
IPSec

Markus Weiten markus @weiten.de

Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Universität Erlangen-Nürnberg

Inhalt

- Motivation, Ansätze
- Bestandteile von IPsec (Kurzüberblick)
- IPsec Modi
- Bestandteile von IPsec Übertragungsprotokolle
- Bestandteile von IPsec Konfigurationsdatenbanken
- IPsec in Aktion

Das Internetprotokoll garantiert nicht:

- Dass eingehende IP-Pakete vom angegebenen Sender (Ursprungsadresse im IP-Header) stammen
- Dass die Daten unterwegs nicht böswillig verändert wurden
- Dass niemand anderes die Daten auf ihrem Weg eingesehen hat

Was ist zu tun?

Es besteht Bedarf an:

- Integrität
- Authentizität
- Vertraulichkeit

Ansätze

- Sicherheit auf der Anwendungsschicht
 - SSL
 - SSH
 - PGP
- Anwendungsspezifisch, nicht transparent
- Implementierungsoverkill

Ansätze (2)

- Sicherheit auf der Transportschicht
 - Transport Layer Security (TLS)
- Keine Implementierung für UDP
- Teilweise immer noch Änderungen an den Anwendungen notwendig

Ansätze (3)

- Sicherheit auf der Datenübertragungsschicht
 - 802.1x
 - PAP
- transparent
- Erfordert dedizierte Verbindung

Ansätze (4)

- Sicherheit auf der IP-Schicht
 - IPsec
- Transparenz
- keine Anwendungen müssen angepasst werden
- Aufbau von VPNs möglich

Bestandteile von IPSec

- Übertragungsprotokolle
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)

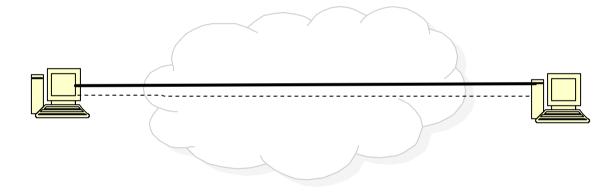
Bestandteile von IPSec

- Übertragungsprotokolle
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- Konfigurationsdatenbanken
 - Datenbank für Sicherheitsassoziationen (SADB)
 - Datenbank für Sicherheitsstrategien (SPD)

Bestandteile von IPSec

- Übertragungsprotokolle
 - Authentification Header (AH)
 - Encapsulating Security Payload (ESP)
- Konfigurationsdatenbanken
 - Datenbank für Sicherheitsassoziationen (SADB)
 - Datenbank für Sicherheitsstrategien (SPD)
- Key Management Protokolle
 - IKE
 - ISAKMP
 - Photuris

IPsec Modi


- Zwei verschiedene Modi: Transport- und Tunnelmodus
- Transportmodus: Zwischen IP-Header und restlichem Paket wird ein IPsec-Header eingefügt, der die sicherheitsrelevanten Informationen trägt:

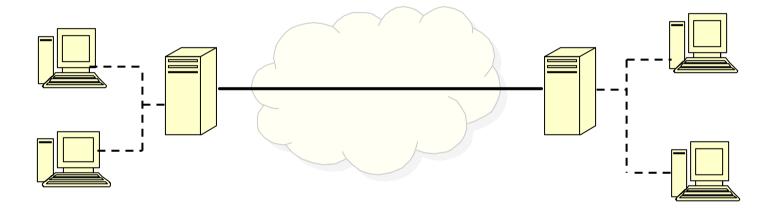
IP Header	TCP/ UDP H.	Payload

	IP Header	IPsec Header	TCP/ UDP H.	Payload
- 1				I

IPsec Modi (2)

im Transportmodus Peer-to-Peer Sicherung möglich:

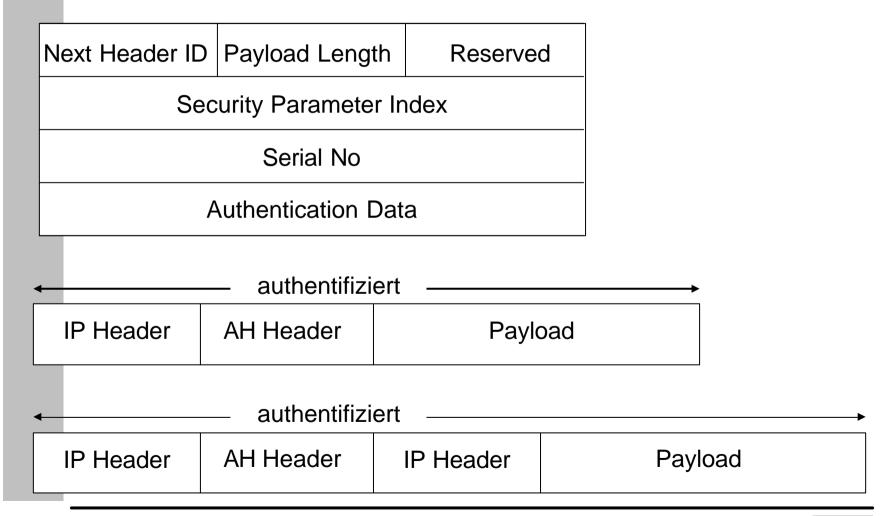
IPsec Modi (3)


Tunnelmodus: Datenpaket wird in ein komplett neues Datenpaket gekapselt

IP Header	TCP/ UDP H.	Payload

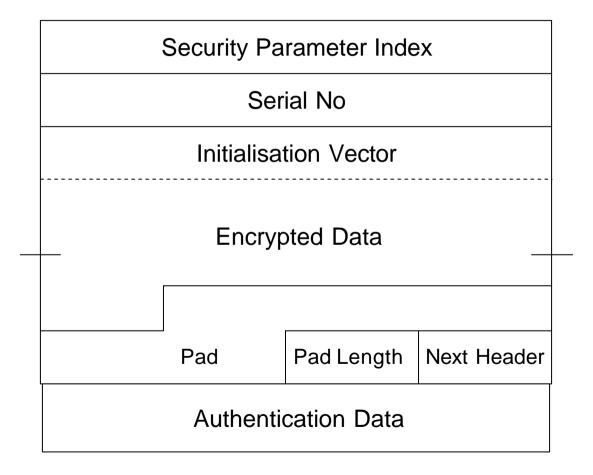
IP Header	IPsec Header	IP Header	TCP/ UDP H.	Payload
-----------	--------------	-----------	-------------	---------

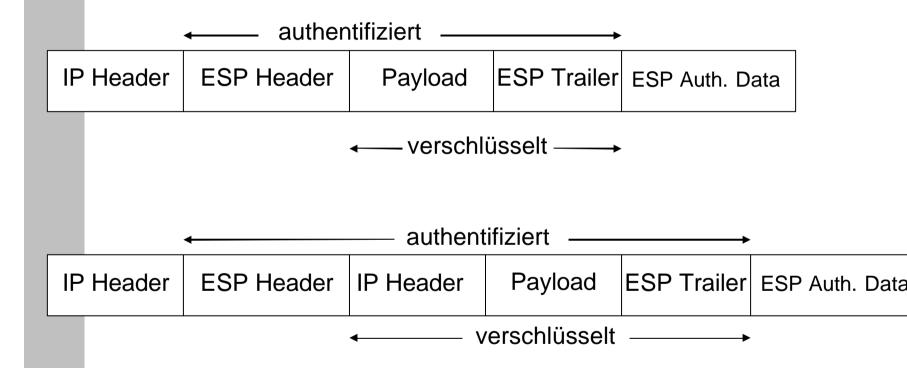
IPsec Modi (4)


im Tunnelmodus Netz-zu-Netz Sicherung möglich:

Authentication Header

- Zusätzlicher Header
- Bietet:
 - Authentizität des Absenders
 - Integrität der Daten
 - Schutz vor wiederholtem Senden von Paketen (Replay-Attacken)


Authentication Header graphisch


Encapsulating Security Payload (ESP)

- Zusätzlicher Header + Trailer
- Bietet:
 - Authentizität des Absenders
 - Integrität der Daten
 - Schutz vor wiederholtem Senden von Paketen (Replay-Attacken)
 - Vetraulichkeit

ESP graphisch

ESP graphisch (2)

Datenbank für Sicherheitsstrategien

- Wie wird eingehendes/ausgehendes Paket behandelt?
- 3 Aktionen:
 - Keine Sicherheit wird angewandt (bypass)
 - Sicherheit wird angewandt (apply)
 - Paket wird verworfen (discard)
- Zugriff anhand von Selektoren
- Die vom Admin definierbare Konfiguration

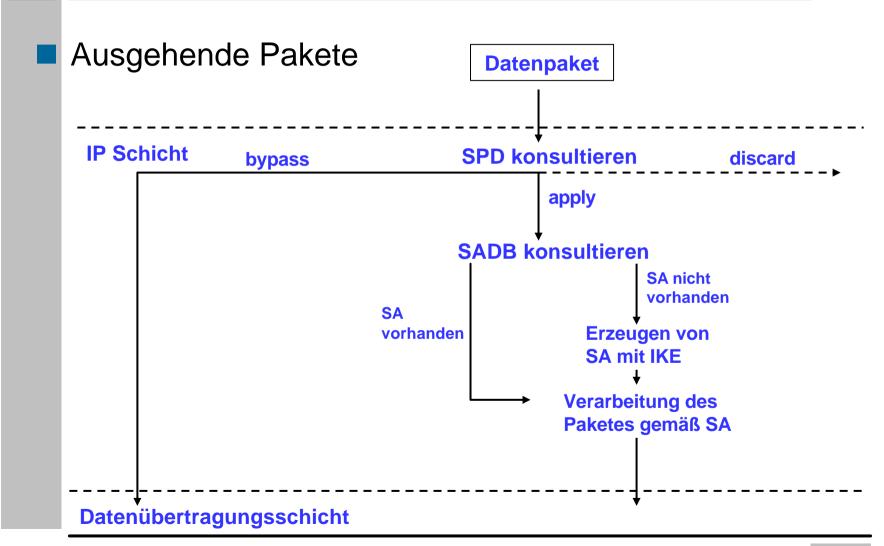
Datenbank für Sicherheitsstrategien

- Selektoren:
- Ursprungsadresse
- Zieladresse
- Protokoll (TCP oder UDP)
- ULP (upper layer ports)

SADB

- Datenbank von Sicherheitsassoziationen
- Eine Sicherheitsassoziation beschreibt, wie man mit anderem Host kommuniziert (Krypto-Parameter)
 - Gilt in eine Richtung
 - Jeweils für eingehenden/ausgehenden Verkehr
 - => pro Host zwei SAs für eine Verbindung
- Tripel <SPI, destination address, protocol> legt Eintrag eindeutig fest
- Security Associations werden automatisch vom Key Management erzeugt
- Manuelle Erzeugung möglich

SADB (2)


- Parameter:
- Generische Parameter (von beiden Protokollen benutzt)
 - Seriennummer
 - Seriennummerüberlauf
 - Fenster gegen wiederholtes Senden
 - Lebensdauer
 - Modus
 - Tunnel-Zielort
 - PMTU-Parameter

SADB (3)

- Protokollspezifische Parameter
- Schlüssel
- Authentifikationsalgorithmus
- Verschlüsselungsalgorithmus

Security Parameter Index (SPI)

- 32 Bit Zahl
- Wird in jedem Paket im Klartext mitgeführt
- Ermöglicht den Hosts Zuordnung von Datenpaketen zu Security Associations
- Wird vom Schlüsselmanagement beim Verbindungsaufbau vom Empfänger vereinbart

ausgehende Verarbeitung bei AH

Next Header ID	Payload Length	Reserved
Security Parameter Index		
Serial No		
Authentication Data		

Seriennummer = ++Seriennummer der SA;

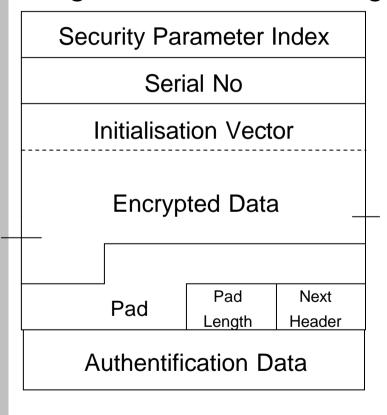
SPI = SPI der SA;

Payload Length = # 32-Bit Worte - 2;

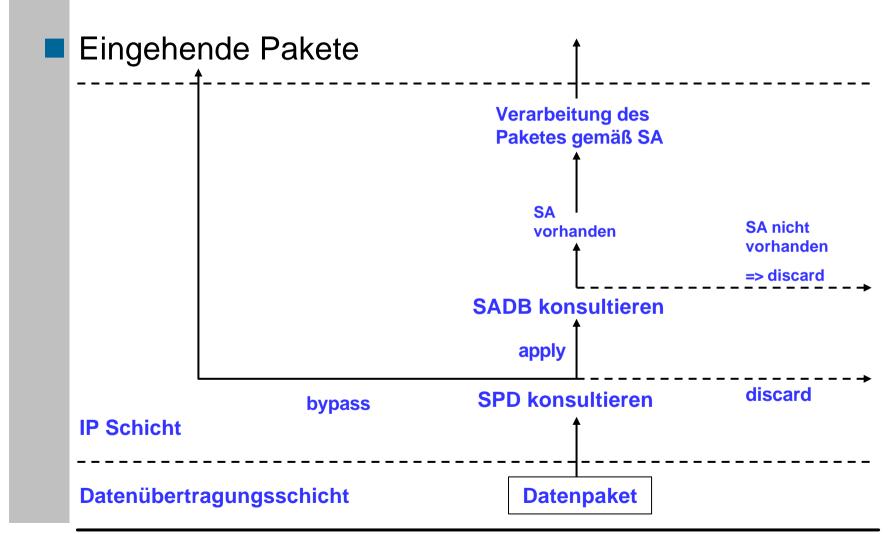
Authentication Data = 0;

Veränderliche Felder des IP-Headers = 0;

Ver.	IHL	TOS	Total Length	
Identification		Flags	Fragment Offset	
T	ΓL	Protocol	Header Checksum	
Source Address				
Destination Address				


Next Header ID = Protocol (IP-Header);

Komplettes Paket (incl. Payload) wird zusammen mit dem Schlüssel aus der SA dem Authentifizierungsalgorithmus übergeben;


Authentication Data = Ergebnis des Algorithmus;

Übergabe an Datenübertragungsschicht;

ausgehende Verarbeitung bei ESP


```
SPI = SPI der SA:
Seriennummer = ++Seriennummer
der SA:
Berechnung der benötigten
Fülldaten:
Anfügen der Fülldaten an die
Payload:
Next Header ID = Protocol (IP-
Header);
Verschlüsselung gemäß SA;
Init-Vektor entsprechend Algorithmus
belegen;
Authentifizierung ähnlich AH;
  Übergabe an
  Datenübertragungsschicht;
```


Zusammenfassung

- IPsec bietet Vertraulichkeit, Authentizität, Integrität
- 2 Modi: Transportmodus für Host-zu-Host Tunnelmodus für Netz-zu-Netz Sicherheit
- Übertragungsprotokolle: AH und ESP
- Konfigurationsdatenbanken:
 - Security Policy Database
 - Security Association Database

Quellen

[1]	IPsec Naganand, Doraswamy, Harkins Addison-Wesley, 2000
[2]	Security im Überblick: Teil 4, Sicherheit auf der Netzwerkschicht Axel Sikora http://www.tecchannel.de/software/1168/index.html , 2003
[3]	Angriffsmethoden und IPsec Munich Network Management Team http://wwwmnmteam.informatik.uni-muenchen.de/Literatur/MNMPub/Fopr as/fack00/HTML-Version/node48.html
[4]	Virtual Private Network – Mit sicherem Tunnel durchs Internet (Diplomarbeit) Olivier Gärtner, Berkant Uneal Zürcher Hochschule Winterthur, 1999