 milliseconds delay

● Stack-walkthrough used for quiescence detection

● If check failed: wait couple of seconds, check again

● Using Ksplice for customer support: Diagnostic tool
sends the report to oracle. Oracle prepares a bugfix as
a ksplice patch.

 30

1. Classification of Kernel Updates

● Updating Code Only

● Updating Code and Existing Data

2. DynAMOS - The Basic Approach

● Quiescence Detection

● Binary Rewriting

● Redirection Table

3. LUCOS - Using Virtualization for Live Updates

● State Transfer

4. Ksplice - Hot Updates at Object Code Level

● Pre-post Differencing and Run-pre Matching

5. Conclusion and Discussion5. Conclusion and Discussion

 31

ConclusionConclusion

● Binary rewriting and stack-walkthrough is used in such
frameworks.

● Keeping the old code consistent with the new code is
complex and expensive (state transfers, callbacks).

● LUCOS exploits virtualization technologies, whereas
Ksplice operates on object code level.

● Ksplice: not limited to C or Assembly code. But compiler
and linker dependent.

● Ksplice: Minimum programmer involvement. %88 of the
security patches from May 2005 to May 2008 can be
applied automatically.

 32

DiscussionDiscussion

● How reliable are usage counters in LUCOS

● Applying LUCOS in multi-core platforms

● Applying Ksplice and LUCOS on real time operating
systems

● Patch rollback

