
Dynamic updates for object-oriented operating-system
kernels

Tobias Langer
FAU Erlangen-Nuremberg
Tobias.Langer@fau.de

ABSTRACT
Modern operating systems have high requirements for ser-
vice availability, making maintenance downtime very expen-
sive or even impossible. However the threat of unfixed se-
curity vulnerabilities on a running system is too high to re-
frain from installing security updates or scheduling them for
later. And also other non-security relevant updates might
be needed for the system.

Dynamic update is an approach to counter the trade-off be-
tween expensive service downtime and the need for updates.
Updates are applied at system runtime and become effective
after installing the update completed. An object oriented
operating system design has shown to be a good foundation
for the implementation of dynamic update systems.

This paper presents techniques for the application of dy-
namic update in object oriented designed operating systems.
Dynamic update will be introduced in general. The concepts
then are extended and applied to object oriented operating
systems. Additionally an implementation of dynamic up-
date in the K42 operating system kernel will be discussed.

Keywords
Object Oriented Operating Systems, Dynamic Update Sys-
tems

1. INTRODUCTION
With the wide spread use of computer systems, software up-
dates have become very common nowadays. Among these
updates are fixes for bugs, security updates, performance
upgrades and updates introducing new features. The instal-
lation of these updates always requires maintenance time
and requires a reboot of the service, resulting in downtime.
With the high availability requirements to modern operat-
ing systems, downtime becomes more and more expensive
and is avoided where possible.

System administrators therefore have to weigh the impor-
tance of an update in respect to the costs resulting from the
downtime. Often maintenance downtimes are scheduled for
the service to install update sets. Especially the installa-
tion of security fixes is usually very time critical. System
administrators can not afford to schedule these updates for
a maintenance shut down in the following month. The re-
cent discovery of the “Heartbleed” vulnerability is a great
example for the importance of such upgrades.

With the high availability of modern IT-systems, also sched-
uled shutdowns for non-security relevant updates are costly
and should be avoided where possible. Any reboot or restart
of a system results in a period of unavailability of the process
and state loss of the system.

One solution for the requirement of patches under the con-
straint of high system availability is dynamic update. Dy-
namic update refers to a set of technologies which allow sys-
tems to be upgraded at runtime with no need for reboot.
The applied updates become effective after the updating
process has completed. The term originally stems from the
field of application software but was recently adopted to
operating systems [3, 6, 5, 4, 2]. Operating systems yet
have even higher requirements than service applications. As
operating systems provide their own runtime system, which
should be dynamically updatable itself, the requirements for
such a system differ fundamentally from dynamic update
systems for application software. The operating system it-
self must provide manners to track the usage of updateable
units.

The dynamic update system on the other side should work
on a level as fine grained as possible and should support
as many changes as possible to be useful for most of the
required updates. Furthermore a dynamic update system is
only usable when it does not affect the overall performance
of the application.

2. DYNAMIC UPDATE
Dynamic update is a term for rebootless, state conserving
update method for software. It was first introduced by Lee
with the DYMOS system [8] for programs written in a Mod-
ula derivative.

Today there are several approaches to dynamic update.
Among these are specialized compilers which insert special
update points or redirections into the compiled programs,
making them dynamically updatable [10]. Others use binary
rewriting to update a running program [2]. With binary
rewriting the existing code segment or function is rewritten
with new code in the text segment of the application. No-
table is the attempt made with UpStare [9], in this dynamic
update system no explicit update points are needed. Instead
the system does a complete stack reconstruction, where the
current stack layout is mapped to a new stack layout. This
also allows more complex scenarios, e.g. nested function
calls and recursion.



Dynamic update has also been successfully applied to op-
erating system kernels: The Ksplice tool [2] implements a
dynamic update system for the Linux kernel. To update
the kernel, Ksplice stops the execution of the computer, ex-
cept for the Ksplice application, applies the patch for the
corresponding functions with binary rewriting, updates af-
fected data, and resumes computation afterwards. Even
though the state of the operating system is restored, this
approach requires a complete stop of the whole operating
system which may lead to brief periods of unavailability of
the whole system.

2.1 Principles
In order to develop a common foundation of theoretical es-
sentials and requirements for dynamic update systems, it is
worth taking a look at the various types of updates which
exist for software. One way to classify updates is to do so
by looking at the extent of change they introduce into the
updated program. In general a more flexible update sys-
tem allows more powerful modifications to the underlying
program, they tend to become more complex to implement
though.

When examining the kind of changes which can come with
updates, one can distinguish between three types of updates,
which have increasing complexity for the realisation within
a dynamic update system, but also allow more in depth
changes of the modified system itself:

• Code changing updates: These updates exclusively
change the code of the underlying system. Code chang-
ing updates are in general the easiest to realize. A
code changing update can be implemented by binary-
rewriting of the corresponding location in the text seg-
ment with updated code. Another possibility is ad-
justing invocations so they point to the updated code
instead of to the old code. When doing this, it must
be ensured that all references to old code are replaced
completely.

• Code and data structure changing updates: These up-
dates do not only change existing code, but also the
layout and content of data structures. This is e.g. the
case, when an additional element counter is introduced
into a list data type. When updating, all existing
instances of the data structure must be transformed
into the new data structure. Furthermore it must be
ensured that future instances are by default created
according to the new scheme. Any code changing up-
dates can be resolved as for simple code updates.

• Interface changing updates: In contrast to the previ-
ous two update types, interface changing updates in-
troduce or remove functionality into or from the up-
dated code and modules, which effectively leads to an
altered module interface. This is the case when new
classes are introduced to or removed from the soft-
ware architecture, when classes get new methods, or if
classes are merged or split. Interface changes also ap-
pear when the signature of methods is altered, mean-
ing when parameters are added or removed or when
the return value is changed. In principle these up-
dates can also be resolved by changes of references,

however additional attention must be paid to back-
wards compatibility. Additionally one must take care
to make the new interface known to the system. An-
other implementation for interface changing updates
would be interposing objects which act as Adapters to
the original object. Using the Adapter pattern allows
to modify the external interface, without a need for
changes inside objects.

Baumann et al. present a similar classification in [5], whereas
they lay focus on the necessary effort in relation to the limi-
tations of the dynamic update system. For this they rule out
interface changing updates completely and differ between
the amount of data structures which have to be changed for
the update instead. This distinction between different types
of data structure changing updates comes from the consider-
ation that there will be substantially less effort in replacing
one single global data structure, e.g. the page management,
in contrast to tracking and changing structures with a high
number of instances, such as process control blocks.

The different update types can be summarized as code chang-
ing and structure changing updates. For the latter ones
simple statical replacing is not sufficient. As there might
be alive instances of the structures or processes which wish
to access modules whose interface changes when applying
the update, one must take care of the state of the running
program as well. At design time of the dynamic update sys-
tem one can already take account for the supported update
type. The feasibility of different update types depends on
the chosen minimal updatable unit, whereas this can range
from code snippets, to whole functions, objects or modules.

In [7], Gupta, Jalote et al. present a theoretical framework
to describe dynamic update systems in general. Any running
system can be described by a tuple (s,Π), with the running
code Π and its internal state s. Applying an update effec-
tively maps this tuple to the tuple (s′,Π′). The mapping of
the program code can be solved by the above listed manners.
For the state transfer a special function must be given. This
function is called the state transformer function and must
guarantee that the original state is converted in such a way
that the updated code can handle the updated state.

The main problem for dynamic update systems is the update
of resources, code and state alike, when they are currently
in use, and avoiding erroneous behavior. Altering running
code of a function while the processor is executing this code
is almost certain to lead to unexpected behavior. One way
to avoid this problem is for the dynamic update system to
wait for so called safe points1. At these safe points, the
update system is guaranteed to be able to update code and
the state without the hazard of running in erroneous states.

Summarizing any dynamic update system has to follow a
general flow when applying an update to a system. In [3]
Baumann et al. describe this flow as follows:

1In some literature the safe points are also called update
points. The also often noted quiescence points mean points
where no thread exists which involves the to be updated
resources.



• Apply updates at safe points A change to the running
system may only occur when one can assure that the
update does not result in unexpected behavior, as e.g.
the system state becomes invalid.

• Transfer of state information Whenever the updated
unit carries a state, the update must ensure that state
is valid for the updated program code as well.

• Invocation redirection Any invocations to the updated
unit must lead to the new version of the code, rather
than to the old one.

2.2 Dynamic update for operating systems
In contrast to application software, operating systems im-
pose further demands to dynamic update systems. They do
not have a designated runtime system but rather provide
their own runtime system. This means that the operating
system must itself implement the means for a dynamic up-
date system.

In [5] Baumann et al. identify these means which dynamic
update systems demand from an operating systems:

• Updatable unit The system must define an updatable
unit, meaning that the exchangeable parts must have
a fixed, well defined update interface and behavior,
so any update can work uniformly. This requires the
operating system to be designed with modularity.

• Safe point As stated above, the system must support
certain points where the dynamic update system knows
for sure that the updated data and code is not cur-
rently accessed or executed. This can be guaranteed
by special safe points, by detecting the access to data
and code and explicitly blocking the access to these
resources, or by checking the system for idle time or
quiescence. With operating systems such a quiescence
point occurs when the event queue runs empty.

• State tracking As the dynamic update system not only
has to update the code, but also transfer the old sys-
tem state into a new one, the operating system must
provide a mechanism to easily access all instances of
state holding data.

• State transfer To allow the update system to transfer
the current state of the operating system to the new
state, the operating system must provide a mechanism
for the replacement of state holding units.

• Redirection of invocations After an update all calls and
references should point to the updated code. The op-
erating system must thus enable easy redirection of
references. Thinkable would be a global reference ta-
ble which resolves all invocations.

• Version management The more updates are applied
to the system, the higher is the chance for dependence
between updates. To prevent invalid states or bro-
ken code, the system must implement means to check
whether all premises for updates are given. The inter
update dependencies thereby can become quite com-
plex, appropriate mechanisms must be provided.

In the case of interface changing updates, user space
programs must also have a possibility to check the cur-
rently supported interface of the kernel.

3. DYNAMIC UPDATE WITH OBJECT ORI-
ENTED METHODOLOGIES

Dynamic update support should ideally be designated at
design time of the operating system. Especially object ori-
ented designs offer the means for a well structured design
with respect to extendability with dynamic update.

The above named requirements for an operating system with
dynamic update support can be realized by object oriented
means with little effort. In a fully object oriented operating
system, the minimal modular unit is an object. Objects on
the one hand “contain” executable code in their methods.
On the other hand they carry a certain state. Thus they
contain both things one wants to change with an update,
code and state. It seems therefore natural to set objects as
the minimal updatable unit for the dynamic update system.
To enable as much flexibility as possible, as many function
calls as possible should be not bound statically, but resolved
at runtime. If now a module of the operating system is to
be updated, one must simply exchange all objects involved.

Coming from the updatable unit, the methods for the real-
ization of the other requirements have to be developed and
are highly depending on the structure of the operating sys-
tem itself. In the following some general methods for the
update of objects will be discussed. A concrete realization
of the other requirements will be discussed later on.

3.1 Interposition
Interposition describes means where a new object C is in-
serted between two existing objects A and B. All calls from A

to B are then effectively redirected to C. This allows a series
of modifications to the original control flow.

The interposed object has effectively the means to redirect
or suppress any call to the original object. By reimplement-
ing methods of the old object with updated code, fixes can
be applied. Also prologues and epilogues for the original
method call are thinkable.

Interposing also allows the implementation of interface chang-
ing updates by using the Adapter design pattern. To add
new functionality to an existing object, the interposing ob-
ject is implemented as an Adapter for the existing object and
inserted between the caller and the updated object. From
the view of the caller, the old object has a changed interface,
as the former is unaware that there is an Adapter inbetween
the two old objects. The original object itself remains un-
changed. In Figure 1 an interposed object is shown, which
adds further functionality to an existing object.

Using interposition however also leads to additional indirec-
tion, which results in the worst case in unnecessary over-
head. Furthermore only a small amount of the possible up-
dates can be covered with this technique, as the state of the
underlying object can not be updated but only substituted
or supplemented by the state of the Adapter object. Ad-
ditionally the original object remains in memory. Updates



Figure 1: An interposing Adapter object which ful-
fills various tasks: The start() function call is com-
pletely shadowed by an updated version of the func-
tion. The fork()-function has been introduced as an
interface changing update. The hibernate()-call is
simply forwarded.

which do more restructuring in the applications design, such
as splitting or merging classes, are tricky to be mapped to
the Adapter pattern.

3.2 Hot-swapping
Hot-swapping describes methods of replacing code or whole
modules in the running operating system. This also allows
the transformation of the system’s state.

The hot-swapping technique also involves interposition. At
the beginning of an update a special mediator object is in-
terposed between the caller and the object which should be
updated. This mediator takes care that all existing calls
to the object finish, while blocking any new incoming calls.
When all running, unblocked calls have finished, it is guar-
anteed that no code currently depends on the state of the
object. A quiescence state is reached, and the object can be
updated without danger of reaching an invalid state. An up-
date could be realized by creating a new object, which holds
the altered state. After the update of the object has com-
pleted, the reference to the old state object is redirected to
the new state object. Then the mediator object and the old
state object can safely be destroyed. This process is shown
in Figure 2.

While hot-swapping allows the exchange of modules and ob-
jects at runtime, it still requires to block the access to an
object for at least a brief moment until quiescence is reached.
When an update requires the exchange of many object in-
stances, such as process control blocks, this might lead to
performance losses.

Figure 2: Procedure of a dynamic update of an ob-
ject by hot-swapping it. The interposed mediator
object blocks all incoming calls. When it ensured
that there are no active threads interacting with the
old object, the reference is redirected to the new ob-
ject, all calls are unblocked.

3.3 Lazy update
As mentioned above, updates might require the transfer of
more than one state carrying object. This is especially the
case if the update affects units with multiple instances. For
these cases updating all object instances at once takes much
time while the system has to remain in a quiescence state.
This might lead to heavy performance losses.

One consideration is that not all existing instances of the
updated object have to be updated at time of update, as
they might not be used immediately. Furthermore some of
these objects might not be used anymore at all. With lazy
update, object instances are updated at the time of their
next use. This leads to a slight overhead at time of their
first use after the update, however the overall performance
loss is not as severe as for a state transformation at time
of update. All calls following the first call which causes
an update then are processed normally and thus cause no
further overhead.

Lazy update again can be realized using interposition. For
each object which should be updated, a lazy update object is
interposed. Upon first invocation of the lazy update object,
the actual update process is started for the state object.
After the state transfer, the lazy object and the old object
instance are deleted and the method call can run for the new
instance.

4. DYNAMIC UPDATE IN K42
In [3, 6, 5, 4], Baumann et al. introduce a modification for
the K42 kernel which adds a dynamic update mechanism.
This dynamic update mechanism makes use of the kernel’s
hot-swapping mechanism to allow updates on object level.

4.1 The K42 kernel
The K42 kernel is a research micro kernel developed by IBM.
It aims for scalability and compatibility to the Linux ABI



and API. The kernel was designed to be modular and object-
oriented, as well as decentralized [1]. Furthermore it is im-
plemented to be event-driven, with non-blocking, short-lived
kernel threads.

The K42 kernel is heavily structured in an object-oriented
manner, with each resource being managed by a set of ob-
ject instances and all data being encapsulated. With the
relevant data encapsulated that fine-grained, the kernel has
good prerequisites for a dynamic update system on object
level.

To support online reconfiguration and adaption, the kernel
supports hot swapping for modules and components. The
hot swapping mechanism in K42 allows the replacement of
objects, which makes it a good starting point for the imple-
mentation of dynamic update.

4.2 Implementation
The presented dynamic update system makes heavy use of
the object oriented structure of the K42 kernel. In the fol-
lowing it will be explained how the modified kernel fulfills the
above named requirements and which features the dynamic
update features additionally implement. The dynamic up-
dates are installed using a module loader.

K42 manages its objects via a central object translation table
which is an additional indirection layer and allows a central-
ized unified access to object references. This table is the
basis of the dynamic update system, the invocation redirec-
tion takes place by replacing entries in the object transla-
tion table. The kernel’s hot-swapping mechanism makes use
of this table for the replacement of objects. The kernel is
designed to be event-driven and services these events with
short lived threads. The hot-swapping mechanism waits for
a state of quiescence for the to be changed object. When
this state is reached, the reference in the object translation
table is replaced. Due to the short life of the kernel threads,
many of these quiescence states occur.

To check for quiescence states, the K42 kernel uses mediator
objects. These mediator objects make use of the fact that
kernel threads are short-lived and non-blocking. In K42 all
kernel threads belong to a generation, which is determined
by the generation the kernel is in when the thread is cre-
ated. For each generation a count of all active threads is
maintained. By advancing the generation and waiting for
all threads of the previous generation to be completed, the
mediator can make sure no currently running threads are
holding references to the updated object. The K42 hot-
swapping system uses this mechanism by explicitly starting
a new generation when an object should be swapped.

The dynamic update system implemented by Baumann et
al. takes object instances as the updatable units. An update
of the object instances is done by hot-swapping. The hot-
swapping mechanism originally was only capable of replacing
special object instances. For the dynamic update system the
kernel was modified in such a way that all object instances
are generated not statically but by own factories. These fac-
tories cover multiple tasks, first they construct new objects,
second, they take the role of the state tracking mechanism,
by tracking all created object instances, and last they are

Figure 3: The steps of a dynamic update of facto-
ries in a K42 system. At (1) the factory object is
replaced with a hot-swap. Using the bookkeeping
mechanism of the factory, all existing old instances
of the updated object are updated in (2). All calls to
the new factory directly result in the instantiation
of the new version of the object.

responsible for deleting object instances. When applying
an update which requires the update of multiple object in-
stances, the factory of the object type is queried for a list
of all existing object instances. Thereby the hot-swapping
of object instances can be applied lazily. In Figure 3 the
process of an update of factories and instances is shown.

To ensure not only the currently existing instances of ob-
jects are replaced but also ones instantiated in the future,
the corresponding factories of the updated objects are also
updated using the hot-swapping mechanism.

Additionally the dynamic update system contains a simple
version management system. Each factory object contains
an internal version counter. Updates also have a version
number for the updated object. The version numbers are
assigned linearly. When applying an update, the internal
version counter of the factory is compared to the update’s
version number. Only if the version number of the update
directly follows the current number of the factory, the up-
date can be applied and the internal counter of the factory
is set to the version number of the update. This way up-
date dependencies can be resolved easily and wrong update
sequences can be prevented.

This dynamic update concept allows changes to many parts
of the kernel. Unfortunately, the interface changing mecha-
nism is only suitable for minor changes, such as added func-
tionality. In some cases added or dropped parameters also
can be supported. If the changes however are more exten-
sive, Adapters are not suitable. Furthermore most of the
code which is initially run to boot up the K42 kernel is not



written in an object oriented manner, which makes it im-
probable to be updated using this dynamic update system.
Other methods like binary rewriting would be more suitable
for these cases. Nevertheless if minimizing downtime is a
goal, this code should not have to be executed while the
system is up and running.

5. DISCUSSION
The presented ideas for the realization of dynamic update
systems with methods of object oriented systems are highly
depending on resolving object references at runtime. In the
implementation of the discussed dynamic update system for
the K42 kernel most of the statically bound references are
converted to calls which are dynamically resolved. This
hinders the application of especially inter-procedural opti-
mization techniques such as code inlining, or devirtualiza-
tion and branch prediction and thus leads to performance
losses. Baumann et al. argue that this is the case for all
modern operating systems with loadable module support [4]
and do therefore not analyse the impact of their restructur-
ing. However the proposed dynamic update system requires
the operating system to completely refrain from many opti-
mization techniques in order to function. Furthermore the
dynamic update system works on object level, while loadable
modules are much more coarse-grained than objects, which
means that the introduced overhead for modules is not as se-
vere as for objects. The performance difference might there-
fore be quite high whereas especially for systems with high
performance requirements a performance analysis must be
made to weigh the trade-off between probable performance
and possible dynamic update support. Additionally the pre-
sented implementation introduces further indirection layers
into the system to make hot-swapping applicable for dy-
namic update. The resulting overhead from the additional
indirections however has proven to be negligible. This is
explained with the partial storage of the object translation
table in the level 2 cache. The indirection imposed by the
object translation table leads to an additional instruction
per virtual function call, however the necessary information
can be looked up in the cache.

In general, existing operating system kernels indeed have a
modular structure, nevertheless the strong object oriented
design of the introduced K42 kernel is the exception rather
than the rule, especially since modules are much more coarse-
grained than objects. Rewriting these kernels especially for
object orientation or explicitly for dynamic update is cer-
tainly no option. Nevertheless the modular structure of
modern operating systems can be used to apply techniques
like hot-swapping, to enable dynamic-update, at least at a
module wide level when there is the possibility to check for
quiescence states by tracking the usage of these modules.
Furthermore future developments for these kernels can in-
deed especially have a focus explicitly on dynamic update
and stronger modularization.

6. CONCLUSION
In this work the application and realization of dynamic up-
date methods to operating systems was discussed. It was
shown how an object oriented design of the operating system
can be instrumented for a usable implementation of dynamic
update support. Even though the introduced implementa-
tion for the K42 kernel had to cope with a system which

was not primarily designed for dynamic update, it showed
to be useful. With systems which were explicitly designed
with dynamic update in mind, updates would be even more
capable of making in depth changes in the system.

Nevertheless the introduced methods are not limited to ob-
ject oriented operating systems. The introduced concepts
of hot-swapping and interposing can easily be extended for
dynamic update systems for regular applications. Central
instances as a reference table could be built up with com-
piler support. On the other hand many modern operating
systems have a very modular structure and even support
dynamic loading of additional modules, e.g. the loadable
kernel modules of Linux. When these methods are extended
to other types of modules as well, it would be thinkable to
also enable hot-swapping techniques on a modular level.

7. REFERENCES
[1] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn,

O. Krieger, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. K42 overview.

[2] J. Arnold and M. F. Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Proceedings of the 4th
ACM European conference on Computer systems,
pages 187–198. ACM, 2009.

[3] A. Baumann, J. Appavoo, D. Da Silva, O. Krieger,
and R. W. Wisniewski. Improving operating system
availability with dynamic update. In Proceedings of
the 1st Workshop on Operating System and
Architectural Support for the On-Demand IT
Infrastructure, pages 21–27, 2004.

[4] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D.
Silva, O. Krieger, and G. Heiser. Reboots are for
hardware: Challenges and solutions to updating an
operating system on the fly. In 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX
Annual Technical Conference, page 26. USENIX
Association, 2007.

[5] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva,
O. Krieger, R. W. Wisniewski, and J. Kerr. Providing
dynamic update in an operating system. In USENIX
Annual Technical Conference, General Track, pages
279–291, 2005.

[6] A. Baumann, J. Kerr, J. Appavoo, D. Da Silva,
O. Krieger, and R. W. Wisniewski. Module
hot-swapping for dynamic update and reconfiguration
in k42. In 6th Linux. Conf. Au, 2005.

[7] D. Gupta, P. Jalote, and G. Barua. A formal
framework for on-line software version change.
Software Engineering, IEEE Transactions on,
22(2):120–131, 1996.

[8] I. Lee. Dymos: a dynamic modification system. PhD
thesis, University of Wisconsin–Madison, 1983.

[9] K. Makris and R. A. Bazzi. Immediate multi-threaded
dynamic software updates using stack reconstruction.

[10] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C, volume 41.
ACM, 2006.


	Introduction
	Dynamic Update
	Principles
	Dynamic update for operating systems

	Dynamic update with object oriented methodologies
	Interposition
	Hot-swapping
	Lazy update

	Dynamic update in K42
	The K42 kernel
	Implementation

	Discussion
	Conclusion
	References

