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ABSTRACT
Commodity operating systems regularly release patches to fix

security vulnerabilities and other bugs. Updating an operating

system typically requires rebooting it, which causes temporary

loss of availability of services. Delaying an update is also not

suitable because of the high risk of security vulnerabilities.

Updating an operating system without downtime is a desired

feature for many critical tasks running on them. 

In this paper, we evaluate different frameworks for patching the

Linux Kernel on-the-fly. The evaluated frameworks support

different ranges of possible patches and upgrades. The first

framework covers live updating the Linux Kernel using

virtualization technologies. In that context, a prototype called

LUCOS, which updates the Linux Kernel running on XEN

Virtual Machine Monitor (VMM), is explained [1]. Besides that,

DynAMOS, which employs a dynamic code instrumentation

technique termed adaptive function cloning [2], will also be

mentioned. Another framework, called Ksplice, which operates at

the object code layer and supports hot Linux security patch

updates with little or no programmer involvement [3], will be

examined as well.
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1. INTRODUCTION
The process of applying patches usually requires rebooting a

running operating system, which requires costly supervision.

Rebooting can result in the loss of availability of critical

tasks/processes running on that operating system. With the

increasing usage of this sort of systems over time (e.g. by

webhosting companies), patching the operating system without

stopping and restarting it has become a critical feature [4]. Fast

reboots or live migrations of processes are not a desired option,

since these can result in unacceptable disruption of the services.

Therefore, reboots are specially scheduled and supervised

typically by system administrators. 

Because of its costly supervision, system administrators tend to

delay performing security updates. Since more than 90% of the

attacks exploit known security vulnerabilities [11], delaying the

updates exposes a great security risk and the kernel will be

vulnerable to security flaws. Major Linux distributions ask their

customers to install security updates more than once per month

[8]. System administrators are forced to trade off the unplanned

downtime against the increased vulnerability of a security flaw. 

The target of updating an operating system on the fly is to

minimize the planned and unplanned downtime and to prevent

costly supervision of the reboots. Contemporary operating

systems are large and complex and they are not designed with a

live update capability in mind. Unlike the object oriented

operating system kernels like K42 [9] [10], the commodity

kernels do not have well defined boundaries between its modules

and components. Moreover, defining the updatable unit,

achieving a safe point for the update and detecting the idle or

quiescent state of the units require employing additional

techniques. Furthermore, some modules rarely enter to quiescent

state (e.g. Network modules in webservers) or do not have a

quiescence state at all (e.g. Linux process scheduler). Besides that,

different rollback and versioning strategies and more complex

solutions for redirecting invocations from the original unit to the

newly updated unit should be applied. Finally, changing the

semantic of a function or triggering a kernel module through

update units can result in a dead lock situation or an inconsistent

state [1].

To cover all these problems, we evaluated two proposals for

updating operating systems without rebooting it. In the first

approach, system virtualization is argued as a seamless capability

to support live updates. A Virtual Machine Monitor (VMM)

allows us to modify the state of an operating system running as a

guest operating system on a Virtual Machine (VM) without

rebooting or stopping it [12]. In order to exploit that feature and

test the live update capability of such a system, a working

prototype, named LUCOS, is evaluated [1]. On the other hand,

Ksplice analyzes the original kernel and source code patch by

comparing the object code rather than the source code. For

creating live updates, Ksplice uses two techniques called pre-post

differencing to generate object code for the patch and run-pre

matching to resolve symbols. While investigating the methods

proposed by LUCOS and Ksplice, DynAMOS will serve as a

reference framework for comparing the characteristics of the

solutions.

2. CLASSIFICATION AND OVERVIEW 

OF THE SOLUTIONS
Kernel updates are commonly classified in two categories: 

• Updates that modify the code: Updates affecting code

only may introduce new global variables and data

structures while keeping the existing data structures

unchanged. 

• Updates affecting both code and existing data: The

changed data structures can be global, single instance

data or multiple instance data.



Usually changes in the data require changes in the code as well.

Therefore we exclude updates changing data only. Updates

affecting the code can be divided into two subcategories: Updates

that change the semantic of the patched code and updates that

maintain semantic equivalence with the original code [1] [2] [3].

Besides that, the live kernel updates have the following three

important characteristics [2]:

• Quiescence. A resource becomes quiescent if no parts

of the resource are in use, either by sleeping processes

or partially-completed transactions. Some resources

never reach quiescence state such as the scheduler of an

operating system.

• Safe update points. A point in time where the resource

is temporarily inactive (but not in quiescence state) and

can be updated safely.

• Userspace, external and internal requirements.

Modifying the behavior of a system call will change its

userspace requirements. Updating the API of a kernel

subsystem changes the external requirements of that

subsystem. Finally, some updates can change the

internal implementation of a kernel subsystem without

a side effect in the rest of the kernel. Such updates

change the internal requirements of that subsystem.

2.1 Using Virtualization for Live Update

As shown in Figure 1, the Virtual Machine Monitor (VMM), also

known as a hypervisor, is in full control of system resources such

as processor(s), memory and hardware devices. A VMM is able to

retain selective control of processor resources, physical memory,

interrupt management, and I/O. It can also intercept and emulate

accesses to the memory and I/O address space executed by the

VMs [12] [13]. Thus, using VMM to track and update the guest

operating system without rebooting it, or without detecting the

quiescence state of the updated unit can be possibly employed as a

convenient technique. 

As stated in [1], quiescence state of the updated unit is not a

prerequisite for the LUCOS framework. Thus, live updates are

possible any time. While executing the patch, the VMM takes the

responsibility of maintaining the coherence of different data

structure versions by calling state transfer functions.

2.2 Hot Updates at the Object Code Level
Ksplice, DynAMOS and LUCOS extension allow system

administrators to apply live updates to a running Linux kernel [1]

[2] [3]. Most Linux kernel security patches do not make semantic

changes to data structures [3]. Unlike DynAMOS and LUCOS,

Ksplice can operate at the object code layer and its design allows

to generate automatic patch construction for the security patches

that did not introduce semantic changes to data structures. For

doing that, Ksplice requires a programmer for checking the

patches whether they make any semantic changes to data

structures. For the patches that do introduce semantic changes,

Ksplice requires extra source code to be written. 

3. DESIGN AND IMPLEMENTATION 

OF THE SOLUTIONS

This section explains the design and concepts of Lucos and

Ksplice for updating the kernel on the fly. For applying patches,

DynAMOS, Ksplice and Lucos epmloys the following common

methods:

• Stack walk-through method. This method is mainly used

for quiescence state detection. The framework iterates

each kernel thread and inspects each thread's call stack

for determining if it is running within the function to be

patched. As illustrated in Figure 2, for doing that, a

copy of the stack pointer of a process is decremented

until its value reaches the bottom of the stack. An

updated function is in use, if any address belonging to

that function can be found on the stack below the stack

pointer's value.

• Binary rewriting is employed for adding a jump

instruction to the first 5 or 6 bytes of the function to be

patched. By applying this method, the execution is

safely redirected from the original function to the newly
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added function. Before doing that, it is necessary to

make sure that no thread context or interrupt context is

currently executing in the first 5 or 6 bytes of the

function to be patched. Therefore, the framework

iterates all kernel threads of the operating system, and

makes sure that none of them is executing between the

starting address of the function to be patched and 5 or 6

bytes beyond that address.

Since Linux supports executable code injection, the patch files are

injected in the form of loadable kernel modules.

3.1 Architecture of LUCOS
As depicted in Figure 3, LUCOS consists of three components. As

a user mode application, the control interface is responsible for

controlling the patching process such as starting or rolling back an

update. The Update Manager, which serves as a proxy between

the control interface and update server, verifies the overall patch

legitimacy requested by the Control Interface. After the

verification, the Update Manager sends the request to the Update

Server via hypercall. Hypercalls or known as VMMCalls are

instructions that allow guests to explicitly make system calls to

VMM [12] [13]. After the hypercall, the control is passed to

VMM on the corresponding processor core via VMExit. At this

point, update Server is responsible for applying the patch.

Redirecting function calls, setting up necessary data structures for

data consistency between different versions of data structures and

invoking state transfer functions are the main functionalities of the

update server. After executing the patch request, the VMM will

pass the control to the VM, and the operating system will be

active on that processor core again. 

In order to maintain the coherence of the newly defined and old

data structures, for each modified data structure, a state transfer

function should be provided. For the patches that have semantic

changes in the code, again a state transfer function should be

provided to prevent deadlock conditions and other

inconsistencies. 

Generally speaking, the accepted patches may include all or parts

of the following units: New declaration of data structures,

callback functions, patch startup and cleanup functions and state

transfer functions. Among them, callback functions and state

transfer functions are required for the core functionality of the

framework. Three types of callback functions are supported. 

• Function callbacks, which are called when a thread

leaves a function being patched.

• Thread callbacks, which are called when all threads

have left a function being patched.

• Data callbacks, which are called when all threads using

a data structure have left all their functions

manipulating that data structure.

3.2 Performing Live Updates using 

LUCOS
Lucos applies live updates in three steps. 

3.2.1 Patch Initialization
As the first action, the update manager, which is a loadable kernel

module, needs to gather needed information about the state of the

operating system. This includes counting the number of threads or

interrupt contexts executing in the code to be patched, invoking

the startup function provided by the patch module and doing other

initialization work before passing the control to VMM. 

Applying patches affecting only the code without changing the

semantic of the patch code is done by applying binary rewriting

method for replacing the first 5 bytes of the original function with

a relative jump instruction addressing the new function, as

illustrated in Figure 4. For the updates affecting both the code and

existing data, in case there are no threads or interrupt contexts

running in the code to be patched, the Update Server does not

need to monitor the states of the newly defined and the original

data structures. In that case, the update can be simplified to “code

only update", after transferring the state from the old data to the

new data through state transfer functions. On the other hand, in

case there are threads or interrupt contexts running in the code to

be patched, applying changes affecting both code and data

requires additional steps for ensuring the coherence of the data.

After the patch initialization step, the control will be passed to the

VMM via Hypercall.
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3.2.2 Patching the System
As the second step, the Update Server starts patching the

operating system's data structures and functions. If the updated

modules are not in quiescence state, both the old and new version

of data structures must exist during the patching process. For

ensuring the coherence of the coexisting data structures, accesses

to both data structures need to be monitored and intercepted by

the VMM. For doing that, the VMM will write protect the pages

of the original data and newly introduced data in order to intercept

the accesses to these pages. For that purpose, the x86 architecture

provides two memory virtualization possibilities. As the first

generation solution, shadow paging can be employed, which is

keeping shadow page tables in the VMM for the VM's page

tables. This software based approach is rather slow and generates

lots of VMExits for every page fault exception that occurs while

the guest operating system is running. The second generation

solution is hardware supported memory virtualization, known as

Intel's extended page tables or AMD's nested page tables, which

has dramatically increased the performance by rendering shadow

page tables in the VMM unnecessary [12] [13].

In case the VM attempts to write to a monitored page, which

contains either version of the data structures, a VMExit will occur

and the control will be passed to the VMM. At this stage, the

Update Server can either find out the exact memory location and

emulate the instruction that has caused the VMExit or disable the

protection of the page and set a single step flag in x86. LUCOS

uses the second method and compares the contents of the two

versions of the monitored data structure after the single step

debug exception and invokes the state transfer function to

guarantee the consistency of the two versions of the data.

As demonstrated in Figure 5, the state transfer function needs to

be called in case of a write access to the protected data structures

intercepted by the VMM. 

3.2.3 Terminating the Patch
As the last step of the live update, the Update Server needs to

eventually detect that the original data structures are no longer in

use and disable the monitoring of the pages for the corresponding

data structures in VMM. For doing that, LUCOS uses stack walk-

through method [14]. In case the corresponding function is in use,

the update manager replaces the return address of the original

function with the address of a stub function, which in conclusion

enables LUCOS to detect if an updated function is still in use. At

the end of the patching process, functions manipulating the data

structures and data structures manipulated by functions will

become inactive and the thread callbacks and data callbacks will

be invoked through the replaced stub functions respectively.

Eventually, the update server does some patch cleanup and sets an

update finished flag in order to inform the update manager.

3.3 Architecture of Ksplice
In contrast to Lucos, Ksplice does not require virtualization

technologies for applying hot patches. Ksplice operates at object

code level and its novelty lies in its effectiveness in creating hot

patches through pre-post differencing and run-pre matching for

quiescent threads[3], besides supporting DynAMOS methods for

updating non-quiescence kernel threads. 

Before applying a patch using Ksplice, a programmer needs to

check if the patch is making semantic changes to the kernel's

persistent data structures. As mentioned, Ksplice supports

automatic patch construction for the updates that do not make

significant changes on kernel data structures.

3.3.1 Pre-Post Differencing
In order to create replacement code, Ksplice first analyzes object

code level differences. For doing that, Ksplice makes two kernel

builds, one with the original kernel code, other with the patched

kernel code. As depicted in Figure 6, the first build with the

original kernel source will create object files, which is called pre

object files and the second build will create the so called post

object files. Unlike the source code changes, analyzing object

code differences between the pre and post object files enables us

to understand which functions were changed by the patch. In

order to prevent unnecessary differences and location detection

difficulties for finding out function and data structures in its

executable text, kernel builds are done with the -ffunction-

sections and -fdata-sections compiler options. Using these

options forces the compiler to place each function or data item in

its own section in the output file. By using these options, most of

the kernel functions that have not been changed by the patch will

have same pre and post object codes. For various reasons, still

some of the object files may differ even if there is no affected part

by the patch in the corresponding function. Ksplice safely

replaces these functions too even if it is unnecessary. After the

pre-post differencing step, Ksplice detects the changed functions

and puts them into a kernel module, named as primary module,

for loading them into the kernel.
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3.3.2 Run-pre matching
At this point, the symbols referenced by the primary module's

relocations are yet missing. Ksplice developers denoted that using

the kernel's symbol table for resolving the symbols might be

problematic in case of non unique or nonexistent symbol names.

Relying on source code info is also not enough to extract required

information from the symbol table. 

Another problem arises when detecting the safety of the update

systems, such as detecting locations where a non-inlined function

is inlined. In that case, using source code comparisons between

the old and the new versions of the function is also not sufficient

since compilers tend to also inline functions that do not have the

inline keyword.

As illustrated in Figure 6, in order to solve these issues, Ksplice

compares the running kernel code with the compiled original

kernel code or so called pre code. This process is called run-pre

matching. As a result of that comparison, the inlined functions can

be detected and, moreover, the symbols can be resolved. 

3.4 Performing live updates using Ksplice
As stated before, Ksplice needs to detect a safe time to apply live

updates. For that purpose, Ksplice calls the stop_machine

function provided by Linux in order to stop all of the CPUs and

run the desired function on a single CPU. In that particular time,

Ksplice applies stack walk-through method and if every function

being replaced is in quiescent state, the safety condition is met

and Ksplice can proceed with applying the patch. In that case, the

replacement code will be loaded to the kernel and jump

instructions will be inserted into the old functions by applying

binary rewriting.   

Calling stop_machine, checking safety conditions and updating

the kernel takes about 0.7 milliseconds to execute. If the safety

conditions are not met, after a short time, Ksplice tries to call

stop_machine again. After multiple failures to reach a safe state,

Ksplice aborts the update and reports an error to the user.

Ksplice also supports custom code for modifying data structures

during the function replacement operation, as required by the

patches making semantic changes to data. 

4. EVALUATION

4.1 Performance
In [1] it is stated that the Xen-Linux of LUCOS incurs a less than

1% performance loss in comparison to Xen-Linux. DynAMOS

reports an overhead on the kernel functions in the range of 1-8%

after applying its updates [2]. Ksplice claims a minimal

performance impact for applying patches [3]. The execution of the

whole system will be delayed for 0.7 milliseconds whenever

Ksplice calls the stop_machine function for quiescence

detection, which likely violates strict timing constraints of the real

time systems. No information is given about the performance

impacts of executing LUCOS patches on real time operating

systems running in the guest mode.

4.2 Patch Rollback
Any update to the operating system should be transactional to

avoid corrupting the whole system. Both LUCOS and Ksplice do

support rolling back the patches. Rollbacks are patches using the

original code left after the committed patches. For restoring the

code changes, the first 5 bytes of the functions should be restored.

In case of data changes, the state transfer functions are reused for

maintaining the consistency. 

4.3 Known Issues
The stack inspection method used by LUCOS, DynAMOS and

Ksplice can cause some performance problems especially when

the system is under heavy workload.

For supporting rollback patches, keeping the original code in

memory can lead to some performance and resource overhead.

LUCOS, DynAMOS and Ksplice do not offer any particular

method for verifying the correctness of the patches. The

verification of the patches is left to the programmers and testers. It

is emphasized in [1] that the patch cannot be rolled back if the

kernel collapses when executing a buggy patched function. 

5. DISCUSSION AND RELATED WORK
Dynamic software updating techniques cannot be applied to the

existing operating systems. Therefore, new techniques have been

implemented.

Ksplice can automatically update kernel modules if they are in

quiescence state. On the other hand, LUCOS and DynAMOS are

not limited to the modules having quiescent state [1] [2] [3]. K42

[9] [10] has short living and non blocking kernel threads.
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Therefore detecting quiescence is easier. Unlike K42, quiescent

detection of LUCOS, DynAMOS and Ksplice requires special

techniques such usage counters of the functions and stack

inspection of the processes. 

DynAMOS identifies non-quiescent functions by their utilization

of synchronization primitives. For enabling synchronized updates

of these functions, DynAMOS employs an algorithm called

adaptive function cloning [2]. This algorithm is applied in three

phases, which includes creating different versions of the original

function, implementing usage counters for these versions and

using global flags for determining which version to be used. For

managing execution flow diversions between different versions of

the functions, DynAMOS installs an execution flow redirection

handler [2]. LUCOS realizes the functionality of that approach

through its state transfer functions, whereas it classifies that

operation as updates affecting code and data. Since the

virtualization technologies allow LUCOS to intercept and alter the

function calls accessing data structures via VMExits, the required

logic for function redirection will be triggered in the host mode.

Therefore, unlike DynAMOS, creating global flags or execution

flow redirection handlers in guest mode is not needed.

For redirecting function calls, binary rewriting is used by

LUCOS, DynAMOS and Ksplice to patch the original function

with a jump instruction [1] [2] [3]. DynAMOS redirects the

function calls to an execution flow redirection handler, whereas

LUCOS and Ksplice link the calls directly to the new version of

the function.

For data-type updates, whereas LUCOS exploits virtualization

technologies for monitoring accesses to data structures and

maintaining coherence of data structures, DynAMOS uses their

newly developed technique, which uses shadow data structures.

Unlike LUCOS, DynAMOS does not transfer the state of the old

data structures to the newly defined ones. Instead, for each new

data type, DynAMOS maintains a shadow data structure.

DynAMOS creates a shadow variable upon creation of variables

of the new data type, which contains only the new fields of the

new data types [2]. A hash table is used for mapping the memory

address of the variable into its shadow. Ksplice is also able to

utilize shadow data structures described in [2]. 

Dynamic updates in K42 are limited to K42 object classes [9]

[10]. Low level code cannot be updated dynamically. On the other

hand, LUCOS and DynAMOS can update the low level code and

exception handling code.

LUCOS, DynAMOS and K42 do not support automatic patch

construction [1] [2] [3] [9] [10]. Updates are prepared by the

programmer at the source code layer. Constructing updates

manually requires analyzing the patch and writing update code for

that patch, which is a quite complex and error prone process.

According to the evaluation reported in [3], 56 of 64 x86-32

Kernel security patches released from May 2005 to May 2008 can

be applied by Ksplice without a programmer involvement. On the

other hand, Ksplice requires a programmer check on the updates

for determining if they make semantic changes to data structures.

Performing this check takes a few seconds to a few minutes for

most security patches. Ksplice is available as a part of Oracle

Linux [7].

New developments in virtualization technologies allow a

hypervisor to selectively monitor system resources with decreased

numbers of VMExits and without suffering from increased

hypervisor overhead and performance losses. Therefore, patching

real-time Linux systems using virtualization technologies may be

a convenient method for mission critical systems. 

 

6. CONCLUSION
We have evaluated different frameworks for applying updates to a

running kernel without rebooting it. 

LUCOS is a prototype for updating a running Linux kernel

without disrupting its services and without causing extra

performance overhead on the VM by exploiting the virtualization

technologies [1].  

Ksplice has proven its practicality for creating patches with

minimum programmer involvement. It also introduces two new

object code analyzing techniques, pre-post differencing and run-

pre matching. Ksplice is not limited to security patches. Another

usage of Ksplice is to support Linux users for applying specific

patches that are developed for the local issues and bugs on their

servers.
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