
Separating Testing Concerns by Means of Models

Dirk Wischermann
Friedrich-Alexander University

Erlangen-Nuremberg
Systems Software Group

Erlangen, Germany
dw@cs.fau.de

Wolfgang Schröder-Preikschat
Friedrich-Alexander University

Erlangen-Nuremberg
Systems Software Group

Erlangen, Germany
wosch@cs.fau.de

ABSTRACT
The number of potential execution paths through software
usually increases dramatically with the size of the program.
However, many coding errors only appear while executing
few particular paths. Thus, it is a challenge for software
testers to select a feasible subset of all paths to be covered
in order to find most errors. This article describes a way of
using behavioural models (such as state diagrams) for sepa-
rating concerns in structural testing. Each model describes
one concern, such as a usage protocol, a policy or a more
complex behaviour. The goal is to get a better and differ-
entiated reliability testimony out of fewer test cases, to find
bugs that would probably not manifest themselves otherwise
and to provide helpful information for debugging. Opposed
to many other approaches that target on a high automation
level or on achieving synergies between design and test pro-
cess, our approach allows for detecting more errors with the
same test cases (by means of generated built-in tests) and
for selecting better test cases (using adequate coverage cri-
teria). Having to supply the required knowledge in form of
models means shifting effort from testing to development.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Programming by contract ; D.2.5 [Software Engi-

neering]: Testing and Debugging—Testing Tools, Tracing

General Terms
Reliability

1. INTRODUCTION
Testing is done to provide confidence in the correctness

of software. The two major sectors of testing, functional
and structural testing, pursue different strategies: functional
testing aims to show the fulfillment of requirements by cov-
ering a specification with tests, whereas structural testing
gives evidence for the absence of errors by covering the code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

In general, neither can be accomplished completely ; that is
why models are built. Model-Based Testing is applied in
both fields: Functional testing is done with Usage Models
which describe, how the software is expected to be used
(e.g., with Markov Chains) or with Test-Models which de-
scribe input data and activities of the testing environment.
Structural testing is done with Software Models1 that de-
scribe the software itself. Our article is about structural
component testing with behavioural software models.

1.1 Problem Statement
Structural testing with strong coverage criteria is in prac-

tice limited to the level of Unit Testing, where units refer to
methods or functions. This is fine as long as each unit has a
single, well defined responsibility. We know that this is not
the case in general. A simple example of a concern that is
often not covered by unit testing, is ensuring that a reusable
resource (such as memory, a file or a lock) is always freed
after using it.

Especially object-oriented code is, for the sake of variabil-
ity, portability and reuse, often organised by tricky architec-
tural and design patterns, which is difficult to overview even
for experienced software engineers. Furthermore, the code is
superimposed by crosscutting concerns that do not fit into
the chosen modularisation.2 This results in a high number
of potential execution paths through the software. However,
the detection of distributed errors, to which different code
snippets contribute (such as temporal protocol violations or
deadlock conditions), often depends on executing a partic-
ular path and only succeeds if this path is included in the
chosen coverage criterion. This problem can be tackled by
finding a feasible and adequate coverage criterion.

We presume that purely syntactically defined criteria are
either not feasible or not strong enough for testing more
complex code: then it becomes likely that test cases fulfil
the coverage criterion without revealing particular errors.
On the other hand, we know that not every line of code and
every case distinction is relevant for meeting every functional
requirement. This is where models come into play; they can
help to select a relevant set of test cases with a high error
detection rate.

1Some authors call them System Models, but we need to
reserve the term System for deployed systems including the
hardware.
2Techniques like AOP[16], FOP[4] or AML[1] aim to solve
this problem for the programmers, but rather complicate
testing (see [27, 23, 20]).

1.2 Basic Terms
Structural code coverage and model-based testing are both

quite elaborated topics already and some terms are well-
established. We explain the most important ones here; point-
ers to respective literature are given in Section 5. The most
common code coverage criterion is statement coverage (also
known as the C0 criterion), that is that each statement must
be executed at least once while testing. Branch coverage
(C1) requires test cases that pass through each branch of
the code. The difference to statement coverage is that this
criterion requires test cases that pass through empty if or
else branches (or similar) of the code. Higher criteria are
based on data flow (definitions and uses of variables) or re-
quire exhaustive testing of case distinctions. The strongest
criterion is path coverage (C∞) and requires the test cases
to execute every path through the code. This criterion sub-
sumes all other criteria [28] but has no practical relevance,
since it requires to cover an infinite number of paths if the
code contains loops. In this article, we allude to k-path cov-
erage (C∞,k), which results from path coverage by limiting
the number of required loop executions to k.
Regarding model-based testing, the terms are not so set-

tled. Opposed to structural (white box) testing approaches,
most model-based techniques are black box approaches that
do not comprise knowledge about the implementation. Grey
box testing, for instance proposed in [22], mostly means to
measure the coverage of model entities, where the subject
of the model is the code. Furthermore, we can differentiate
graphs and models: Models imply some abstraction by ei-
ther by encapsulating or by leaving out information. Graphs
(such as control flow graphs) are predominantly a graphical
representation of the software or model without introducing
(for testing purpose relevant) abstraction.

1.3 Our Approach: Perspective Testing
With Perspective Testing we introduce a generic way

of specifying additional information about code coherence
at the level of single instructions by means of behavioural
models. Such a model declares which slice of the source
code contributes to one specific concern, even if its imple-
mentation is scattered over several methods and classes. We
exploit the models in a twofold manner:

• Deriving differentiated coverage information from test
case execution. We measure the code coverage with
regard to relevance for every single concern. For exam-
ple, this allows for demanding markedly high coverage
for important concerns and therewith for controlling
the test process in a well directed manner.

• Checking constraints on interrelated operations. We
interpret the models as behavioural contracts and gen-
erate built-in test code (BIT) for surveying whether
the contract is respected. As an example, calling meth-
ods on an object is only allowed in a certain order or
while holding a lock.

Our approach resembles a human reviewer that analy-
ses one concern by one, looking for relevant operations and
checking their proper use. By using a number of different
models, we can factorise the testing process along concerns
instead of separating it along units. At this point, the testers
have the advantage over the developers that have to assign
a place to each line of code while replication is not wanted.

This factorisation partially inverts the combinatorial ex-
plosion that arises from the shared implementation of the
concerns within a component. The effort for achieving con-
ventional k-path coverage increases exponentially with the
number of case distinctions; thus, the number of test cases
is multiplied for each additional concern in the component
under test. For achieving individual path coverage by fac-
torisation, the effort is only additive.

The built-in test code, which we derive from the same
models, complements that control-flow oriented testing by
recognising erroneous usage or behaviour patterns. Such er-
rors often leave faulty states behind that may become mani-
fest only in a completely different execution context or much
later. With BITs, we get closer to the actual defect.

Our contribution is a way to allow the software engineer
(tester, programmer or system integrator) to specify these
contracts and therewith the slice of code that is to be in-
dividually covered. The Perspective Testing approach
is opposed to many model-based testing approaches (and
tools) that support structural model coverage as test selec-
tion criterion – this means covering edges and nodes of the
model [26]. This allows for drastically reducing the number
of test cases to be executed, too, but we think that for gain-
ing confidence in the correctness of the code, such coverage
is of limited use. We contrast it with our idea to use the
models for defining coverage criteria on the code.

The remainder of this article is organised as follows. We
introduce the Perspective Testing models in Section 2
and explain them by means of a simple example. An overall
impression of the interplay of different concerns is given by
our demonstrator example, which is a parallel embedded
webserver (Section 2.1). Sections 3 and 4 are about shaping
adequate coverage criteria and generating BITs out of the
models.

In the related work section, we oppose our idea to different
comparable – static as well as dynamic – approaches, espe-
cially in the domain of system software. Since this is work
in progress and our tool is under construction, we have no
results yet. Instead, we discuss some practicability issues
and an give an evaluation plan, before discussing some ideas
and concluding.

2. MODELS AT CODE-LEVEL
Our Perspective Testing approach uses software mod-

els that describe the software itself. This is opposed to the
use of testing models that rather describe the environment
and are not suited for structural testing. We propose to
use state machines as described below using UML-like syn-
tax. We differentiate three different roles of models in our
approach:

• A model MA that defines the allowed behaviour.

• An design modelMD that concretisesMA and reflects
the intended behaviour of the software.

• An implementation model MR that reflects the actual
realised behaviour.

MA defines a valid behaviour that must not be violated
by the implementation. It consists of states and transitions
with operations as trigger conditions, enriched by informa-
tion about operations that are relevant for the modeled con-
cern. It includes for each state the information, which op-
erations are allowed or not. This information can be given

Initial

OpenRead

OpenReadWrite

Final

Closed

exit()

write(file , ..) [fd == file]read (file , ..) [fd == file]

read(file , ..) [fd == file]

fd=open(* , O_RDWR)

open(file , O_RDWR) [fd == file]

close(file) [fd == file]

close(file) [fd == file]

fd=open(* , O_RDONLY)

Figure 1: Model for the concern HandleFile. The file-

descriptor serves as identifier and as global guard.

implicitly by defining that the mentioned operations are rel-
evant (see Figure 1) or by explicit lists as in Figure 2. In ad-
dition to encoding information in states, data can be stored
in variables and be accessed by guard expressions.
We say that an implementation violates a model iff a rel-

evant operation is executed where it is not allowed. MA

can be reused for testing the same concern in several com-
ponents, for example by a systems integrator for revealing
API-misuse. In our example, calling exit() while a file is
open would violate that model.
If only a part of the allowed behaviour is needed or a

supplement to MA is required, this can be expressed this
with a design model MD.3 We say that MD conforms to
MA iff any path through MD restricted to elements of MA

describes a path through MA. The set of denied opera-
tions must always be a superset of the corresponding set in
MA. Thus, it is allowed to add edges and nodes, but not
allowed to bypass elements of MA. In our example, the
CopyFile2Socket concern (Figure 2) enhances the Handle-

File concern in two ways; first it does not allow for opening
a file for writing that is already open and second it adds
rules for buffered copying of the data.

Initial

OpenRead

OpenReadWrite
Final

Closed

DataBuffered

allow: read(..)
 write(..)

write(sock, &buf, 128)read(file, &buf, 128)

close()
exit()

close()
open(*, O_RDONLY)

open(*, O_RDRW)

Figure 2: Design Model CopyFile2Socket for copying

a file.

A model of the implementation can be a state machine
similar to MD extracted from code by means static analysis,
if the set of relevant operations is known. In our approach,
we do not make use of such models, but we will come back
to them in the related work section. We apply Perspective

Testing to system software, which needs to be reliable, such
as device drivers and embedded applications. Such code is
often interspersed with technical concerns that are subject
to temporal constraints and usage policies. However, there
is nothing domain-specific in Perspective Testing.

3Note that we would not call MD a refinement of MA since
we can add functionality.

2.1 Example: Protocols and Policies
for an Embedded Webserver

For giving an impression of the interplay of different con-
cerns, we outline our demonstrator example, which is a work-
ing HTTP server component. It is small (few 100 LOC) but
covers the important aspects of our approach. We regard
the component as a whole, no matter how it is divided into
classes or files, methods or functions. It is supposed to be
deployed amongst other components on a embedded device
with actors and sensors. Here are some candidates for con-
cerns:

• OpenNetwork: Set up a socket, initialise it, bind it to an
IPv4 or IPv6 address (depending on the available in-
terfaces), accept connections and fine-tune them, close
connections and sockets.

• HandleRequest: Fork new threads, authenticate non-
local users, check and serve their requests.

• ApplicationProtocol: Implement higher application
logic (e.g., handling sensors or actors) while serving
the request.

• LockOrder: Respect the global locking protocol.

Furthermore, models for CopyFile2Socket, HandleFile or
AuthenticateUser concerns can be declared. These are only
examples, it is up to the engineer to choose an appropriate
level and granularity of each modeled behaviour. They can
overlap or even comprise each other. The range is from small
and simple concerns like HandleFile up to large models with
the complete design of outer control structures.

Depending on the actual realisation, it can be very exten-
sive to achieve k-path coverage for the whole component.
However, such a strong coverage criterion is not required:
We easily identify a number of concerns, that can be tested
more or less independently, for example there is no need for
double-checking the whole webserver code for both IPv4 and
IPv6 connections. For locking or authentication concerns
in contrast, path covering the (related) code with tests is
strongly recommended. Note that both concerns are diffi-
cult to modularise and (in our case) intermingled with the
code for OpenNetwork.

If we take a closer look at Figure 2, we see that there is a
write operation (write(sock, &buf, 128)) mentioned. We
can suppose it to lie within the scope of the OpenNetwork

concern. Thus, the OpenNetwork and the CopyFile2Socket

concern are not independent from each other. It is essential
that we don’t require separately modeled concerns under test
to be in fact independent. In this case, two concerns Han-

dleFile and OpenNetwork are interconnected through inter-
secting sets of relevant operations.

3. MODEL-BASED CODE COVERAGE
Many approaches to model-based testing comprise the

possibility to measure structural model coverage, that is count-
ing how much of the model is covered. If the models de-
scribe the tests themselves (as in [21]), demanding 100%
test-coverage is the normal case. If the model describes the
environment in form of operating conditions (ranges for in-
put data, typical usage scenarios), covering the model with
tests is reasonable too. Measuring test coverage on graphs,
such as the class specification implementation graphs in [6]

absolutely makes sense. Opposed to that, models as de-
scribed in Section 2 abstract from the concrete realisation of
an concern. For example, this means that one path through
the model may correspond to many paths through the code.
We see the use of structural model coverage (often referred
as grey box testing) limited to

• Providing confidence in the accuracy of the model and

• Testing, whether modeled races through the code are
possible.

Although grey box testing is quite popular and widely used
(since model-based testing is in vogue), we think that tests
with structural model coverage are not suited for substanti-
ating confidence in the absence of errors and thus, for com-
plementing functional tests in the sense of our introduction.
With Perspective Testing we introduce the idea of

defining code coverage criteria using models. That is, in-
stead of covering one path through the model, we require
the tests to cover many paths through the code; this is a
pure white-box testing approach with models. We do this by
defining an abstractor function on paths that defines which
execution paths through the code (in the usual sense) are to
be regarded as equivalent:

Definition 1. Two paths p and p′ are equivalent re-

garding a concern MD (p ≡|MD
p′), if they pass through

the same relevant operations of MD in the same order.

For example, if a method closes a file on all return paths
(with exactly the same operation), these paths through the
method can still be equivalent regarding the HandleFile

concern.
Our definition implies an abstraction of the control flow

graph (CFG) with regard to MD as a graphical representa-
tion of the equivalence classes. Any sub-graphs of the orig-
inal CFG that do only represent pairwise equivalent paths
are united. It allows us to map any arbitrary coverage cri-
terion to Perspective Testing by applying it only to the
concerned slice of the original CFG.
The effect on statement or branch coverage is that with

an increasing number of modeled concerns, it coincides with
a global branch coverage. If not, this could be an evidence
for dead code or incomplete modeling. A more interesting
criterion is the k-path coverage, since its complexity rises
exponentially with the size of the program. This is why test-
ing with that criterion is practically limited to unit tests (i.e.
methods). By factorising the testing requirement along dif-
ferent concerns, path coverage becomes applicable for larger
pieces of software, no matter how the implementation of the
concern is scattered over methods and classes – we can re-
gard the component as a whole.
Time and effort for testing two concerns with individual

k-path coverage sums (in the worst case) up to O(n+m) test
cases instead of requiring O(n · m) test cases with conven-
tional path coverage. Thus we substantially save complex-
ity at a similar (expected) error detection rate. Another
advantage of our approach is that different coverage crite-
ria can be combined. In this manner, adequate coverage can
be realised. That means, if some concerns can reasonably
be tested under statement or branch coverage criteria, they
can be combined with stronger criteria for more important
concerns.

4. GENERATING BUILT-IN TESTS
FROM MODELS

The second advantage that we take from models, apart
measuring test coverage, is automatically generating state-
based built-in test code for checking order constraints be-
tween operations. We require that every occurrence of a rel-
evant operation must be “authorised”by each corresponding
model. This means that the models contain information
about order constraints over the relevant operations (see
Section 2). We can regard the models as behavioural con-
tracts that have to be fulfilled by the implementation. This
can be monitored (or even enforced) by built-in tests that
are automatically generated from the models and woven into
the code. The scope of a BIT can be global (singleton) or
be associated with a specific object or with a specific thread
of control (or both). Then we need multiple instantiation of
the corresponding state monitors, which keep track of the
actual state of the object or thread.

4.1 Data Related Concerns
Both the HandleFile and the OpenNetwork concerns in

our example are identified with data. In this case, it is a
file descriptor, that is an integer representing an operating
system object. Of course, during execution, there can be
more than one open file or network connection; especially in
object-oriented implementations these multiple instances of
the same concern are probably handled by the same lines of
code. Thus, a data(-flow) related observation makes sense in
addition to path coverage. We instantiate a state monitor
for each object when the first trigger (i.e., trigger at the
outgoing edges from Init-states) matches. This can be a
constructor call or, as in the example, a normal function call
or method. The monitor is destroyed when the Final-state
is reached.

4.2 Concurrency Concerns
In a multithreaded environment we often have to respect

protocols for organising cooperation and concurrency (in ad-
dition to the functional requirements). Threads are dedi-
cated to perform certain tasks (like producing or consuming
data) and have to respect the associated rules. A prominent
example for a thread-wise concern is locking. To avoid dead-
locks in our webserver, one could model a global lock order
that has to be respected by every thread of control. In this
case, the corresponding state monitors must be associated
with the current thread. It is directly possible for threads
to concurrently work on one task or to hand-over responsi-
bilities. An example is a worker-thread that has to close a
network connection that was accepted by another thread.

4.3 Debugging with BIT and Filtered Traces
Conventional testing requires an observable manifestation

of an erroneous race in in order to reveal any errors. This
can be a faulty output or complete failure like a crash or a
deadlock. This does not necessarily happen. If it does, it is
often difficult to locate the reason for the failure.

The monitoring of contract violations reveals the errors in
the code (bugs) directly or at least locates the errors better.
If a violation is monitored, we can output a trace that pro-
vides points only to the relevant lines of code. This can be
very helpful for debugging. For example if a lock order is
violated, we get the history of lock() and unlock() oper-
ations of that thread. Especially lock order violations only

seldom become manifest in deadlocks, such errors are hard
to reveal without BIT.

5. RELATED WORK
Literature on structural testing (with coverage criteria)

and model-based testing is very rich, we can not hope to
cover it here. For getting started with model-based testing,
we recommend the “Taxonomy of model-based testing” [26],
which is quite self-contained. Regarding structural testing,
we exemplarily recommend [19] for data flow coverage, [5]
for control flow coverage or [18] for condition coverage.

5.1 Testing Based on Finite State Machines
Of course, our idea is not completely new. Especially test-

ing based on finite state machines is a long-standing research
topic, starting in 1956 with [17]. As described in Section 2,
our models MA may contain behaviour that is actually not
realised by the software. For example, MA can contain trig-
ger that do not match any line of code of the system under
test. On the other hand, the code can implement additional
behaviour that is not contained in MA or in MD because it
is not relevant. This opposes our approach to many testing
approaches based on state machines, such as the class state
machines described in [14] (picked up by [6]).

5.2 Select Relatives
Researchers from Microsoft have developed a static ver-

ification tool SDV [3] for signing drivers. Although it is a
static approach, it is closely related to ours: In a first step,
an model is extracted from code by means of static analy-
sis. In a second step, a model checker is used for verifying
temporal logic properties. The used temporal logic formu-
lae correspond to our models MA introduced in Section 2.
The extracted models reflect the actually realised behaviour
and are thus from the type of implementation models. Cur-
rently, the tool provides about 65 rules that describe device
driver interfaces.
We found some relatives in the area of integration testing.

An approach that uses automata for interface specification
is described in [13]. The automata are used for automati-
cally checking the compatibility between interface models.
In [15], interfaces are specified via context free grammars
and then checked with a model checker. Specialised cover-
age measures for integration testing are given in [24]; they
typically use coverage criteria defined by the set of imported
operations (and thus regard only a slice of the code).
Built-in self tests are recognised as useful for a long time,

but are not really established. Documenting and testing
method pre- and postconditions (design by contract) or loop
invariants with assertions is rarely done. [7] is an approach
that resembles ours by weaving BITs as aspects into (aspec-
tual) components. One concrete BIT that we are interested
in is the FreeBSD Witness [9] that surveys the FreeBSD
locking protocol at runtime.

5.3 Novelty of the
Perspective Testing Approach

We see the particular novelty of our approach in the idea
of factorising the complexity of a software component using
several (intersecting) state machines for testing purpose. If
we imagine a software component as one large state ma-
chine, the same information can be expressed by a number

of smaller state machines where the state of the whole is the
product of the states of all smaller state machines. To our
knowledge new is also the idea to use models for defining
coverage criteria on the code by projecting model entities
onto it.4

6. PRACTICABILITY ISSUES AND
EVALUATION PLAN

We try Perspective Testing out with a prototypical
implementation and our demonstrator example outlined in
2.1. Most parts of the implementation are straight forward,
but range from meta modeling with EMF (for defining the
“vocabulary” of our models) down to dealing with function
pointers in plain C (used for realising polymorphic trigger
implementation in C). In our prototypical implementation,
we are directly using AspectC++ [25] for instrumenting the
component under test with triggers. We also plan to evalu-
ate the source transformation tool TXL [12] for instrument-
ing the code.5 While instrumenting the code, we give each
instrumented line a number for quick look-up in a static ar-
ray of trigger-candidates. This ad hoc allows for measuring
statement coverage and comparing the software behaviour
with the models.

Measuring the path coverage for larger object-oriented
components can become challenging. We have not much
expertise in that field at our chair. To a certain extent, this
will be feasible analysing the call graph using the LLVM
framework (also regarding v-tables) and then building an
interprocedural CFG using its relevant part. The sticking
point is doing static reachability analysis.

6.1 Evaluation Plan
Our demonstrator example is a necessary first step for

proving the concept and for identifying the challenges. It is
barely small enough for achieving global k-path coverage for
being able to comparing the error detection rates of conven-
tional and individual path coverage. It will be interesting to
investigate and classify the errors that were missed out by
Perspective Testing.

An ambitious goal is to express the FreeBSD locking rules6

with models and to instrument the kernel with according
BIT code. This is an example with few larger models. Dif-
ferentiated coverage measures will allow us for investigat-
ing and quantifying the strengths and weaknesses of the
FreeBSD stress test suite [10] with regard to that concern.

A further possibility for evaluating Perspective Test-

ing lies in translating the 65 API usage rules from the Mi-
crosoft SDV [2] into models. This would allow for directly
comparing static and dynamic approaches and be an exam-
ple with many small models.

4Currently our approach requires concrete operations in the
models. In general, only (traceability) from model entities
to code entities is required.
5TXL is a very powerful code transformation tool, which
exists for decades but seems to be rarely used.
6Although FreeBSD is written in C, we are faced with a
polymorphic implementation. Especially lock and unlock
functions are called through function pointers. See struct
lock_class in [11]. This file also describes some of the lock-
ing rules.

7. DISCUSSION
If the models are also used in the design process, we lose

some of the required orthogonality between test and design.
One has to be aware of the fact that models and code can
contain the same errors; therefore, the models must be val-
idated carefully (with formal methods in the best case).
We have to be are aware that controlling coverage criteria

in the proposed way can be Janus-faced: Purely syntactical
coverage criteria are blind for the intentions of the developer
and are immune against errors in reasoning. The special
value of such tests that comes from their pure objectiveness
is lost. If, for example, a relevant operation has been added
to a component by an API upgrade and the model was not
adapted, a good coverage result can be trappy. The same
can happen due to any other mistake by the tester.
One problem of strong structural coverage criteria is know-

ing how to valuate them. What does it mean to achieve 80%
path coverage—is that enough? This highly depends on the
software design; that is, its coding style and the number
of infeasible execution paths (i.e., for which no input data
exist). We will consider this issue in the future work section.

8. CONCLUSION AND FUTURE WORK
With Perspective Testing, we introduce a way of fac-

torising structural tests along concerns instead of separating
them along units. This avoids the exponential complexity
of testing in the common case that the concerns are not
perfectly modularised into one unit each and path cover-
age is wanted. Arbitrary coverage criteria can be applied to
a sliced version of the control flow graph and concern-wise
different criteria can be combined to one coverage criterion
tailored to the component. The concerns are declared by
means of state machines that also serve as behavioural con-
tracts. Automatically generated built-in tests survey the
order constraints derived from these models.
It is a very promising idea to combine BIT and the knowl-

edge about illegal sequences of operations with methods of
symbolic execution [8] for directly searching test cases that
violate the modeled constraints. Symbolic execution can
also be used for showing (i.e., proving) that a concrete path
is not feasible (by disclosing the accumulated symbolic terms
to be contradictory). This addresses the problem that infor-
mative value of a coverage criterion is damaged if too many
unfeasible entities are contained. However, important con-
cerns should be realised in a transparent manner that allows
for deciding whether a path is feasible or not. For essential
(e.g., safety critical) concerns, it can make sense to enjoin
the developers on making full coverage possible by keep-
ing the implementation simple enough. This requires the
corresponding slice of code not to be involved in loops and
means demanding an improved design and implementation
for testability.
One of the current challenges in computer science is writ-

ing reliable software for the upcoming manycore platforms—
and testing it. One way of systematically testing particular
interleavings of threads is to integrate the state observer
functionality from Perspective Testing in an operating
system. The scheduler could then use the knowledge about
the current state of the single threads for setting up the
required interleaving.

9. REFERENCES
[1] S. Apel, T. Leich, and G. Saake. Aspectual mixin

layers: Aspects and features in concert. In In Proc. of
Intl. Conf. on Software Engineering, pages 122–131.
ACM Press, 2006.

[2] T. Ball, B. Cook, V. Levin, and S. K. Rajamani.
SLAM and static driver verifier: Technology transfer
of formal methods inside microsoft. In Integrated
Formal Methods, volume 2999 of Lecture Notes in
Computer Science, pages 1–20. Springer Berlin /
Heidelberg, 2004.

[3] T. Ball and S. K. Rajamani. The SLAM project:
debugging system software via static analysis.
SIGPLAN Not., 37(1):1–3, 2002.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In ICSE ’03: Proceedings of the
25th International Conference on Software
Engineering, pages 187–197, Washington, DC, USA,
2003. IEEE Computer Society.

[5] B. Beizer. Software testing techniques (2nd ed.). Van
Nostrand Reinhold Co., New York, NY, USA, 1990.

[6] S. Beydeda and V. Gruhn. Integrating white- and
black-box techniques for class-level testing
object-oriented prototypes. In In SEA Software
Engineering and Applications Conference (Las Vegas,
pages 23–28. IASTED/ACTA Press, 2001.

[7] J.-M. Bruel, J. Araujo, A. Moreira, and A. Royer.
Using aspects to develop built-in tests for components.
In In AOSD Modeling with UML Workshop, 6th
International Conference on the Unified Modeling
Language (UML, 2003.

[8] C. Cadar, D. Dunbar, and D. R. Engler. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In 8th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, pages
209–224, 2008.

[9] FreeBSD Community. The witness lock validation
facility (online). http://www.freebsd.org/cgi/man.cgi
?query=witness, 2001.

[10] FreeBSD Community. The FreeBSD kernel test suite
(online).
http://people.freebsd.org/ pho/stress/index.html,
2008.

[11] FreeBSD Community. The FreeBSD source code
version 8.0 (online).
http://svn.freebsd.org/base/stable/8/sys/sys/lock.h,
2009.

[12] J. R. Cordy. Source transformation, analysis and
generation in txl. In PEPM ’06: Proceedings of the
2006 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation,
pages 1–11, New York, NY, USA, 2006. ACM.

[13] L. de Alfaro and T. A. Henzinger. Interface automata.
In ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 109–120,
New York, NY, USA, 2001. ACM.

[14] H. S. Hong, Y. R. Kwon, and S. D. Cha. Testing of
object-oriented programs based on finite state

machines. In APSEC ’95: Proceedings of the Second
Asia Pacific Software Engineering Conference, page
234, Washington, DC, USA, 1995. IEEE Computer
Society.

[15] G. Hughes and T. Bultan. Interface grammars for
modular software model checking. In ISSTA ’07:
Proceedings of the 2007 international symposium on
Software testing and analysis, pages 39–49, New York,
NY, USA, 2007. ACM.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, 11th (ECOOP ’97), volume
1241, pages 220–242, June 1997.

[17] E. F. Moore. Gedanken experiments on sequential
machines. In Automata Studies, pages 129–153.
Princeton U., 1956.

[18] G. J. Myers and C. Sandler. The Art of Software
Testing. John Wiley & Sons, 2004.

[19] S. Rapps and E. J. Weyuker. Data flow analysis
techniques for test data selection. In ICSE ’82:
Proceedings of the 6th international conference on
Software engineering, pages 272–278, Los Alamitos,
CA, USA, 1982. IEEE Computer Society Press.

[20] J. M. B. Roger T. Alexander and A. A. Andrews.
Towards the systematic testing of aspect-oriented
programs. Technical Report CS-4-105, 2004.

[21] B. Rumpe. Model-based testing of object-oriented
systems. In In: Formal Methods for Components and
Objects, International Symposium, FMCO 2002,
Leiden. LNCS 2852. Springer Verlag, 2003.

[22] F. Saglietti, N. Oster, and F. Pinte. Interface coverage
criteria supporting model-based integration testing. In
Marco Platzner, Karl-Erwin Großpietsch, Christian
Hochberger, and Andreas Koch, editors, ARCS ’07 -
Workshop Proceedings, pages 85–93, Zürich, 2007.
VDE Verlag GmbH Berlin/Offenbach.

[23] D. Sokenou and S. Herrmann. Aspects for testing
aspects. Workshop on Testing Aspect-Oriented
Programs AOSD05, 2005.

[24] A. Spillner. Test criteria and coverage measures for
software integration testing. Software Quality Journal,
4(4):275–286, December 1995.

[25] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
Aspectc++: An aspect-oriented extension to c++. In
In Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002, pages 53–60, 2002.

[26] M. Utting, A. Pretschner, and B. Legeard. A
taxonomy of model-based testing. Technical report,
University of Waikato, April 2006.

[27] W. Xu and D. Xu. State-based testing of integration
aspects. In WTAOP ’06: Proceedings of the 2nd
workshop on Testing aspect-oriented programs, pages
7–14, New York, NY, USA, 2006. acm.

[28] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Comput. Surv.,
29(4):366–427, 1997.

