
Dynamic updates for object-oriented
operating-system kernels

Tobias Langer

30.04.14

Tobias Langer Dynamic Update in Operating Systems (30.04.14) 1 – 14



Motivation

Rising complexity of modern software

Need for early updates and patches

High availability demands on software

Restarts must be avoided where possible

Solution: Dynamic Update

Install software updates at runtime

Update gets effective without restart

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Introduction 2 – 14



Dynamic Update

Dynamic updates must do two things:

Update of the code section

Transfer of the current state

Basic flow of a dynamic update is:

Application of update at safe point

Transfer of state information

Invocation redirection

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 3 – 14



. . . in operating systems

Operating systems must fulfill the same requirements

. . . but impose further requirements to the update system

No or limited runtime system
. . .

For dynamic update support, operating system must offer:

Updatable unit

Safe point

State tracking

State transfer

Redirection of invocations

(Version management)

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 4 – 14



Object-oriented dynamic update

Objects contain state information and code

Compromise between modules and binary-rewriting

Downsides:

Updatable code is bound to system layout

Dependency of dynamically resovled references

Makes many optimization impossible

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 5 – 14



Implementation with object-orientation

Dynamic update with object-orientation

Updatable unit → Objects

Safe point → ?

State tracking → List of instances

State transfer → Object replacement

(Version management)

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 6 – 14



Interposition

Hiding an object behind another object

Forward calls to the object with addtional prologues / epilogues
Interface changes for the callers view
Provide new implementations of the objects methods

Realized via the Adapter pattern

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 7 – 14



Interposition

Hiding an object behind another object

Forward calls to the object with addtional prologues / epilogues
Interface changes for the callers view
Provide new implementations of the objects methods

Realized via the Adapter pattern

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 7 – 14



Hot-Swapping

State tracking problem

References might be in use, when object is switched

Interpose mediator object

Keeps track of currently used instances
Blocks all new calls to the object
When quiescence is reached, object is replaced

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 8 – 14



Hot-Swapping

State tracking problem

References might be in use, when object is switched

Interpose mediator object

Keeps track of currently used instances
Blocks all new calls to the object
When quiescence is reached, object is replaced

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 8 – 14



Hot-Swapping

State tracking problem

References might be in use, when object is switched

Interpose mediator object

Keeps track of currently used instances
Blocks all new calls to the object
When quiescence is reached, object is replaced

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 8 – 14



Hot-Swapping

State tracking problem

References might be in use, when object is switched

Interpose mediator object

Keeps track of currently used instances
Blocks all new calls to the object
When quiescence is reached, object is replaced

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 8 – 14



Lazy Update

Update of all instances takes time

Not all instances need to be updated

Mark them for update, update on first following call

Future calls go to the updated object

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 9 – 14



Lazy Update

Update of all instances takes time

Not all instances need to be updated

Mark them for update, update on first following call

Future calls go to the updated object

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 9 – 14



Lazy Update

Update of all instances takes time

Not all instances need to be updated

Mark them for update, update on first following call

Future calls go to the updated object

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Approaches 9 – 14



K42 Introduction

Research kernel developed by IBM

Focus on Linux API and ABI support

Strongly modularized by application of object orientation

Event-driven with short-lived kernel threads

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 10 – 14



Dynamic update in K42

Factories for all objects

Factories keep track of all created instances

Dynamic update results in:

1. Hot-swapping of the factory
2. (Lazy) replacement of the existing instances

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 11 – 14



K42-Style Factories

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 12 – 14



K42-Style Factories

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 12 – 14



K42-Style Factories

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 12 – 14



K42-Style Factories

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 12 – 14



Quiescence detection

Problem: How find safe point

K42 Threads are short lived

Exist in generations

Updating sets a new generation

Wait for all threads of last generation to complete

Then update the object

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Implementation 13 – 14



Discussion

Dynamic update system is based on dynamically resolved
references

Forbids optimizations

Severe as objects are on a fine-grained level

Comparision of two running systems would be interesting. . .
but is not given :(

Upsides:

Interesting approach

Extendable for well modularized operating systems (Linux,. . . )

. . . and also for application software

Tobias Langer Dynamic Update in Operating Systems (30.04.14) Discussion 14 – 14


	Introduction
	Approaches
	Implementation
	Discussion

