
Dynamic software updates for C applications

Sebastian Hahn
Friedrich-Alexander-Universität Erlangen-Nürnberg

sebastian.hahn@fau.de

ABSTRACT
A common inconvenience of keeping a computer system’s
installed applications updated is the loss of the availabil-
ity of services while the respective application is updating.
Typically, the user has a hard choice to make: Accept the
downtime or pay the cost of a redundant system. Many
regular applications are not well suited to be run in a truly
redundant way, but even when a redundant system is avail-
able, updating carries the risk of total loss of service in case
of a failure in the part which remains online.

This article presents a solution in the form of Dynamic Soft-
ware Updates for applications written in C. Several imple-
mentations of dynamic software updates are discussed, and
their applicability to some common applications is explored.
The tools necessary to create patches between versions are
also scrutinized, along with performance characteristics of
the individual approaches and the required time to conduct
an update. Special attention is given to applications employ-
ing concurrency, as the added complexity of threads which
are interacting with each other needs to be addressed to
guarantee the safety of an update process.

1. INTRODUCTION
Updating software is easy:

1. Stop the software by denying new requests made to it,
handle all currently pending requests, then turning off

2. Replace the binary

3. Start the new binary, start handling new requests

This simple approach has two obvious problems: While pend-
ing requests are processed, all new requests are denied and
the state of the application is lost. Depending on the nature
of the software, both issues have different weight - but they
are typically both present.

Two separate models have been developed to deal with the
complexities: Either a runtime system loads a patch, up-
dates function call sites at a safe point [5], and data is trans-
formed to its new state as it gets accessed; or the whole pro-
gram is updated at once, with a complete transformation of
the entire state.

In this article, three separate implementations of dynamic
software update systems are evaluated and their relative

strengths and weaknesses are compared. The goal of all
systems is to provide safe, reliable, easy-to-implement, and
timely updates. The chosen methods differ in that one sys-
tem is able to update single-threaded programs only, and
that one chooses an atomic whole-program update approach,
whereas the other two favor a lazy updating mechanism.

2. IMPLEMENTATIONS
Three implementations of dynamic software update systems
are considered:

• Ginseng, a system employing type wrapping, function
indirection and loop extraction to update single-threaded
applications [5]

• Stump (for Safe and Timely Updates to Multi-threaded
Programs), an extension of Ginseng making use of per-
thread update points to facilitate multi-threaded ap-
plication updates [4]

• Kitsune, a whole-program update approach which trans-
forms applications to be updatable automatically while
allowing explicit state migration to be created by the
programmer [2]

2.1 Ginseng
Ginseng is an implementation of dynamic software update
for single-threaded applications by Neamtiu, Hicks et al [5].
Its major improvement on previous work was the concenpt
of loop extraction and a novel safety analysis to prevent
updated and non-updated code to access the same data. In
addition, they use function indirection and type padding
to implement lazy updates. Ginseng’s toolchain relies on a
dynamic patch generator, which gets run before an updated
version of a program is compiled (see figure 1).

2.1.1 Update techniques
To update a single-threaded application, it is almost suf-
ficient to modify function calls to use the new versions of
functions, and transform the state in such a way that types
which got changed during the update get transformed into
the new available types. One underlying concept is represen-
tation consistency, which means that all values of a certain
type belong to the same version of that type [5].

This means that all function calls which happen after the
updating process was initiated are using the new version of
a function, and all function calls which were already part of

Figure 1: Overview of the Ginseng build chain [5]

the call stack at the time of the update are using the old
versions. For this to be safe, it is necessary to restrict the
points at which the application can be updated to places
where the call stack is short and thus not many functions
are active. These points are called quiescent points [3].

2.1.2 Function indirection
Function indirection is the easiest updating concept to un-
derstand. Instead of performing a normal call of the imple-
mented function, a new function pointer for that function
is introduced, which points to the function. This wraps all
calls to any function in another layer, facilitating updates -
only the function pointer needs to be updated to the new
version of the function, and nothing else needs to be touched.
From the point where the function pointer was updated on
the new function will be called. Additionally, to be able
to handle function pointers which get passed around inside
the application, instead of pointing to the function directly
the function pointer is made to point to a wrapper function,
such that the pointer which the application regularly uses
does not need to be updated [5].

2.1.3 Type wrapping
To ensure the aforementioned consistency of values of cer-
tain types, the runtime must ensure that when a type is
modified in a program update, all values of that type which
are active at the time of update are modified, as well. This
process simply means applying a conversion function, which
does the necessary initialization of new parts of the type and
conversion of old parts.

Many different ways to update values of a type are possi-
ble, but a simple lazy approach works well: The conversion
function gets called when the value of the old type is ac-
cessed, and it converts just that instance of the type. As
the other instances of the same old type get accessed, they
are updated as well. This allows a mostly automatic update
of types, without the need to actually keep track of all in-
stances of a type (similarly to how garbage collection works
in other languages). To achieve this, each user-defined type
that gets wrapped has its version stored alongside with it, so
that a coercion function is able to return the original defini-
tion when called on a wrapped type. This coercion function
is always called when a field of any struct is accessed - now

v1

Structure
version 1

original
padding

v2

Structure
version 2

remaining
padding

Figure 2: Type wrapping with a growing struct

the struct’s version compared to the latest version for that
struct, and if necessary the conversion function is applied.

There are some drawbacks of this approach. For one, the
conversion functions must be written in a way that allows
them to be called at arbitrary points in time, because the
runtime determines these points automatically. Also, ac-
cess to values of the type is slower when a conversion func-
tion needs to be executed before the value can be accessed.
The biggest drawback, however, is that there must be some
mechanism to allow for values of the type on the stack to
be updated. This is generally not possible to do without
rebuilding the entire stack up to that point, which would
defeat the goal of updating in individual steps to speed up
updating.

There are a few possible solutions: Padding (see figure 2)
can be used to decrease the likelihood of insufficient space
being available to perform the type update; at the expense
of increased memory footprint of the un-updated applica-
tion. Alternatively, type access can be hidden behind an
indirection level using pointers (which of course have con-
stant size), with the drawback of increasing access times for
all such types, even if no change in type size happened dur-
ing the upgrade. A hybrid approach is also feasible, where
small padding is added and type updates which are too large
for the padding to accomodate starting to use indirection.
This means less overhead than adding more padding, but
also adds all the required complexity to handle the indirec-
tion approach.

2.1.4 Shadow Data Structures
To avoid the general overhead of padding, it is possible to
only store the newly added parts of a type in a shadow data
structure [1]. It is only referenced if new data is added,
so the additional cost of indirection needs to be paid for
new fields which do not fit into the old structure anymore.
This approach is not used by Ginseng due to the added
complexity.

2.1.5 Update Points

Actually performing the update after the user requested
it typically means reaching a quiescent point in the pro-
gram’s execution. These points need to be identified by the
programmer manually, and the update framework must be
made aware of them via an annotation or similar mecha-
nism. This allows the tool to statically infer some safety
properties, which the runtime might check to ensure safety
of an update. Finding quiescent points, or points where an
update is safe in general, is surpringly easy in typical server
applications [5].

The main program loop that gets executed for the whole
lifetime of the server process is typically adequate. A call to
the update framework runtime gets inserted into the loop.
At those call sites, updateability analysis adds annotations
for all types which may not be updated at this point. Such
types are those which might get accessed by old code af-
ter being updated to their respective new versions, which
is of course unsafe. For this analysis, the control flow is
followed from a usage of a type backwards to the control
point. Future versions of a program must not violate this
analysis, which the runtime ensures when an update point
is reached [6].

Due to C’s extremely flexible pointer system without strong
typing being enforced, the ability to use the address-of oper-
ator & and allowing arbitrary casts (which might of course
be unsafe) it is hard to know that an alias to a wrapped type
does not escape and cause an abstraction violation. To deal
with this, abstraction violating alias analysis is performed.
Again, if it is determined that a type might be unsafely
aliased at an update point, updating that type at the spe-
cific update point is forbidden. Manual inspection might be
required to resolve such a situation, because sometimes safe
casts are misidentified as unsafe. This applies especially to
any inline assembly, which does not get treated automati-
cally at all currently [7].

2.1.6 Long-running loops
If only function calls are replaced with new versions, code
that is running in an infinite loop (like an event loop that
continuously accepts new tasks and hands them off to pro-
cessing functions) would never get updated. This is problem-
atic, because typically dynamic updating is most desirable
for applications that exhibit exactly such a behaviour.

To solve this, loop extraction [5] is employed. The body of
any long-running loop is taken and extracted into its own
function, such that the new body of the loop is merely the
function call. To give the former loop body access to the
state and to allow transformations of said state, the ex-
tracted function gets passed the state as a parameter. This
ensures that changed code which got run before the loop
was run for the first time can make use of the normal type
transformations (discussed below) to update, and changes in
the loop body get executed as the body of the loop calls the
extracted function for the next time. This also allows other
transformations or initilizations to take place which might
be required to make new code in the loop body or further
down the call stack perform correctly (figure 3).

This extraction requires manual intervention from the pro-
grammer, but only insofar as that the programmer must

Ginseng
Runtime

Update request

Event loop

Program startup

Program termination

extracted
function

v1

extracted
function

v2

extracted
finalizer

v1

extracted
finalizer

v2

v

fake loop

Figure 3: Loop extraction including a fake loop in-
cluded to update a finalizer

indicate that the loop’s body should be extracted. The ac-
tual transformation can easily be automated, with return
values of the extracted function indicating whether the loop
would have triggered a return, break or continue statement
or none of those.

If it is possible for the loop to terminate, the old code fol-
lowing the loop might not be able to deal with the changed
state. This means that not just the loop body, but the code
after the loop must be extracted into a separate function.
To achieve this, it is enough to simply wrap the statements
which are to be executed after the loop within an infinite
loops of their own and a break statement afterwards, and
mark them for extraction. That way, when that code gets
updated, the old version of the code is never executed and
the new version is used instead [5]. Of course, this also ap-
plies to functions higher up the call stack such that code to
be executed after the method containing the long-running
loop has finished can be updated and an orderly shutdown
can be guaranteed.

Similarly, when the structure of the application changes
more radically and a loop gets removed completely, the ex-
tracted loop body can be used to orderly clean up and exit
the loop, and the extracted code after the loop’s body can
be used to set up whatever new strategy gets employed.

2.1.7 Abstraction Violating Aliases
One caveat of loop extraction is that it does not deal with
goto statements or inline assembly which violates the struc-
ture of the C program by jumping to pieces of code outside

of the loop rather than using return or break from inside C.
Similarly, some cases of unsafe pointer accesses cannot be
handled by the runtime. The static analysis component of
Ginseng is able to inform the programmer of such issues, so
they can be fixed manually. The underlying analysis method
is conservative, and the programmer is given an option to
override the static check if manual analysis deems the con-
version safe.

2.1.8 Evaluation
Loop extraction provides a flexible tool to allow updates
both to infinite loops as well as cleanup functions, which was
previously typically not possible. The lazy approach to state
conversion ensures a relatively quick update process, while
type wrapping incurs significant performance overhead both
due to coercion functions as well as increased memory foot-
print of types and the related consequences - reduced cache
locality, wasted memory as types are deleted, and general
performance degradation during longer upgrade streaks.

So far, the discussion focused on update frameworks which
allow incremental updates by updating values of types as
they are accessed, and only some global state transformation
functions for state which was created higher up in the call
stack. The alternative approach of whole-program update is
discussed in the next section, because it naturally fits multi-
threaded program update as well. This does not, however,
limit its applicability to single-threaded applications.

The authors tested Ginseng with three single-threaded open
source servers: vsftpd (the Very Secure FTP Daemon), sshd
(the Secure SHell Daemon implementation of the OpenSSH
project), and zebra, GNU Zebra’s routing software package.
They found that they were able to meet their goals of not
having to extensively change the application and not needing
to restrict the form of their updates too much.

The measured overhead was less than 30% in all considered
applications, which the authors deem acceptable [5].

2.2 STUMP
Ginseng’s inability to deal with multithreading led to the ex-
ploration of the idea of keeping the lazy updating approach
with a new tool based on Ginseng, but extended to support
timely updates for multi-threaded programs. The resulting
work, STUMP (Safe and Timely Updates to Multi-threaded
Programs) does exactly that. It was created by Neamtiu
and Hicks, who already collaborated on Ginseng. Most con-
cepts still apply, but additional challenges need to be re-
solved. Their contribution is the introduction of induced
update points, which are automatically generated from the
programmer’s specified regular update points (of which one
to a few are needed per thread). Instead of stopping at an
update point to apply the update, there is a sliding window
with threads checking in and out to get updated (relaxed
synchronization). This mechanism is handled by STUMP’s
runtime.

2.2.1 Multi-threaded Programs
While all challenges discussed so far also apply to multi-
threaded applications, they present a lot of extra difficulties
to consider. The number of possible system states increases

dramatically [4] and thread interactions mean that both an
updated and a non-updated function might access the same
data simultaneously. Sleeping threads or those uninterrupt-
ibly blocking on some resource make update timing predic-
tions hard or impossible.

2.2.2 Update points
Earlier the concept of update points was already discussed.
To apply it to multi-threaded applications, additional safety
constraints come into play: When a particular thread reaches
an update point, other threads can be in arbitrary states.
One obvious solution would be to block until all threads have
reached an update point (barrier synchronization). Once
that has happened, the update can be performed and exe-
cution can resume. As long as only a few update points exist
globally, the programmer can reason about their relative in-
teractions and conclude the safety of the update process [4].

In practice, this approach does not work very well. Arguing
about update points is complicated and taxing for the pro-
grammer, so only a few points will exist per thread. Due to
the barrier synchronization, all threads are unable to make
progress once they have reached their update point, regard-
less of whether they could have performed more work safely
while the other threads reach update points. Also, deadlocks
are a prominent concern, and the programmer needs to take
care to evaluate the interdependency of update points if they
add more to alleviate the first concern mentioned here.

2.2.3 Induced update points
For multi-threaded applications, induced update points [4]
add another aspect to the concept of update points to work
around the aforementioned issues. For any programmer-
inserted update point, static analysis generates so-called in-
duced update points, which have the same safety guarantees
as the selected update point. This analysis is conservative,
but effective, in that it allows a per-thread update window
(see figure 4) where updates are safely possible. Now, with
the concern of too few update points alleviated, it would be
possible to use all these update points and just continue with
the old Ginseng implementation. Unfortunately, this does
not address the concern that threads are prevented from
making further progress as they block immediately as soon
as they reach any update point.

2.2.4 Relaxed Synchronization
The other novel technique that STUMP introduces is relaxed
synchronization [4]. Instead of requiring a multi-threaded
program to block each thread at an update point, waiting for
all threads to have reached such a state, and then proceeding
with the update while all threads are blocked, releasing them
only when the update process is completed, STUMP only
requires that update windows overlap (see figure 5).

An update window is a series of induced update points which
are equivalent according to the safety analysis. Threads
check in when they reach the first statement belonging to an
update windows, and check out when they have executed the
last such statement. The update framework’s runtime takes
care of the necessary bookkeeping to know which thread is
currently inside such an update window.

update
point

update
window

Figure 4: Stretching an update point to an update
window; the arrow marks linear program flow

t1 t2 t3

time of update

t2
blocks

Figure 5: Relaxed synchronization: Threads t1, t2,
and t3 progress towards an update. Only t2 has to
block until t1 reaches its window.

This is functionally equivalent to forcing the programmer
to manually specify update windows for each thread, except
that there is a static safety analysis checker preventing mis-
takes. If necessary, additional input allows the window to be
extended if the automatic analysis turns out to be too con-
servative, but is generally not necessary as the evaluation of
STUMP will show.

2.2.5 Evaluation
The time necessary for all threads to reach an update win-
dow is of practical concern, as the evaluation of an imple-
mentation of relaxed synchronization will show compared to
an implementation which does not make use of the concept.

The authors tested their implementation on three differ-
ent multi-threaded server programs: Icecast (a multimedia
streaming service), Memcached (a high-performance mem-
ory caching server) and the Space Tyrant game server with
updates that spanned the time period of one year. Their
results indicate that with a few added update points per
thread and some annotations, quiescence was typically reached
within less than 10 milliseconds. They also tried updating
these programs without the additional techniques developed
for STUMP, but updates either took very long (up to several
seconds) to apply or did not apply at all due to deadlock.

Their overhead measurement for the tested applications showed
that there was at most a 7% slowdown induced by STUMP.
Their framework was able to be used to update all applica-
tions, after manual annotations were applied [4].

2.3 Kitsune
Rather than updating a program lazily one piece of data
at a time, it might also be suspended and then updated
as a whole, similarly to how updating traditionally works
- except that program state is preserved and transformed,
and updating is fast enough to not cause interruptions in
the usage of the program. This is the approach chosen by
Kitsune [2], a dynamic software update system which is in-
spired by Ginseng and UpStare, [3], the latter being another
whole-program dynamic software update tool. For Kitsune,
Hayden et al. combine the approaches of the two previ-
ous systems to enable whole-program multithreaded appli-
cation updates at specified update points, while getting rid
of some of the drawbacks. The whole program update ap-
proach appears more complicated than a lazy approach with
on-demand updating, as the entire state of the whole pro-
gram needs to be converted, including global, local and heap
data as well as program text. A study of the amount of code
writing necessariy to enable a program to be updated by the
Kitsune update system shows that this is not a practical con-
cern, however, as a lot of tools are available to smooth this
process.

2.3.1 Update Runtime
The entire update system is powered by a very small (109
lines of C code) runtime system. An application gets linked
against the update framework as a shared library. The up-
date framework’s runtime is thus the only part of the re-
sulting application which cannot get updated. Due to its
small size and relatively low complexity, it does not have to
change with newer versions of the application.

v1.c kitc gcc -c

xfgenv1.xf
gcc

-shared

v1.sov0.ts

rt.a

Figure 6: Kitsune’s build toolchain

When an update is triggered, the runtime checks for the
availability of a newer version of the software, also linked as
a shared library (see figure 6). Modern operating systems al-
low loading of shared libraries at runtime, so nothing special
has to happen for this step to work. This does not consti-
tute the whole updating process however, as the program’s
state (stack and heap-allocated data, open file handles, open
sockets, etc) all are not updated yet. The following sections
explore how state conversion works in Ginseng, and show
how it differs from Upstare.

2.3.2 Converting Stack Data
Converting data saved in the stack segment is tricky, as the
data here is part of the call stack which might look com-
pletely different in the updated program. One method of
handling this is stack reconstruction as implemented in Up-
Stare [3]. The entire stack of the application has to be re-
created by first being unwound all the way up the call stack
to main, and then rewound to a new point of the applica-
tion, as specified by the programmer. This approach lends
great flexibility, as updates are possible from any program
state, but the runtime costs are very high. All function calls
get annotated to allow UpStare’s runtime to correctly fol-
low the stack, and the amount of correct follow up states
for any given update time is too large to handle efficiently.
The programmer, however, is relieved from the duty to spec-
ify an explicit state conversion function for converting stack
data - the unwind/rewind code inside UpStare handles this
automatically.

Also, in spite of the flexibility afforded by this appraoch and
the high amount of additional code which gets generated,
this does not mean that the programmer only needs to add
a little bit of code for the transformation; instead, very many
stack transitions have to be carefully evaluated by the pro-
grammer. If this mental burden on the programmer is to be
reduced by only allowing a few update points (this is where
Kitsune borrows from Ginseng), a manual approach can be
chosen:

Instead of relying on the programmer to specify where to
rewind the stack to, it is also possible to ask the programmer
to provide update point alongside a conversion function for

this specific update point. x Writing these functions is often
easy, because the programmer already wrote the patch to
the software, so they know what they changed and which
part of the old application maps to the new application. A
typicaly number for the amount of update points per thread
is one or two. Adding more update points might make the
update commence a bit more quickly, but the added burden
on the programmer makes this not worthwhile: The state
conversion functions need to be specified per update point,
and careful evaluation of their safety needs to be performed.

The reward for taking the extra pains of specifying update
points and conversion functions is a very speedy update pro-
cess with no inherent runtime cost while the update is not
being run.

2.3.3 Heap Object Replacement
In addition to the stack, memory allocated on the heap needs
to be converted just the same. Kitsune’s approach here dif-
fers from Ginseng dramatically: Instead of wrapping types,
it explicitly transforms the entire state of the application,
allocating new storage as necessary. This works similarly to
a tracing garbage collector, where the heap is traversed. For
global objects, this is not necessary of course: Their sym-
bols are directly known. If more space is needed, additional
memory is allocated, with the general structure of the heap
being conserved. All no-longer needed old data is freed upon
completion of the conversion process. This means that no
overhead is added while the updating code is not being run,
so application performance should be relatively unaffected
compared to a regular instance of the program running with-
out dynamic update support.

2.3.4 Converting Other State
There is more data to be converted, strings which are saved
in the text segment need to have their locations updated.
This is because after the update finished, the shared library
with the old code gets unlinked from the application, such
that the new program state is just the same as if the up-
date never had taken place and the newer version had been
started directly.

2.3.5 xfgen
To assist the programmer in writing type transforming code,
Kitsune provides xfgen. It makes use of a domain-specific
language which allows access to the complete old program
state as well as all the new state which has been converted
already. The syntax closely resembles C with a few addi-
tions, and the tool generates pure C conversion functions
from the update specification. xfgen is called as a regular
part of Kitsune’s toolchain (see figure 6).

2.3.6 Example
The following code shows a simple program, and what changes
when it gets updated. Initially, config variables are managed
in an array, but in the updated version of the software, con-
fig options are stored in a linked list. The original C code
(listing 1) and the xfgen update specification (listing 2) is
shown.

The update point in the C code is marked by the call to
kitsune update, with its argument specifying an identifier

for xfgen to identify the update point. The kitsunedoautomigrate
call allows all automatic type converters to run, whereas the
part with the kitsuneisupdating call is used to implement
the programmer-specified transition from one state of the
stack to another.

In the xfgen code, $out stores the new value of the updated
type, $oldsym allows access to the original values of the
entire state, and $newtype ensures the updated type is used
when a type is specified by name. The other code is just C
code to do the actual conversion from an array to a linked
list.

Listing 1: C code implementing some kind of con-
fig argument storing in an arary. The code which
will get updated is marked blue, the kitsune specific
hook function calls are marked red
int c foo , c bar , c s i z e ; // con f i g
int ∗mapping ; // array o f c on f i g op t i ons
int main () a t t r i b u t e ((k i t s u n e n o t e l o c a l s)) {

int main sock , c l i e n t s o c k ;
k i t sune do automigrate () ;
i f (! k i t s u n e i s u p d a t i n g ()) {

l o a d c o n f i g () ;
mapping = mal loc (c s i z e ∗ 4) ; }

i f (!MIGRATE LOCAL(main sock))
main sock = setup connect i on () ;

while (1) {
k i t sune update (”main ”) ; // c a l l runtime
c l i e n t s o c k = get connec t i on (main sock) ;
c l i e n t l o o p (c l i e n t s o c k) ;

}
}

Listing 2: xfgen code to transform the type of the
variable mapping from an array to a linked list. xf-
gen specific syntax is marked red, updated types are
marked blue.
struct l i s t {

int key ; int va l ; struct l i s t ∗next ;
} ∗mapping ;

mapping −> mapping : {
int key ;
$out = NULL;
for (key = 0 ; key < $oldsym (c s i z e) ;

key++) {
i f ($ in [key] != 0) {

$newtype (struct l i s t) ∗ cur =
mal loc (s izeof ($newtype (

struct l i s t))) ;
cur−>key = key ;
cur−>va l = $in [key] ;
cur−>next = $out ;
$out = cur ;

} } }

2.3.7 Evaluation
The authors used Kitsune to update 5 programs in total,
three of them single-threaded and two multi-threaded. vs-
ftpd (the Very Secure FTP Daemon), redis (a key-value

store), and Tor (an implementation of an anonymity net-
work) belong to the former category, while Memcached (a
high-performance memory caching server) and icecast (a
multimedia streaming server) make up the latter.

The needed code changes were relatively small, with a max-
imum of 159 lines of code added for the Tor software. This
is due to an effect discussed below. Typically, even smaller
changes were necessary.

The authors were unable to measure a runtime penalty for
the tested applications, but measured up to 18.4% perfor-
mance degradation when using Ginseng and up to 41.6%
degradation when using UpStare to dynamically update the
same applications. The update time itself is typically less
than 40ms, with the exception of icecast, discussed below.

Kitsune uses POSIX reliable signals to notify a running ap-
plication of an available update. It adds a signal handler to
trap the USR2 signal, and trigger its runtime to begin an
update once the next update point is reached.

Tor was a special case, in that it already made use of the
USR2 signal which Kitsune uses to indicate that an update
is to be applied. To support this, they extended Tor’s con-
trol port interface to enable application updates. This is
actually a very realistic scenario, as the control port is used
to generally reconfigure and manage a running Tor relay.
By adding a special update command which hooked into
the Kitsune runtime, they were able to add a mechanism
which Tor controller software could easily make use of to
dynamically update to a newer version.

Icecast took longer to update because it has many threads
which execute sleep cycles which last for up to one second.
The authors note that this does not cause an issue in prac-
tice, and was the reason they did not change the sleep mech-
anism, which would have been an alternative had shorter
update times been a requirement.

2.4 Comparison
Ginseng only works for single-threaded applications, whereas
both STUMP and Kitsune are able to deal with dynamic
updates to multiple threads. Therefore, only the single-
threaded features of each system are compared first, and
an analysis of the additional differences between STUMP
and Kitsune follows.

All three tools offer the programmer support in writing the
code which is necessary to transform state correctly, either
via annotations or via xfgen instructions. Both approaches
are more conservative than a carefully operating program-
mer would have to be, and in some cases manual intervention
is required. This is always true when new fields are intro-
duced to structures, because the tools cannot know what
kind of initialization needs to be run before execution of the
updated program can proceed.

Ginseng values fast update times over runtime overhead,
which means it can generally apply updates very quickly.
This is implemented using calls into the Ginseng runtime
system at programmer-specified points, which means the
programmer needs to ensure they specify enough update

points that one will always be reached quickly. The pro-
grammer, of course, has to take care that it is also a suitable
update point - meaning that they have to ensure code higher
up the call stack is sufficiently loop-extracted to ensure the
updatability of all parts of the program. This means that
adding a new update point can be tricky, because it might be
necessary to add additional loop extractions for code looking
nothing like an infinite loop.

STUMP is based on Ginseng, and thus is very similar in ar-
chitecture and work requirements for the programmer. Be-
cause it uses induced update points, which it infers auto-
matically from an update point provided by the program-
mer, updates can often be applied more quickly. This does
not mean, however, that the burden of the programmer to
ensure picking good update points is lifted.

Both systems add quite a bit of overhead even to a not-yet-
updated program, because they need calls into their runtime
at update points (for Ginseng) and to check in and out (for
Kitsune). Additionally, type padding does not only mean
more memory is used for each value of a type, but also that
properties such as cache locality can degrade heavily. If,
however, the costs of these issues are manageable, both pro-
vide the ability to execute an update very quickly and lazily,
meaning there might be a short period of time where appli-
cation performance degrades somewhat, but the application
does not need to stop to execute the whole update.

Additionally, after an update is applied, some old data will
remain. This means that a program’s memory usage can
grow over time as updates are applied.

Kitsune, on the other hand, tries not to degrade runtime
performance at the cost of taking a bit longer for an update.
Its approach is that of whole-program update at some spec-
ified update points. This means it does not improve on the
burden of the programmer to specify these update points.
What it does do away with, however, is loop extraction. Be-
cause the whole program is updated at once, with all state
transformed immediately, even code that would have been
executed after a long-running loop terminated does not need
to be handled specially. Unfortunately, some cases remain
where the programmer needs to write more code, but Kit-
sune’s goal is to make that code easier to understand.

Ginseng/STUMP and Kitsune have a philosophical differ-
ence with regard to programmer interaction with them. Kit-
sune wants dynamic software update ”a first-class program
feature”[2], whereas Ginseng/STUMP care more about mak-
ing fewer changes to a (probably pre-existing) software base,
at the expense of those changes being harder to reason about.

3. CONCLUSION
Several effective approaches exist to allow dynamic software
updates of general-purpose software written in the C pro-
gramming language. They have been tested with many open
source server applications, and the results are satisfactory.
Depending on the non-functional requirements for a given
piece of software, and the relative maturity of it, allows
choosing one over the other.

Ensuring the safety of such updates is supported by tools

that aid the programmer in the automatic generation of
patches, with only some manual intervention necessary. Even
for multi-threaded applications with long-living stateful in-
teracting threads, the concept of update points allows safe,
state-preserving updates which execute quickly.

For the software developer, enabling their software to be
updated dynamically is not as easy as simply linking in a
library, but it also typically is not a task that would require
re-designing the entire application. The benefits to the end
user can very well be worth the work to enable dynamic
software updating.

While both tools make different safety/performance trade-
offs, they are not too far away from each other in terms of
performance, so using the framework which the programmer
finds more comfortable seems like the best way forward.

Kitsune’s approach seems to be more appealing to me, as its
goals include easy integration into the regular application
development process; with easier to reason about safety re-
quirements. If the maximum time allowed for an upgrade is
more important than general application performance, Gin-
seng/STUMP can apply their strengths.

4. REFERENCES
[1] J. Arnolds. Ksplice: automatic rebootless kernel

updates. In Proceedings of the 4th ACM European
conference on Computer systems, pages 187–198, April
2009.

[2] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks,
and J. S. Foster. Kitsune: Efficient, general-purpose
dynamic software updating for c. In Proceedings of the
ACM international conference on Object oriented
programming systems languages and applications, pages
249–264, October 2012.

[3] K. Makris. Whole-program dynamic software updating.
PhD thesis, Arizona State University Tempe, AZ, USA,
2009.

[4] I. Neamtiu and M. Hicks. Safe and timely updates to
multi-threaded programs. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language
design and implementation, pages 13–24, June 2009.

[5] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for c. In
Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation,
pages 72–83, June 2006.

[6] G. Stoyle, M. Hicks, G. Biermann, P. Sewell, and
I. Neamtiu. Mutatis mutandis: Safe and predictable
dynamic software updating. ACM Transactions on
Programming Languages and Systems, 29(4):22, August
2007.

[7] G. P. Stoyle. A Theory of Dynamic Software Updates.
PhD thesis, University of Cambridge, 2006.

