
PROTECTION IN THE HYDRA OPERATING SYSTEM 

Ellis Cohen and David Jefferson 1 
Carnegie-lvlellon University 

Pittsburgh, Pa. 

Abstract 

This paper describes the capability based protection 
mechanisms provided by the Hydra Operating System Kernel. 
These mechanisms support the construction of user-defined 
protected subsystems, including file and directory subsystems, 
which do not therefore need to be supplied directly by Hydra. 
In addition, we discuss a number of well known protection 
problems, including Mutual Suspicion, Confinement and 
Revocation, and we present the mechanisms that Hydra 
supplies in order to solve them. 
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1. Introduction 

Hydra was designed with the philosophy that protection 
must be an integral part of any general purpose operating 
system. A set of protection mechanisms should be part of the 
lowest level of an operating system, and those mechanisms 
must be flexible enough to support the wide range of security 
policies needed by both high level subsystems and user 
programs. In this paper we will describe the capability based 
mechanism in the Hydra kernel, its use in constructing 
protected subsystems and in solving a number of well known 
protection problems. We expect that the reader is already 
familiar with the contents of the companion paper [WLP75] 
which discusses in greater detail our philosophy of what a 
protection system should be. 

When users share access to information, there is 
inevitably a possibility for malicious or accidental disclosure of 
that information. It is necessary to restrict the behavior of 
possible computations in order to guarantee that such mishaps 
do not occur. In a general sense [Coh75], a protect~n problle~= 
is simply a description of some class of restricted behaviors. 
A protection problem can be solved in a protection system if 
the system provides some set of mechanisms which, when 
invoked, guarantee that the behavior of the system will be 
appropriately restricted. 

I. This work was supported by the Defense Advanced 
Research Projects Agency under Contract F44620-73-C-0074 
and is monitored by the Air Force Office of Scientific Research. 

In this paper, we will primarily be discussing access 
prot:ect~ott - the permission or denial of access to information. 
In a companion paper [Lev75], we discuss the related issue of 
contro l  prot:ect~orL which involves guaranteeing or preventing 
execution of programs at scheduled times for specific durations 
using specific resources. Problems of access protection can be 
viewed along two orthogonal dimensions: 

1) P r~ r  us. Future Dac/a~nJ: By a prior 
decision, we mean deciding in advance the 
circumstances under which access to certain 
information will be permitted or denied. By a 
future decision, we mean deciding at 
arbitrary times to revoke or restore access 
permissions, that is, to change the 
circumstances of access at some time in the 
future. 

2) U~lozeroJ us. Negotl~ated Dscia~nJ: By a 
unilateral decision we refer to a single user 
deciding how other users are to be able to 
access information Under his aegis. By a 
negotiated decision we refer to a user 
wanting to temper or limit the restrictions to 
access imposed by another user. 

We can give examples to illustrate each of these 
categories. In parentheses following each example are a list of 
problems discussed In section 3 that fall into the same 
category. 

Prior and Unilateral - The creator of a file 
wishes other users to be permitted to read, but 
not write, the file. (Mutual Suspicion, 
Modification, Limiting Propagation of 
Capabilities, Conservation, Confinement, 
Initialization) 

Future and Unilateral - The creator of the file 
wishes at some later point to revoke some 
user's permission to read the file. (Revocation) 

Prior and Negotiated - A user requires a 
guarantee in advance that his permission to 
read the file will never be revoked. (Freezing) 

Future and Negotiated - A user requires a 
guarantee that, if the creator ever attempts to 
revoke access, the matter wilt be submitted to 
(some trusted procedure which implements) 
binding arbitration. (Accounting and Lost 
Object Problems) 
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In section 2 of this paper, we will describe the 
basic protection mechanisms supplied by Hydra, their use in 
constructed protected subsystems. We will also see how the 
mechanisms directly solve certain straightforward problems 
and can be combined, through procec~.croJ anzbedd~nif to solve 
any of the problems described above. 

[n section 3, we will look at a number of well 
known problems and present additional Hydra mechanisms that 
can be used to solve them directly. 

2. Protection Mechanisms 

2.1 [ntroduction 

Clearly, there are a huge number of protection 
problems. Hydra cannot even begin to provide policies that 
solve each one directly. But that is not Hydra's purpose. In 
[Lev75], we discuss in some detail a central philosophy of 
Hydra, that of Policy/Mechanism separation. Briefly, we 
believe that an operating system should not attempt to provide 
a fixed set of policies, particularly protection policies. Rather, 
it should provide a set of mechanisms with which a large set of 
policies (hopefully including all useful and interesting ones) can 
be constructed. For example, we do not wire into Hydra a 
policy that permits the creator of a file to revoke access to it. 
;nstead, there is a mechanism that permits revocation and 
another (freezing) that prevents it. Yet other mechanisms 
(procedures, amplification) can be used to build arbitrarily 
complex policies that determine under what circumstances 
revocation is to be permitted or prevented. 

The particular protection mechanisms provided have a 
substantial impact on the protection policies obtainable. The 
mechanisms provided by Hydra are based on five philosophical 
p!-inciples. These principles and the mechanisms they induce 
are: 

1) Information ca._.n be divided into distinct 
objects fo_zE purposes o.f. protection. We 
really want a protection system to control 
access to and propogation of information. 
Unfortunately, we do not understand how to 
do this directly. Instead, Hydra forces users 
to group information together into a uniform 
data structure called an object and provides 
protection at the level of the object as a 
whole. 2 This is often quite natural, as when a 
user wishes to restrict access to an entire 
file. ]n other cases, the distinction makes an 
enormous difference. For example, it is one 
thing to revoke access to a file; it is quite 
another to revoke access to all information in 
the system derived from or dependent upon 
the data contained in that file. 

2) 

3) 

4) 

Objects ar__e distinRushed .b.Y_ t.ype. Each 
object is of a particular type, which remains 
constant for the lifetime of the object. 
Certain types of objects (e.g. Procedure, 
Process, Semaphore) and the operations 
relevant to each (e.g. CALL, START, P) are 
directly provided by Hydra. Hydra also 
provides mechanisms for creating new types 
of objects and defining the operations which 
manipulate them. At the same time, because 
all objects have the same structure, 
regardless of type (the type is used in 
interpreting the contents of the object), the 
kernel provides a set of generic operations 
(for example, reading or writing the object) 
which are type independent. 

Access t...o objects is controlled 
c~po.bUi¢~es. Capabilities may be passed from 
one user to another and may be retained by 
a user between terminal sessions. Each 
capability contains a large (compared to 
other systems) number of access rights 
which determine how the object named by 
the capability can be accessed; some of these 
rights are type independent (related to the 
fact that all objects have the same structure) 
while some aretype specific. 

Possession of a capability is the sole 
determinant of access, although through the 
use of other mechanisms (procedures, 
amplification), one can construct policies that 
take into account other criteria (e.g. who is 
the accessor?). Objects do not have 
"owners" as such. All holders of capabilities 
for an object share control of it in 
proportion to their rights. (Of course, one 
user might retain all rights to an object 
himself without granting any rights to others, 
becoming the de-facto owner.) 

Each proRram should execute with th.~. 
smallest set of access rights necessary. The 
protection domain is that set of capabilities 
which may be exercised by an executing 
procedure. It changes with each procedure 
call. Proced~.Lres (a type of object) in Hydra 
have access to "own" objects (via 
capabilities), inaccessible to users with only 
the right to execute the procedure. Each 
time a procedure is called, it executes in a 
completely new environment, determined 
solely by the procedures "owns" and by 
capabilities passed as arguments by the 
caller. This Permits a direct solution to the 
Mutual Suspicion problem and (as we shall 
see) permits the construction of arbitrary 
protection policies. 

2. Other systems [Din73,Gr a72,Lau74] permit 
differential protection of structured subsets of an 
object. Actually, in Hydra, objects are divided into two 
2 parts, a C-list and a Data-part, and in some ways, each 
may be protected separately. 
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5) AJ_J. knowledge about th..~, representation an__d. 
implementation o~ operation~ for each type 
o_f object should be hidden i3 modules Failed 
#u.bsystem$. in general, users of an object of 
a particular type cannot access it directly~ 
they can only do so through procedures 
associated with the subsystem for that type. 
Hydra supports this through the mechanism 
of riLght$ anzp~..f'i.coJ'i.on. Under certain 
circumstances, when a capability is passed as 
an argument to a procedure, it will have 
greater rights (in particular, those necessary 
to access the contents of the object) in the 
new domain created for that procedure 
invocation than it had in the domain of the 
caller. 

in the remainder of this section, we will explore the 
mechanisms that support these principles in greater detail. 

2.2 Objects, Capabilities and LNS's 

An object is a data structure that represents an instance 
of a resource, either virtual or physical. It may be thought of 
as a three-tuple: 

< unique-name, type, representation • 

The un.i.que-nxLnze of an object distinguishes it from all 
other objects that ever existed in the past or will exist in the 
future. The type of the object defines the nature of the 
resource the object represents. Some example of types might 
be  DEVICE, DIRECTORY, PROCEDURE, PROCESS, SEMAPHORE, 
FILE, SEQF]LE and RANDFiLE ( the last three representing 
dif ferent kinds of files). 

A primary purpose of a protection system is to control 
access to objects. This is accomplished in Hydr a through the 
use of capo.b~ULes. Associated with each executing program is 
a C-Ust, a l inearly numbered list of capabilities. Each 
capabil ity contains both the name of a particular object as well 
as a set of ox;cess ri.ghts. An access right (for example, i'ead- 
rights or write-r ights to a file) usually represents an operation 
which the possessor of a capability may legally perform on the 
object. 

The representations of capabilities and rights are 
manipulated only by the Hydra kernel, it is impossible to 
"forge' a capability or gain access to an object without having 
a capability for it. 

In many capability based operating systems, a capability 
is an attribute only of executors, in such systems, the C-list 
associated with an executing program defines its protection 
domain. While this is also true in Hydra, we have generalized 
the notion of objects and capabilities in an important direction. 
Regardless of type, ~ objects have the same structure; the 
type of an object simply provides an interpretation for the 
contents of the object. Capabilities are not an attribute of 
executing programs alone; ~ object may contain a C-list. 
This generalization has two important effects. 

1) Executing programs may be represented as a 
type of object. This type is an LN3, short 
for "Local Name Space". 

2) New object types (new kinds of resources) 
may be defined in terms of existing object 
types. For example, one might imagine a 
File-directory which contains both a list of 
files and a semaphore which provides mutual 
exclusion of operations on the file-directory. 
in the terminology of Hydra, the C-list of an 
object of type FILE-DiRECTORY would 
contain capabilities for objects of type FILE, 
as well as a capability for an object of type 
SEMAPHORE 

in addition to a C-list, an object contains a DoXa-po.rt, a 
block of storage holding relevant information. Together, the 
C-list and the Data-part constitute the represetzt=~ of the 
object. Returning to our FiLE-DiRECTORY example, the Data- 
part of a f i le-directory might be used to hold the string names 
of the files in the file-directory. 

The decision to divide the representation of an object 
into two parts, Data-part and C-list, was made primarily on 
pragmatic rather than theoretical grounds. As Fabry notes 
[Fab74], data and capabilities could, in principle, be combined 
into one segment, if there were some way to allow complete 
freedom to alter the datas while at the same time preventing 
arbi t rary manipulation of the capabilities. This would be 
possible on a processor with a tagged architecture, such as 
the Burroughs 5500 [Org73]. However, we were limited to the 
architectural confines of a PDP-I 1. 

There are other reasons for keeping the Data-part and 
C-list separate as well. Since any object may potentially 
contain a capability for any other object, objects may form 
general directed graph structures which require garbage 
collection. Gathering capabilities together in a separate C-list 
simplifies the garbage collection mechanism. 

2.3 LNSes and Paths 

An LNS defines the instantaneous protection domain of 
an executing program; its C-list contains capabilities for all of 
the objects that may be directly accessed (including 
capabilities for PAGE objects, which define the LNS's address 
space). ~ objects accessed must be referenced through •the 
LNS, but since the objects referenced by capabilities may 
themselves contain capabilities for other objects, it should be 
clear that the actual protection domain extends to all objects 

• reachable via some capability path rooted in the LNS. Access 
to such objects is limited though, by the rights in the 
capabilities along the path. 

In addition to acting as the protection domain of an 
executing program, the LNS also serves a naming function. 
Objects referenced in the C-list of an LNS are never referred 
to by their unique names. They are always named by their 
LNS C-list indices. Similarly, objects indirectly accessible via a 
capability chain rooted in the LNS can be directly named by 
the sequence of C-list indices along the path to the object. As 
a general rule, anywhere (the LNS index of) a capability may 
appear in the calling sequence of a kernel call or procedure 
call, a path to a more distant object may also appear, The 
Hydra kernel handles all of the details of following the path to 
the target object. 
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2.4 Generic Operations 

Hydra supports objects of many different types. Some 
o f  the types are implemented by the kernel, for example 
PROCEDURE, SEMAPHORE, PROCESS and TYPE. Others, such as 
FILE and DIRECTORY, are defined by user level subsystems. 
But all objects, regardless of type, whether defined by the 
kernel or by user software, have a common underlying 
structural representation, i.e. Data-part and C-list. 
Furthermore, all operations on objects can be composed from 
simple manipulations of their Data-parts and C-lists. Therefore 
the Hydra kernel provides a number of type independent 
"generic" operations for these manipulations. These 
operations are kernel calls, k-calls for short, and are 
implemented by instructions which trap to the kernel. 

The k-call Cetd~:~ta provides access to the Data-part of 
an object. Its first parameter is a path to a capability for the 
object whose Data-part is to be read. The other parameters 
specify what part of the Data-part of the object is to be read 
(i.e. offset and length) and the address in the caller's address 
space into which the information should be copied. 3 A similar 
k-call, P~td~o.., allows the user to write into the Data-part of 
an object. There is a third kernel call, Add~o., which allows 
the caller to append data onto the end of the Data-part of the 
object (extending the length of the Data-part as a side-effect.) 

There are similar operations for manipulating the C-lists 
of objects. For "reading" a C-list, i.e. copying a capability into 
the current LNS, the user executes a Load k-call. Load's first 
parameter is a path to the capability which is to be "read". 
The second parameter is the index of a current LNS slot into 
which the capability is copied. 

Of course there is also a Store k-call which copies a 
capabil i ty from the current LNS into the C-list of another 
object or into a slot in the LNS. However, in addition to the 
source and destination parameters, Store takes a third 
parameter, a rights restriction mask. When a capability is 
stored, it is often desirable for the copy that is stored to have 
fewer rights than the original. Storing a capability into a 
public object (or at any rate an object that at least one other 
user can access) is the primary mechanism Hydra provides for 
sharing access rights, and often what is desired is to share 
some, but not all, of the rights to an object, e,g. read-rights, 
but not wri te-r ights to a file. The rights restriction mask 
passed to 3tore acts as a rights "filter", and is "anded" with the 
set of rights contained in the source capability to produce the 
restricted rights that are placed in the destination capability. 
In the case that the source and destination are the same, Store 
simply removes the masked-out rights from the designated 
capability. 

An Appen.d k-call, which appends a capability to a C-list, 
is also provided. As with 3tore, the user can restrict the rights 
of the appended capability. 

The Delete k-call removes a capability from the C-list of 
an object. Deleting a capability from a C-list does not cause it 
to collapse, with the consequent renumbering of the higher 
numbered capabilities. The slot in which the deleted capability 
sat is simply written over with a capability of the special type 
NULL (whose only use is the indication of empty C-list slots.) 
Note that the Delete operation does not destroy the object 
referred to by the capability; it only destroys the capability 
itself. Only if al_L of the capabilities for an object have been 
deleted is the object itself eligible for destruction. We are 
planning to implement a Destroy k-call which will destroy an 
object even though capabilities for it are still outstanding. 
Attempts to access a destroyed object will signal an error. 

Finally, there is a Copy k-call which copies the Data-part 
and C-list of an object, given a capability for it, to a new 
object, placing a capability for the new object in a designated 
slot in the caller's LNS. The capability for the new object will 
contain the same rights as did the original. 4 The Cre~e k-call, 
which creates an entirely new object will be discussed in 
section 2.11. 

The generic operations are important because they form 
the primitive basis for the definition of "higher level" type 
specific operations implemented as procedures. The C-list 
manipulating operations are especially important because they 
allow the construction of collections of objects which are 
passed around and manipulated together as a unit. 

It should be noted that each of the generic operations 
described above is implemented indivisibly. This means that 
two processes cannot operate on the same object at the same 
time even if they are executing concurrently on different 
pi'ocessors. However, this mutual exclusion holds for the 
duration of a single kernel call only. For mutual exclusion of 
composite operations requiring more than one kernel call, some 
other form of synchronization, such as semaphores, is 
necessary. 

We did expect that users would desire certain sequences 
of k-calls executed indivisibly frequently enough that we 
packaged them as separate k-calls. For example, the k-calls, 
Take and Po.ss are equivalent to the composites (Looxi; De/el:e) 
and (Store; Delete) respectively. 

2.5 Sharing 

Perhaps the major benefit of the very general 
object/capabil i ty structure is the ease with which it permits 
sharing. If two executing LNS's, User-1 and User-2 both have 
a Capability for some object Comm-1, they can easily share 
both data and capabilities. User-1 can store data into Comm- 
l 's  Data-part and User-2 can then retrieve it (assuming their 
capabilities contain the rights that allow the necessary k-calls). 
More interestingly, imagine a situation where User-1 has rights 
tha t  permit both read and write access for some file and 
wishes to grant User-2 read access only. As figure 2.1 
illustrates, it is possible for User-1 to store a capability for 
the file in Comm-1, restricting rights so that the capability for 
the fi le placed in Comm-1 only contains the rights permitting 
read access. Through Comm-1, User-2 can then gain read 
access to the file (steps (1) and (2) in the figure), 

3. Hardware limitations prevent mapping the Data-parts of 
objects directly into the user's address space. 4. This is not strictly true, but will suffice for this discussion. 
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Figure 2.1 

If User-2 can communicate with User-3 via Comm-2, 
then User-2 can then share access Of the file with User-3 
(steps (3) and (4) in the figure). 5 One can view User-2 as an 
intermediary, receiving files from User-I and then passing 
them on to User-3. Our general object structure actually 
permits User-2 to withdraw from this arrangement while still 
arranging for files to be shared between User-1 and User-3. 
User-2 can simply store his capability for Comm-1 into Comm- 
2 (step (5) in the figure). User-3 can now access Comm-1 
directly through Comm-2 and retrieve any data or capabilities 
placed in it by User-1. 

2 . 6  R i g h t s  

As described above in section 2.2, a capability contains 
the name of an object and a set of rights to that object. In 
general, each right corresponds to a class of allowed accesses 
to the object. The rights list is in fact implemented as a bit 
vector of length 24. Each bit represents the presenc e or 
absence of one right. 

Most rights are associated with a single operation. The 
presence of a particular right in a capability permits the 
associated operation to be performed on the object, and the 
absence of the right causes the operation to fail. But some 
rights, those used directly in the solution of protection 
problems, are used to permit or deny certain wider classes of 
behavior. The important property of rights in Hydra is not 
one-to-one correspondence with operations, but monotonicity: 
the presence of a right in a capability always allows more (or 
at least no less) behavioral freedom for the holder of the  
capability than the absence of that right. 

The rights lists in Hydra are divided into two parts: the 
(16) gen.erLc r~ghts and the (8) o~/Ji.o.ry rights. Generic rights 
affect type independent behavior, either by permitting the 
generic operations discussed previously or through their use 
in the direct Solution of problems. 

5. If User-1 desires, this can be prevented as we shall see in 
our discussion of Limiting Propogation of Capabilities. 

The interpretation of auxiliary rights is type dependent. 
Thus, in a capability for an object of type PROCEDURE, one of 
the rights, known as CALLRTS (call-rights) permits the user to 
CoJL the procedure. Such a right makes no sense for objects 
that are not procedures. Similarly, a capability for an object 
of type FILE may have one of the auxiliary rights bits 
interpreted as WRITERTS (write-rights). This right makes no 
sense for objects of type SEMAPHORE or PROCESS or 
PROCEDURE. 

The representation of rights lists as bit vectors is 
particularly convenient because it makes the two basic 
operations on rights lists, namely rights checking and rights 
restriction, very simple. Testing whether a capability contains 
a certain set of rights involves a single (24 bit) comparison. 
Restricting rights is just a single "and" operation. 

The fact that rights checking and rights restriction are 
merely bit vector operations gains more than just speed and 
simplicity. It means that the mechanism of rights checking and 
restriction can be implemented without regard to the meaning 
of the rights. The assignment of meaning to the auxiliary 
rights is a matter left up to the software defining the types. 
This is a clear example of the basic Hydra principle of 
policy/mechanism separation. 

There are only a small number of generic rights defined 
by Hydra, and we can list them here. They are divided into 
two groups. The first nine rights control the nine generic 
operations discussed in section 2.4. |n each case, the 
appropriate right must be present in a capability or else, an 
attempt to perform the corresponding operation on the object 
it references will fail. 

1. GETRTS - to get data from an object's Data- 
part 

2.  P U T R T S  - to put data into an object's Data- 
part 

3. ADDRTS - to add (append) data onto an 
object's Data-part 

4. LOADRTS to load a capability from an 
object's C-list (into an LNS) 

5. STORTS - to store a capability into an 
object's C-list 

6. APPRTS - to append a capability onto an 
object's C-list 

7. KILLRTS - to delete a capability from an 
object's C-list 

8. COPYRTS - to copy an object 

9. OBJRTS - to destroy an object 

The remaining rights, DLTRTS, MDFYRTS, UCNFRT5, 
ENVRTS, ALLYRTS and FRZRTS are used in the direct solution 
of protection problems, and with the exception of DLTRTS, 
discussed below, are left to section 3. 

145 



As we mentioned in section 2.4, a version of Store allows 
a user to restrict his own access to an object. A good 
protection mechanism protects users not only from other 
users, but from themselves as well. This is especially 
important when a user is testing a program about which he is 
still a bit uncertain, and wants to limit the havoc he can wreak 
among objects he can access. 

DLTRTS provides an example of such a safeguard. 
Normally all capabilities contain DLTRT$, though we will not 
show them in any of our diagrams. A capability may not be 
deleted, nor may any right be removed from it, unless it 
contains DLTRTS. v Thus, an uncertain user can remove DLTRTS 
from capabilities in his own LNS in order to guarantee that he 
wild not mistakenly reduce his own access rights. A user may 
also find ff occasionally useful to restrict DLTRTS when storing 
a capability in an object before granting K[LLRTS for that 
object to another user. 

2.7 Procedures and LNSs 

A procedure is an object which serves as an abstraction 
of the ordinary programming notion of procedure or 
subroutine. Thusj it has some "code" and some "owns" 
associated with it. ]t may take capabilities as parameters and 
it may return a capability to its caller. Procedures may Ca// 
one another in a potentially recursive manner, because 
procedure activations (LNSes) are stacked. 

However, Hydra procedures go beyond this simple model 
by including protection facilities. The procedure object 
actually serves as a prototype or model for the LNS created 
when the procedure is called. For example, the procedure's C- 
list Contains a capability for each of the objects considered to 
be "own" to the procedure, and copies of those capabilities are 
placed in the instantiated LN$ during a procedure call. In 
addition, the C-list of a procedure may contain structures 
which are not capabilities at all, but "prototype capabilities" 
called tertzplo.te$. There must be one template for each "formal 
parameter" of the procedure, which specifies the type and 

• r!ghts required of the parameter. During a procedure call 
these templates are replaced by "actual parameter" capabilities 
derived from the capabilities passed as arguments. 7 

The Data-part of an LNS contains a variety of useful 
information which is initialized from the Data-part of the 
procedure when the LN$ is instantiated. This information 
includes specification of the LNS's address space, software 
trap and interrupt vectors (hardware traps and interrupts are 
handled by the kernel) and the location of the first instruction 
of the procedure. 

6. This differs from KILLRTS. A •user requires a capability 
containing KILLRT$ to delete •capabilities i n  the object 
refer.enced by the given capability. 

7. Hydra Procedures are very similar to a combination of what 
CAL-TSS calls domains and gates [Gra72]. The former 
specifies the procedure "owns", while the latter specifies the 
form of the procedure arguments. For a number of reasons, 
including efficiency, we have come to believe that the 
separation is probably desirable. 

We believe that ideally, all procedures, including simple 
subroutines such as sq~ or sine, should execute in an 
environment providing the smallest set of access rights 
necessary. This implies frequent changes in the protection 
domain. But in much the same way that one might decide 
whether a subroutine should be called or expanded in line, one 
must consider the costs involved in switching protection 
domains. Unfortunately this cost in Hydra is considerable, due 
to the limitations of hardware and to certain design flaws. As 
a result, users package routines as Hydra Procedures only 
when the protection domain must be changed to protect either 
the caller or the supplier of the routine, or when the routine is 
so large that the overhead of domain switching is insignificant. 
For example, a compiler might be packaged as a procedure 
which takes a capability for a source file as an argument and 
returns a capability for an object file. 

The difference between a procedure and an LNS is an 
important one even though it is frequently blurred. (We 
sometimes speak of the executing procedure when we actually 
mean the LN$ created from that procedure during the call 
operation.) An LN$ may change during the course of its 
execution, for instance by creating new objects and storing 
capabilities for them in the LNS's C-list. But the procedure 
object itself is never affected by the LNS's execution. Thus~ 
procedures are potentially reentrant and recursive. 

2,8 Processes 

Objects of type PROCESS correspond to the usual 
informal notion of a process, that is, an entity which may be 
scheduled for execution. The Data-part of a process object 
contains process state information (e.g. scheduling parameters). 
The C-list of a process object contains a list of LNS's, treated 
as a stack. The "top" LN$ defines the current protection 
domain of the process. 

The current protection domain of a process may change 
many times during execution of the process, corresponding to 
calls and returns of Hydra Procedures. Each time a procedure 
is called, a new LN$ is created, initialized and pushed onto the 
top of the LN$ stack, becoming the current LNS. When the top 
LN$ returns, it is popped from the top of the LNS stack and 
destroyed. Control returns to LN$ below it on the stack. 8 

Holders of a capability for a process object may start 
and stop it, as well as change the process state. (Additional 
details can be found in [Lev75]), however no capability for a 
process contains the generic rights necessary (LOADRT$, etc.) 
to permit access to the process' C-list. A user scheduling a 
process does not necessarily have a right to know what the 
process is doing. This is especially true in the case that a 
propr ietary procedure has been called. If the process' 
scheduler could access the process' C-list, it would be able to 
access the proprietary procedure's "owns". 

8. There is a facility that allows LNS's to be saved after they 
return. The LNS may then be continued, causing control to be 
transfered just beyond the return point. This does not require 
any changes in the LNS stack as described. The stack is used 
only for control (call/return discipline), rather than for access. 
Any object accessed is reached through a path rooted in the 
current LNS, not through any LNS in the stack. Actually, there 
is a set of capabilities accessible indirectly. The creator of a 
process, in addition to specifying its initial LN$, also may 
associate a process base with a process, an object whose C- 
list can be accessed by any LN$ executing under the process. 
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2.9 Types and Subsystems 

We have already mentioned that all objects are a three- 
tuple: 

< unique-name, type, representation >. 

In this section, we will discuss the representation of 
types and its role in defining type su.bsystemJ. 

The type of an object is actually the name of some other 
object whose type is TYPE. That is, just as there objects of 
type PROCESS, PROCEDURE and perhaps FILE-DIRECTORY, 
there are objects of type TYPE, each one of which 
"represents" the class of objects of that type. For example, 
the object whose name is SEMAPHORE and whose type is TYPE 
"represents" all objects whose type is SEMAPHORE 

Of course, all those objects of type TYPE must be 
represented by a TYPE object whose name is also TYPE. This 
all can be depicted by a three level tree with the TYPE-TYPE 
object at the root. Figure 2.2 shows part of the tree 
containing objects of type TYPE, PAG~ FILE and SEMAPHORE. 

Figure 2.2 

Given a capability for some TYPE object, a new object of 
that type may be created (the details may be found in section 
2.11). In particular, new types may be defined by 
starting with the TYPE-TYPE object. 

The Data-part of a TYPE object contains a variety of 
useful information, such as the maximum permissible sizes of 
the C-list and Data-parts of objects of that type (enforced by 
the kernel). As we shall see shortly, the C-list is more 
interesting. 

The concept of "type" in Hydra is closely related to the 
concept of "data type" in a number of programming languages 
designed for "structured programming", i.e. "class" in Simula 
[Dah66], "cluster" in CLU [Lis74] and "form" in Alphard 
[Wu174b] (this relationship is discussed more thoroughly in 
[WLP75]). The central notion is that a type is an abstraction 
of a class of objects, and that the abstraction specifies not 
only the representation of the objects, but the operations that 
apply to the objects as well. A key feature of type 
abstraction is that the representation of an object should not 
generally be known to users of the object. Manipulation of the 
object should only be possible by invoking thos e operation 
specific to its type. 

In the case of user defined types in Hydra, these 
operations are specified as Hydra Procedures, and the C-list of 
the TYPE object contains capabilities for these procedures. 9 
We call this collection of procedures a S~bs:ts~ern. For 
example, a File-directory subsystem would likely contain one 
procedure that would store a file in a given file-directory by 
symbolic name as well as one that would return a capability 
for a file given a fi le-directory and the file's symbolic name. 

As already noted, the representation of an object, 
whatever its type, is simply the contents of its C-list and Data- 
part. There is no explicit declaration of how that 
representation is to be interpreted; rather it is implicit in how 
the representation is used by a subsystem's procedures. For 
example, the procedures in a File-directory subsystem might 
interpret the Data-part of a file-directory object as containing 
a map from the symbolic name of a file to the index in the file- 
directory's C-list where the capability for the file might be 
found. 

Hydra must somehow guarantee that ordinary users 
cannot access or manipulate an object's representation except 
by calling subsystem procedures, especially since outside 
access might threaten the integrity of the assumptions made 
by the subsystem regarding the format of the representation. 
This implies that ordinary users do not have capabilities 
containing the various generic rights (LOADRTS, PUTRTS, etc.) 
that  permit access to an object's representation. Yet, a 
subsystem procedure must be able to gain these rights when a 
capabil i ty for an object of the type it supports is passed to it 
as an argument. In other systems, objects are "sealed" 
[Mor73,Red74a] by a subsystem when presented to a user. 
The subsystem procedures must then be able to "unseal" them 
in order to manipulate them directly. In Hydra, sealing simply 
means the restriction of the appropriate generic rights. 
Unsealing is accomplished by Ri~ght~ A~pb~[~o.ci.on [Jon73]. 
The exact mechanism which supports amplification is discussed 
in section 2.11. 

As we noted in section 2.6, the auxiliary rights of user 
defined types are not specially interpreted by the kernel. Like 
the generic rights, they may be restricted via the generic 
operations already discussed (section 2.4) and may not be 
gained except through rights amplification. It is possible to 
check whether a capability contains a particular right (section 
2.11), and thus a subsystem may use auxiliary rights to 
allow or disallow calls on various procedures in much the same 
way that the kernel uses generic rights to allow or disallow 
the application of various generic operations. 

For example, a File-write procedure might require a 
capabil i ty for a file containing auxiliary right #2, while a File- 
read procedure might require a capability for a file containing 
auxil iary right #5. If the "owner" of a file holds a capability 
with both rights, but shares only a capability with auxiliary 
right e5 with other users, then while other users will be able 
to read the file, only the "owner!' will be able to write it. 

9. One does not need a capability for the Type object in order 
to call one of these procedures. Using the TCALL operation 
supplied by the kernel, they may be called through any object 
of the specified type. A similar mechanism may be found in 
the Plessey system [Cos74]. 
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2.10 Kernel Types 

While all types may be though of as defining 
subsystems, certain types, such as PROCEDURE, LNS and 
PROCESS, are crucial to the operation of Hydra. These types, 
plus certain others useful as building blocks for user-defined 
types, are defined and implemented directly by the Hydra 
kernel. Operations on these kernel-supported types are 
implemented as k-calls instead of procedure calls. 

The following is a list of the kernel-defined subsystems. 
In some cases operations specific to the type are mentioned. 
Each such operation is protected by an auxiliary right. 

LNS - An LNS serves as a protection domain 
and as a dynamic activation of a procedure. It 
is the root of the tree (graph) of objects 
accessible to a program and provides a 
framework for naming them. 

Procedu.re - Procedures are the Hydra analogue 
of ordinary programming of procedure. 
However, a procedure call in Hydra causes a 
change in protection domain. The CoJJ 
operation requires the auxiliary right CALLRTS. 

Process - A process object represents an 
independently schedulable activity, the unit of 
parallel decomposition. Processes consist of 
some scheduling data and a stack of LNSes. 
The primary operations on them are sto.rt and 
stop. 

P~ge - A page object is an image of one of the 
4k word defined by the hardware. One can 
think of the address space of an LNS as defined 
by a table found in the Data-part of the LNS; 
each entry containing an index into the LNS's 
C-list where the capability for the 
corresponding page can be found. A more 
accurate and complete description is included in 
[Lev75]. 

Sem.aphore - These are Dijkstra-style 
semaphores with P, V and conditionaI-P 
operations defined. 

Port  - Ports are the basic objects of the Hydra 
interprocess message communication system. 
They act as message switching centers and 
synchronization structures. Operations on 
ports include connect and cJ.sconnect (to form 
and break channel connections between ports) 
and other primitives for sending and receiving 
messages. 

Oeuice A device object  is the software 
representative of a physical i/o device. In 
Hydra it is treated as a variety of port. The 
only operations currently defined on devices 
are connect and ~sco~mect: to ports. 

Pol l~y - Policy objects are mailboxes used by 
the kernel to communicate with policy systernJ 
responsible for scheduling processes. Details 
can be found in [Lev75]. 

DoJa - The kernel provides data objects as a 
convenience to users who wish to seal data in 
protected objects without going to the trouble 
of defining a formal subsystem. Data objects 
have Data-parts, but no C-list. Their only use 
is as simple data carriers. 

Urd.uersoJ - Universal objects are similar in 
concept to data objects except that universal 
objects do have C-lists, and thus can act as 
carriers of capabilities as well as data. 

Type Type objects represent entire 
subsystems. The C-lists of type objects contain 
capabilities for all of the operations in the 
subsystem (if the system is not one of these 
kernel defined subsystems). One auxiliary right 
defined is TIVlPLRT$, which permits a template 
to be made from a Type object (section 
2.1t). 

2.11 Templates 

We have delayed discussing until now three mechanisms 
that Hydra must provide in oder to support Type Subsystems: 

1) Creation - A user wishes to create a new 
object of a specific type. 

2) Type and Rights Checking- A user wishes to 
guarantee that a capability references an 
object of a specific type and contains 
required rights. This is particularly 
important in specifying procedure "formals". 

3) Rights Amplification - Given a capability for 
an object of a particular type, the subsystem 
for objects of that type wishes to gain the 
rights necessary to manipulate the object's 
representation. 

Hydra provides a single mechanism, tentp~tes, which 
serves all three purposes. 

Templates, like capabilities, may appear in the C-list of 
an object, and through the use of the generic operations 
already discussed, may be moved from the C-list of one object 
to another. Unlike capabilities they do not contain a reference 
to an object. Rather they can be thought of as prototype 
capabilities for all objects of a given type. Through the use of 
the generic operation Tentp~te, a template of a particular type 
may be created by a user already holding a capability for the 
TYPE object of the same type. Thus, a File-directory Template 
could only be created by someone having a capability for the 
Fi le-directory TYPE Object. 

There are three kinds of templates, Creation Templates, 
Parameter Templates and Amplification Templates, 
corresponding to the three functions described above. Each 
template contains a field designating its type, and depending 
upon which kind of template it is, contains one or both of the 
two fields required-ri.ght$ and new-rights. 
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1) Creation Templates. Creation templates 
contain a type field and a new-rights field. 
Through the use of the generic operation 
CreoJ'e, the holder of a creation template can 
create a new object whose type will be the 
same as that of the template. A capability 
for the new object will be placed in the 
creator's LN$ with the same rights as as 
those specified in the new-rights field of the 
template. 

When a template is initially created, its new- 
rights field contains al_l. rights. Through the 
use of generic operations, these rights may 
be selectively removed. A subsystem may 
choose to make creation templates generally 
available after first removing those rights 
from new-rights that would permit direct 
access of the object (e.g. STORTS, PUTRTS, 
etc.). Thus, while a user could create a new 
object, he still would be unable to manipulate 
its representation without calling subsystem 
procedures. 

Often, when an object is newly created, a 
subsystem wishes to initialize it in some way. 
In that case, the subsystem might not choose 
to make creation templates generally 
available. It might simply retain a creation 
template itself and make a procedure 
available to users, which when called, would 
both create and initialize the object, 
returning a capability with appropriately 
restricted rights to the caller. (Also see 
section 3.6). 

2) Parameter Templates. Parameter templates 
contain a type field and a required-rights 
field. They can be compared against a 
capability to determine whether or not that 
capability is of the same type and has at 
east those rights listed in the required- 

rights field of the template. (Here, Hydra 
goes beyond type checking generally found 
in programming languages in that it checks 
rights as well as type.) It is expected that a 
SUbSystem will make these templates 
generally available to users. 10 

3) Amplification Templates. Amplification 
templates contain a type field, a required- 
rights field and a new-rights field. Given a 
capability of the same type as the template, 
with all the rights specified in the template's 
required-rights list, a new capability can be 
produced, referencing the same object as the 
original capability, but containing the rights 
specified in the new-rights field of the 
template. It is expected that amplification 
templates will never be made generally 
available by a subsystem. In particular, 
amplification templates for kernel-supported 
types (Process, LNS, etc.) are never made 
available. 

10. A special kind of parameter template, a Null 
Template, is made available by the kernel. It matches 
~nY type and only checks rights. 

2,12 The Hydra Procedure Call Mechanism 

We have discussed in a general way the effects of a 
procedure call. Now that we have explained templates, we can 
discuss in more detail the heart of the Call Mechanism, the 
initialization of the LNS's C-list. The CoJ/. operation is a k-call 
having the following form: 

Col.l. ( cproc, retcu'n.-$Lot, p J, rn.oJkl, ... pn., rn.oJkn ) 

The first parameter, cproc, must be (a path to) a 
capabil ity for a Hydra procedure object. The second 
parameter, retu.rrL-s~t, is an index into the current LNS (the 
calling LN$) indicating where the called procedure should store 
the capability it returns. The rest of the parameters to Co../.l 
are grouped in pairs. Each pair consists of a path to a 
capabil ity and a mask used to restrict the rights in the 
capabil ity passed. 

Each capability (and creation template) in the 
procedure's C-list is then copied into the corresponding slot of 
the LNS's C-list. These are the procedure "owns" and are said 
to be inherited from the procedure. 

A number of slots in the procedure's C-list will contain 
amplification and parameter templates. The capabilities passed 
as arguments to the procedure are bound to these templates 
in left to right order. Each LNS slot corresponding to an 
amplification or parameter template is filled by the matching 
capability passed as an argument. 

If a parameter template is encountered in the parameter 
binding process, the matching argument capability (with rights 
restricted as specified by its associated mask) is compared 
against the template. If both type and rights match as 
required, the capability, with rights restricted according to the 
associated mask, is placed in the appropriate C-list slot. In the 
case of an amplification template, the same algorithm is used, 
except that the capability placed in the LNS will have the 
rights specified by the new-rights field of the template. If the 
type or rights of any argument fails to meet the requirements 
of the template, the LNS is destroyed and control returns to 
the caller with an indication that the Call failed. 

2.13 An Example 

We have noted that files are not a kernel supported 
type. Instead they must be provided through a user defined 
File subsystem. In one possible implementation, a sbbsystem 
might have sole access to a disk (of type Device). It could 
make fi le objects available whose Data-part would contain the 
location on the disk where the file could be found. Of course, 
the Data-part could only be accessed by the File subsystem 
procedures. This is similar, in fact, to Hydra's implementation 
of kernel-supported Page objects. 

Alternately, files could be constructed directly from 
kernel-supported objects. The C-list of a file object might 
then contain capabilities for Page or Data objects. We will 
br ief ly explore the latter alternative by examining the 
construction and instantiation of Datafile-Append, a procedure 
supplied by a Datafile subsystem. 

Datafile-Append takes two arguments, a Datafile and a 
Data object, and appends the data encapsulated in the Data 
object onto the end of the Datafile. The creator of the Datafile 
subsystem must store three things in in the C-list of the 
Datafile-Append procedure when he creates it. 
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3) A Datafile amplification template. The new- 
rights field of the template contains those 
rights necessary so that the procedure can 
manipulate the representation of the Datafile 
passed to it. In addition, the template 
requires the Datafile passed to it have the 
second auxiliary right set. In essence, this 
means that the second auxiliary right is 
interpreted as an "append-right" for Datafile 
objects; it permits a Datafile capability to be 
used as an argument to Datafile-Append. 

~Jser  (Lt~S) 

t - LOADRTS 

s - STORYS 
- GETRTS r - PR.EADRTS 

x~  - APPe~td~tsrzg p- - pL~£RT S k - KILLRTS 

Figure 2.3 

Figure 2.3 illustrates what happens when Datafile- 
Append is called by User (of type LNS) with arguments Arg (of 
type DATA) and D (of type DATAF]LE) instantiating the LNS, 
Datafile-Append'. The C-list slots in the procedure specifying 
the Data and Datafile templates have been replaced in the LNS 
by the corresponding arguments, while the capability for the 
code page in the procedure has been inherited by the LNS. 

2.14 Protection Mechanisms and Protection Problems 

The mechanisms of procedure invocation and rights 
amplification combine to form a powerful tool for the 
construction of arbitrary protection policies. If direct access 
to an object can be prevented except through a procedure 
call, then the procedure can decide when access should be 
permitted. In general, where mechanisms do not exist to 
direct ly solve a protection problem, procedures can be used in 
constructing a solution. Thus, there are two ways that 
protection problems can be solved: 

1) Direct Solution. The mechanism directly 
solves the problem. For example, a 
mechanism that provides separate rights for 
read and write access to a file, on a user by 
user basis, directly solves the problem of 
finding a way to allow some users to read a 
file while permitting others to both read and 
write it. 

2) Procedural Embedding. The mechanism 
merely provides an appropriate protected 
environment for code which implements the 
solution to the problem. Procedures in Hydra 
provide just such an environment. Imagine a 
procedure to which a user could pass a file 
and a set of "keys" (capabilities for type key 
objects) as arguments, which the procedure 
would store in its "own" area. Subsequent 
callers of this procedure would be permitted 
access to the file only if they presented one 
of the designated keys. This kind of 
arrangement could be used to implement lock 
and key protection [Lain69] or the Military 
Clearance Classification system 
[Wei69,Wa174~ 

Procedural embedding has other possibilities as well. 
Imagine almost any common protection problem relating to 
usage of another user's program. (For example, consider a 
user who requires a guarantee that a procedure given access 
to a file will not destroy the file - especially important on a 
system that, unlike Hydra, does not provide separate rights fo r  
read and write access.) Let us suppose that some very 
t rustwor thy (and very bright) programmer constructs a 
procedure which accepts source programs written in a special 
language that makes it easy (well.. generally possible) to 
decide whether the program exhibits certain repugnant 
behavior (e.g. would it destroy a file passed to it as an 
argument?). This very trustworthy procedure would compile 
the programs (into Hydra Procedures) and would store them 
away with their repugnance ratings. 

Subsequent callers of this very trustworthy procedure 
could retr ieve procedures along with their repugnance ratings. 
Using the repugnance information~ users could deduce 
specifications of the program's behavior. 

Both the "direct" solutions and the "procedural 
embedding" solutions that we have described are d:ynx~rn./.c in 
the sense that they require overhead during the execution of 
programs. We could consider, however, going one step further 
to statically determined protection by complete certification of 
programs. If users can verify, in advance, that procedures 
they interact with exhibit only unobjectionable behaviors 
presumably there would be no need to supply any dynamic 
protection mechanisms. (Although it is not clear, of course, 
how a user could know, in advance, of all procedures with 
which it might interact.) Certification is still an art, and one 
would not want to rely upon it as the answer to protection in 
a current system. Further, certification requires a language 
(or set of languages) in which protection questions are 
decidable. We did not want to restrict ourselves to such a 
language, especially since no such language is presently 
available. 

Certification, as a static process, ideally need only be 
performed once, whereas Hydra's dynamic protection 
necessitates a continuing overhead. But programs are not 
always correct or complete, even when their protection 
properties have been certified, and thus, the tradeoff between 
recertif ication and dynamic protection is by no means obvious. 
In the case of the ideal machine (though unfortunately not the 
one upon which Hydra runs), dynamic protection of the sort 
available in Hydra should cause very little overhead at all. 
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In Hydra, procedural embedding of protection is 
expensive because of the cost involved in calling a Hydra 
Procedure. Even supposing a suitable architecture, a 
procedure would generally have to make many of the same 
dynamic protection decisions interpretively that are already 
available directly from Hydra. 

There are a set of protection problems (such as Mutual 
Suspicion, Confinement and Revocation) which are reasonably 
well understood, and for which users frequently need 
solutions. It is desirable that Hydra make mechanisms directly 
available that can be used to provide solutions to these 
problems, especially if the mechanisms are useful in building 
other general protection policies (via embedding) and do not 
"clutter up" the basic system design. 

It is not especially difficult for a clever designer to 
generate such mechanisms. Rotenberg [Rot73], in his thesis, 
described a large number of interesting protection problems 
(many for the first time), but he attempted to forge solutions 
to some of them by positing somewhat awkward or complex 
additions to the Multics File System. 

The basic protection mechanisms already described 
above go a long way towards providing an ideal environment 
in which protection problems can be solved. In section 
3, we will see that by some simple extensions~ 
primarily through extending the concept of access rights, we 
have produced what we believe are some elegant direct 
solutions to some difficult problems. 

3. Protection Problems 

3.1 Mutual Suspicion 

In most operating systems, whenever one user calls a 
program belonging to another user, or even a utility belonging 
to the operating system, he takes a risk. He has no way of 
being sure that the program he calls will not, through 
maliciousness or error, do something disastrous (such as 
request that the operating system delete all his files.) Most 
users simply take such risks for granted and rely on backup 
systems to aid recovery in the unlikely event that disaster 
should occur. But in a system in which security is important 
such faith is not enough. The user needs some way to limit or 
circumscribe the amount of damage a procedure that he calls 
can do. 

A similar problem is faced by the author of a util ity 
program intended to be called by many different users. The 
ut i l i ty presumably has to manipulate certain private files or 
data structures which it cannot allow its callers to manipulate 
directly. The author of the utility program needs some 
guarantee that, except during execution of the program, users 
cannot access these sensitive data structures. 

These two problems together are known as the Mutual 
Suspicion Problem [Sch72]. Restated in the language of Hydra 
the problem is this: The caller of a Hydra procedure needs a 

guarantee that the callee is not granted access to any of his 
objects except those for which capabilities are explicit ly 
passed as parameters. The callee (i.e. the owner or maintainer 
of the procedure) needs a guarantee that the caller cannot 
gain access to any objects private to that procedure except 
when the procedure explicitly allows it. Note that, in our 
earlier terminology, mutual suspicion is not a problem of 
negotiation, but a pair of mutually unilateral problems. 
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The Hydra procedure call mechanism described in 
section 2.12 was designed as a direct solution to the Mutual 
Suspicion problem. 

A procedure's execution environment is not determined 
solely by its caller; procedures may have "own" capabilities, 
inherited by the LNS incarnated by the procedure and 
unavailable to the caller. Thus, sensitive or private data 
structures need never be made available to the caller of the 
procedure. Furthermore, there is no way that the caller can 
automatically inherit any capabilit!es from the called LNS, 
unless a capability is explicitly returned. 

Because an LNS does not inherit access to the 
capabilities in LNSes deeper in the process's stack, the only 
capabilities from the caller that are available are those 
acquired through the parameter binding process of the call 
mechanism. Thus, even the most malicious procedure could, at 
worst, access or damage only those objects reachable through 
the parameters. All files and directories and other sensitive 
objects that are not passed as parameters are absolutely safe. 
Of course the procedure might make copies of the capabilities 
passed to it and store the copies away someplace where they 
could be used for mischief later. (Section 3.4 indicates 
how this may be prevented.) But even so, the later damage 
would still be confined to only those objects passed as 
parameters. (It should, of course, be clear that the caller's 
guarantee is still preserved even if the procedure should call 
another procedure.) 

So the Hydra call mechanism solves the Mutual Suspicion 
problem. It actually does a little more. Not only can the caller 
control the set of objects that he must allow the callee to 
access, but by restricting the rights lists of the capabilities he 
passes, he can actually control the kinds of accesses he risks. 
lie thus has extremely tight access control of his objects. 

There is one technical exception to the tight access 
control: if the procedure in question has an amplification 
template for some type, then it may be able to acquire more 
rights to an object than the caller passed (or even hadD This 
phenomenon, however, should not be viewed as a genuine 
breach of security. For one thing, it does not affect the class 
of obiects which can be accessed by the procedure. An 
amplification template does not allow acquisition of new 
capabilities --  only new rights to objects that were passed as 
parameters anyway. Thus, the amount of damage that can be 
done is still limited to the objects actually passed as 
parameters. 

But there is another reason, as well, why the existence 
of amplification templates does not constitute a security 
breach. Any procedure having an amplification template must 
be considered to be part of the defining subsystem for that 
type. Thus, one generally presumes that it is reliable and does 
only "correct" things with objects of that type. If a user is 
unwill ing to trust the defining subsystem for a type, he 
probably should not be using it. If he does use a subsystem 
that he doesn't completely trust, there are other protection 
tools available that help guarantee certain aspects of the 
behavior of ~ procedure, whether or not it contains 
amplification templates. The details are discussed in the 
fol lowing sections. 



3.2  Mod i f i ca t ion  

Users often want guarantees that an object passed as 
an argument to a procedure will not be modified as a result of 
the call. Ordinarily, it is sufficient to restrict those rights that 
allow modification (PUTRTS,STORTS,etc.) before passing the 
Capability for the object as an argument. However, in the case 
that a subsystem procedure is called, rights amplification may 
reinstate those rights. 

In general, of course, users must trust that a procedure 
supplied by a subsystem fulfills its specifications, else there is 
no reason to use the subsystem. Just as one expects that a 
subsystem will not promiscuously make amplification templates 
available, one expects that a subsystem procedure will not 
modify an object passed as an argument if its specifications 
declare that it will not. 

Unfortunately, this ideal is not always realized in 
practice. Subsystems believed to be trustworthy may not be, 
due either to maliciousness or to hardware or software error. 

imagine a user who wishes to list a tediously 
constructed Datafile. in the nick of time, she is warned that a 
curious bug has mysteriously appeared, and that the Datafile- 
List procedure might zero out the Datafile passed to it as an 
argument. Now, our heroine desperately needs a listing of the 
Datafile and can't afford to wait until the bug is excised. She 
can't f irst make a copy of the Datafile, since that would entail 
calling the Datafile-Copy procedure, and there is no guarantee 
that it has not been afflicted with the same ailment troubling 
Data file-List. 

Hydra solves this problem through the use of MDFYRTS. 
Each Hydra k-call that modifies an object i_n ~ way requires 
a capability with not only the right that allows the specific 
modification but MDFYRT$ as well. Thus, to store a capability 
in an object, one must have a capability for the object with 
both STORTS and MDFYRTS. To put data in the Data-part of 
an object, one needs a capability for the object with both 
PUTRTS and MDFYRTS. 11 To solve the Modification Problem 
though, we must demand that MDFYRTS can never be gained 
through amplification as other rights are, since a capability 
lacking MDFYRTS represents an intention that the object it 
references can never be modified by using that capability. 
Thus, a capability produced by amplification will only contain 
MDFYRTS if both the amplification template and the original 
capabil i ty have MDFYRTS. If the caller of the Datafile-List 
procedure passes a capability for the Datafile restricting 
MDFYRTS, there is no way that the procedure can modify the 
Datafile. 
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in fact, MDFYRTS is more potent. [t prevents 
modification of the representation of an object as well. As 
f igure 3.1 shows, loading a capability into one's LNS through a 
capabil ity without MDFYRTS masks out MDFYRTS in the loaded 
capability, i f  a user calls Datafile-List passing a Datafile 
capabil ity that does not contain MDFYRTS, she is assured that 
the Datafile (including the Data objects which, possibly 
unbeknownst to her, comprise its representation) will not be 
modified. 12 (This assumes that Datafile-List does not already 
have "own" access to the Datafile via a different capability 
which does ~ontain MDFYRTS. 13) 

We have stated the Modification problem only in the 
context of calling a subsystem procedure that might misbehave. 
Restricting MDFYRTS is of course necessary in calling any 
procedure that could potentially misbehave, since the called 
procedure could itself call the subsystem procedure. 

This kind of guarantee against modification may force 
some undesirable constraints on a subsystem. For example, if 
the Datafile-List procedure wanted to compact or reconfigure 
the Datafile before listing it, it would not be able to do so if 
called with a Datafile lacking MDFYRTS. The subsystem could 
copy the Datafile and modify the copy. The issue here is that 
the subsystem is prevented from performing internal 
housekeeping in the original object that could expedite 
subsequent calls. 

We have traded subsystem generality for protection. Of 
course, a subsystem need not give up such generality. The 
amplification template in the Datafile-List procedure could 
require MDFYRTS. Callers of the procedure would then be 
required to pass a capability with MDFYRTS ( else the Call 
would fail) and could make their own decisions about whether 
they trusted the Subsystem enough to use it under those 
circumstances. 

3 .3  L imi t ing  Propogat ion of Capabi l i t ies 

Occasionally, a user wishes to allow another user to 
access an object but wants to guarantee that the other user 
cannot share access with yet a third user. 

11. A k-call that modifies the internal structure of a kernel 
supported object requires MDFYRTS as well. Thus, P and V (k- 
Calls that operate on type Semaphore objects) require a 
capabil ity for the Semaphore with MDFYRTS. 

12. [n fact, this is actually accomplished in Hydra by a 
separate right, UCNFRTS. MDFYRTS does not actually cause 
masking as described, instead, UCNFRTS masks out both 
UCNFRTS and MDFYRTS during loads. This division is 
especially useful when copying an object using a capability in 
which both MDFYRTS and UCNFRTS are missing. Capabilities 
for copied objects gain MDFYRT$ but not UCNFRTS. This 
permits a user to modify a copied object (including storing or 
deleting of capabilities) but prevents objects in the 
representation of the copied object from being modified where 
that modification would not have been possible using the 
original object (due to masking of MDFYRTS in capabilities 
loaded from the object). For purposes of clarity, we have 
described MDFYRTS in this paper as including both the 
functions of MDFYRTS and UCNFRTS as they are used in Hydra. 

13. We will discuss how this may be avoided in the section on 
the initialization problem. 
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Hydra provides ENVRTS in order to sQIve this problem. 
Without ENVRTS, a capability may not escape outside of an 
executing ENVironment (LN$). A capability may. only be stored 
in an object if the capability contains ENVRTS. t4 As figure 3.2 
shows, if User-1 stores the capability for the Data object in 
Comm-1 without ENVRTS, User-2 will be able to load the 
capabil ity but will not be able to store it into Comm-2. (User- 
1 must also know that User-2's capability for Comm-1 lacks 
ENVRT$ or else User-2 could simply store a capability for 
Comm-1 into Comm-2.) 

Let us briefly pause here and determine whether there 
really is a problem. For if User-1 trusts User-2 enough to let 
her use the Data object, she may as well trust that User-2 not 
share it with other users. There are a number of answers. 
Like the use of MDFYRTS in the Modification Problem, ENVRT$ 
is simply an additional small safeguard against error that Hydra 
can provide. A more important issue though, is one  of 
accountability. If User-} notices bizarre happenings in the 
Data object, she knows that User-2 is directly responsible. 15 

it should be clear that, like MDFYRTS, we cannot allow 
ENVRT$ to be gained through amplification, for the absence of 
ENVRTS also represents a permanent restriction on the use of 
the capability. And, much like MDFYRTS, ENVRT$ masks out 
ENVRTS in loading a capability. If User-} had shared with 
User-2 a list structure, she would want to guarantee that 
User-2 would be prevented from sharing any sublist of the 
structure with User-3 as well as a capability for the entire list 
structure. Thus ENVRTS prevents the storing not only of the 
given capability but of all capabilities reachable through the C- 
list of the object referenced by the given capability. 

14. Of course, the executing LNS must also contain a capability 
with STORT$ for the object in which the above-mentioned 
capabil ity is to be stored. 

15. This is orthogonal to the issue of revocation, in this case, 
we could imagine a report to a higher authority instituting 
some action taken against what/whoever is responsible for 
User-2's behavior. 

In a later section, we will discuss the general Revocation 
Problem. Fk)wever, here we will show how ENVRTS provides a 
solution to a particular revocation problem, the Conservation 
problem, Often, a user wishes to pass a capability for an 
object to a procedure. After the procedure returns however, 
he wants to revoke any accesses retained or propagated by 
the procedure. There are a number of reasons why he may 
want to revoke access. Though he expects the procedure to 
modify the Object, he may also want to guarantee that no one 
wil l  continue to modify the object after the procedure returns. 
In particular, he wants to guarantee that the executing 
procedure cannot share the capability with a demonic user 
who will arbitrari ly scribble on the object at unexpected times 
in the future. 

From the previous discussion, we know that without 
ENVRTS, a Capability may not escape from its executing 
environment. $o, if the capability for an object is passed to a 
procedure with ENVRTS restricted, the LNS incarnated from the 
procedure cannot store the capability in any object that 
another user can access. When the LNS returns execution to 
the caller, the capability passed as an argument is erased 
along with the called LN$. Lack of ENVRTS does not prevent a 
capability from being passed as an argument to another 
procedure. When execution returns to the original caller, the 
Call/Return discipline guarantee's that al...I, called LNS's are 
erased and that the capability escaped from none of them. t6 

if the procedure did not need to modify the object 
passed as an argument, we might at first think that restricting 
ENVRTS would not strictly be necessary. For if the object 
were passed to the procedure simply without MDFYRTS, even 
though capabilities for the object could be propagated beyond 
the incarnated LNS's environment, absence of MDFYRTS would 
guarantee that the object could never be modified by the 
demonic user. 

Unlimited propogation has other effects that will be 
explored in more detail in a discussion of the Lost Object 
Problem. But, in addition, there is another reason for 
Conservation that only the ENVRTS solution addresses. A 
object passed as an argument to a procedure may, at times, 
contain certain sensitive information. When a user calls the 
procedure, he may know that there is no sensitive information 
in the object. But, after the procedure returns, he may once 
again: wish to stare sensitive information in it. Thus he:wants 
t o  guarantee that no capability to the object' can be retained 
bY a spy. 

3.5  Confinement 

While ENVRTS is useful in preventing propogation of 
capabilities, it is of limited usefulness in preventing 
propagation (disclosure) of information. Even though a 
capabil ity lacking ENVRTS may not escape outside of its 
execution environment, nothing prevents a user from creating 
a new object (which wil___[ have ENVRTS and MDFYRTS), copying 
data from the old object to the new one, and sharing a 
capabil ity for the newly created object. 

16. Hydra does provide a mechanism by which LNS% may be 
retained and subsequently continued, even by another process, 
after they return. Capabilities lacking ENVRTS may not be 
used in incarnating these LNSes. 
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The problem of guaranteeing that no information initially 
contained in some selected subset of objects can escape 
outside of its execution environment is called the Selective 
Confinement problem. 17 HYDRA makes no attempt to solve the 
Selective Confinement problem but concentrates instead on the 
less general, but still important Confinement problem, which 
requires a guarantee that no information at all may escape 
from a suitably called procedure (incarnating a confined LNS) 
except to objects designated by the caller. 

The best example illustrating the use of selective 
confinement is the problem faced by a confined LNS producing 
a bill for services rendered. Either the system must provide a 
faci l i ty for producing prix fixe bills under such circumstances 
(with minor variations as described by [Rot73]) or the caller 
runs the risk that the bill can be used to encode information 
that should remain confined. With selective confinement, the 
caller can allow the confined LNS to produce a bill that may 
vary depending upon the non-sensitive arguments only. 

Figure 3.3 illustrates a well known example of the 
need for confinement and shows how Hydra solves it. 
Consider a user (Nelson) who wants to execute a Tax 
Procedure. He passes in a capability for an object containing 
all relevant data concerning his income, expecting that when 
the procedure returns, the same object will contain a 
completed tax form. Unfortunately, the tax program potentially 
could communicate with a spy and Nelson wants to prevent 
that communication. Even a single bit of leakage might be 
harmful (it might, for example, encode whether or not Nelson 
has controll ing interests in more than 10 major banks). 
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Nelson guarantees confinement by calling the Tax 
procedure through a capability from which Nelson has removed 
MDFYRTS. 18 Just as MDFYRTS masks MDFYRTS on loads, it 
masks MDFYRTS in all capabilities in the incarnated LNS 
inherited from the procedure (but not those passed as 
arguments). This guarantees that information cannot be leaked 
to a spy, as figure 3.3 shows, since such leakage would require 
modification of some object (such as Comm in the figure) 
inherited from the procedure. 19 

The use of MDFYRTS to confine LNSes is a little different 
than its usage as explained under the Modification section. 
However, there are some interesting effects of this marriage of 
usage. First, we must guarantee (in general) that any 
procedure called from a confined LNS incarnates a confined 
LNS as well, else a confined LNS could leak information through 
a procedure it calls. However, as figure 3.4 illustrates, 
all inherited procedure capabilities in a confined LNS 
automatically have MDFYRTS removed and thus, when called 
must produce confined LNSes. Lampson calls this proper ty  
Transit iv i ty [Lain73]. 
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Note though, that only the inherited capabilities and not 
those passed as arguments have MDFYRTS removed. The 
objects passed as parameters represent safe channels through 
which data and capabilities may be returned to the caller. In 
particular, the caller may provide as a parameter, a capability 
for a procedure with MDFYRTS. In such a case, the procedure 
when called, will no._[ be confined. This is acceptable because 
the original caller, in passing such a capability, has effectively 
vouched for its safety. Thus, transitivit~Df confinement need 
not be absolute as required by Lampson. cu 

17. Jones and Lipton [Jt75] produce a solution to a version of 
this problem that corresponds to a situation in which objects in 
general contain only data but not capabilities. Their formulation 
can be extended, although one must be careful to avoid the 
"sneaky signalling" problems detailed by Rotenberg [Rot73]. 
The reader is invited to construct a solution to the Selective 
Confinement problem by positing additional rights and 
combining the solution to the Confinement problem given here 
wi.th the results of Jones and Lipton. 

18. UCNFRTS in the actual implementation. 

19. This solution does not prevent (nor need to prevent) the 
confined LNS from copying information which is to be confined 
into a new object created by the LNS (which wil_.J, have 
MDFYRTS) since no capability for the new object can escape 
the confined LNS. But, it must be noted that Hydra's solution 
does not solve the confinement problem completely. Covert 
channels may still be used to leak information [Lain73], though 
at a low bandwidth. For example, the pattern of memory 
access of a confined LNS may cause certain memory 
interference patterns that could be detected by a spy. 
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3.6 Initialization 

In our earlier discussion of the Conservation problem we 
showed how a procedure could be prevented from storing 
away or sharing a capability for an object (or objects in its 
representation) passed to it. This solution depended upon an 
assurance that the procedure did not already have "own" 
access to the object or some object in its representation. This 
expectation may especially be violated in the initialization of 
the object. 

Initializing a newly created object entails the generation 
of its representation. Suppose that Datafile-lnit initialized a 
Datafile passed to it by creating a Data object and storing it in 
the Datafile. We want to prevent Datafile-lnit from either 
making the Datafile or the newly created Data object available 
to a demonic user, else that demonic user might scribble on it 
at unexpected times in the future. Restricting ENVRTS when 
passing the Datafile to Datafile-Init will not suffice, since a 
capabil ity for the newly created Data object could be made 
available to the demonic user at the same time i t  is used to 
initialize the Datafile. This can be prevented by confining 
Datafi le-Init (calling it without MDFYRTS). In that way, no 
capabil ity for either the Datafile or the newly created Data 
• object can be propagated beyond Datafile-lnit's environment. 

Unfortunately, confinement alone is not enough. Instead 
of initializing the Datafile with a newly created Data object, 
Datafi le-lnit might use a Data object that it already shares with 
the demonic user. Hydra solves this problem by restricting the 
inheritance of ENVRTS across amplification in the same manner 
as for MDFYRTS. A capability produced by amplification will 
contain ENVRTS only if both the given capability as well as the 
amplifying template contain ENVRTS. 
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20. This overly strict requirement of Lampson's is an instance 
of a more general issue - one of Sufficiency. How are we to 
insure that a solution to a protection problem does not 
unnecessarily exclude perfectly acceptable behaviors (such as 
un.__confined calls to safe procedures by confined LNS's)? A 
complete discussion of this issue is beyond the scope of this 
paper but may be found in [Coh75]. There it is shown that 
even the Hydra solution is insufficient (though only slightly). 

As illustrated in figure 3.5, when a procedure is called 
through a capability lacking ENVRTS, all capabilities in the 
incarnated LNS inherited from the procedure have ENVRTS 
removed. In the example above, no object already available to 
the Datafile-lnit procedure could be stored in the Datafile, only 
newly created objects (or capabilities passed to Datafile-Init 
with ENVRTS) may be stored in it. 

To safely initialize an object (or to completely solve the 
Modification Problem whenever we pass a capability for an 
object containing MDFYRTS to a procedure), it is necessary to 
call the procedure via a capability containing neither ENVRTS 
nor MDFYRT$. In that way, we guarantee that any new 
capabilities placed in the object will be for newly created 
objects and that the entire representation of the object will be 
unavailable to the demonic user. 

3.7 Revocation and Guarantees 

Users do not always correctly predict what rights should 
be extended to other users. Forgetful book borrowers, drunk 
drivers and unscrupulous business partners are but a few of 
the real world instances where some kind of revocation is 
desirable. 

Protection systems have an edge over the rear world. 
We can provide mechanisms to support revocation more 
eff icient than the courts, yet less bloody than police states or 
organized crime. However, revocation without recourse 
evokes an additional set of problems. A protection system that 
provides revocation has a responsibility to provide mechanisms 
that can prevent revocation as well. 

We again note how this conflict supports the validity of 
the Hydra philosophy of policy/mechanism separation. Hydra 
provides mechanisms that support both revocation and its 
prevention. The matter of providing policies that determine 
whether ei~.her mechanism can be used in a specific instance is 
not provided. Rather, that is left to user subsystems which 
can be used to legislate arbitrarily complex sets of rules. 

3.7.! Revocation 

Users may want the ability to revoke access to objects 
they have shared with others. There are a number of 
di f ferent kinds of revocation. Any system (in particular Hydra) 
wil l  probably attempt to solve only some of them. Some issues 
are: 

Immediate Revocation. Does revocation occur 
immediately? if not, is there a way to know 
when it has taken place? 

Permanent Revocation. Can access be 
permanently revoked - can it be guaranteed 
that some class of users/programs will never 
be able to gain access to an object? 

Selective Revocation. Must we revoke 
everyone's access to an object or can we be 
more selective? 

Partial Revocation. Can some subset of 
access privileges (e.g. MDFYRTS but not 
LOADRTS) be revoked? 
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Temporal Revocation. Can access be revoked 
and then granted again? 

Sharing and Revoking the right to revoke. If 
a user has the right to revoke some access, 
can that right be shared, and if so, can that 
r ight itself be revoked? 

Redell [Red74a] has described a system in which users 
could share capabilities indirectly in such a way that the 
original holder of the capability could at any time revoke one 
or more rights from any capabilities propagated from the 
original. His solution provides for immediate, selective and 
partial revocation, and can be extended readily to provide the 
abil i ty to share and revoke the right to revoke [Red74b], and 
provide temporal revocation. 

We believed that immediate, selective and temporal 
revocation were the most necessary and implemented a variant 
of Redell's scheme using a mechanism of "Aliases". 21 
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The important issue in selective revocation is how to 
selectively specify the class of users that have their accesses 
revoked. The solution adopted by Hydra was to allow an Alias 
(a new kind of entity) to be interposed between a capability 
and the object it referenced. Figure 3.6 shows how an Alias 
may be created for an object and a capability for the Alias 
shared with another user. A new capability references the 
Alias which contains a pointer to the original object. The Alias 
is ordinari ly completely transparent and all accesses proceed 
as if the Alias were not there at all. The capability created for 
the Alias contains a new right, ALLYRTS, which may be 
exercised to break the link between the Alias and the object it 

o n 22 p i n t s  to, thus effecting revocatio . 

The Temporal Revocation problem is solved since, with 
ALLYRTS, the link between an Alias and an object may be re- 
established. Re-allying requires a capability both for the alias 
(with ALLYRTS) and a capability for the object originally 
referenced by the alias before revocation took place. 

21. The implementation of aliases is not yet complete. 
Unfortunately, neither is Destroy, the k-call which would effect 
non-selective revocation. 

22. Since breaking or not breaking a link can be used to 
encode information, an absence of MDFYRTS (actually 
UCNFRTS) masks ALLYRTS as well as MDFYRTS. 

Uaer-1 (Z/rS) User-2 (LNS) 
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Figure 3.7 

Figure 3.7 illustrates how Aliases may be nested. In the 
diagram, User-1 has shared an Alias capability with User-2. 
But User-2 (perhaps not even aware that his capability is for 
an Alias) has interposed yet another Alias so that he may 
additionally revoke access from anyone with whom he shares 
the capability. User-2's ALLYRTS will allow him to break or 
re-al ly the link between the old Alias and the new Alias, but 
not between the old Alias and the actual object. 

We promised early in this paper that our solution to 
various protection problems would not introduce additional 
mechanisms other than additional interpretation of Kernel 
rights. We admit that Aliases are an exception to that 
statement. However, we don't believe that they contradict the 
more important criterion that additional mechanism not "clutter 
up" the system design. With additional effort we could have 
implemented partial revocation as well. We were not 
completely convinced that partial revocation was necessary, 
and the additional mechanism that would have been required to 
implement it would have caused what we felt was unnecessary 
clutter. 

On the other hand, we could envisage a number of uses 
for temporal revocation. Access to sensitive data might be 
revoked except from 9 a.m. to 5 p.m. on weekdays. Or, 
access to a generally available list structured library might be 
temporari ly revoked while the structure was being garbage 
collected or reorganized. 

We were skeptical about partial revocation because we 
believed that it would be most useful in Hydra when a user 
erroneously made an object available to an untrustworthy user 
with r~hts  allowing modification rather than read access 

z~  nf m alone. U ortunately, ' Hydra, aliases involve a certain 
overhead and in the situation above it seemed equally likely 
that the user would have neglected to use Aliases in the first 
place. 

Even if such an error were made, the original holder of 
the capability could simply make a copy of the object and then 
destroy the original, effectively causing revocation. The only 
question that remains is how to disperse the new copy to 
those who legitimately could read the original. 

23. Partial revocation is useful in implementing revocation of 
the right to revoke. However, we felt that there would be 
l i tt le need for such a feature. 
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Fortunately, early experience with Hydra indicates that 
users will not hold tightly onto capabilities for shared objects. 
Rather, we expect that some kind of Directory subsystem will 
be made generally available (a primitive version currently 
available is used very heavily) and that the Directory 
subsystem will supply procedures to store, retrieve and 
control the access to various objects. Users will likely only 
retr ieve a capability from the Directory subsystem when 
needed, retaining the capability only as long as it is useful. 
Thus, a copy of a destroyed object can be dispersed simply by 
having a capability for it replace one for the destroyed object 
in the appropriate directory. Users still holding onto a 
capability for the destroyed object will eventually find they 
can no longer use it and can retrieve its replacement from the 
directory. 

The introduction of Aliases was not Without difficulties. 
It raised an interesting issue (also discussed by Redell) that 
clearly points out the tradeoff between permitting and 
preventing revocation. 

Operations that manipulate the representation of non- 
kernel-supported objects generally take place in procedures 
(like Datafile-Init) that comprise the protected subsystem for 
that object's type. During execution of such.procedures, it is 
l ikely that for some amount of time the object may be in an 
inconsistent state. If access to the object is revoked during 
that - t ime,  subsequent calls on the protected subsystem, 
especially with that object as an argument, may produce 
undefined results. 
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Hydra's solution to this problem is illustrated in figure 
3.8. When amplification takes place, the new capability 
references the actual object rather than the Alias. Thus, 
revocation will not actually take effect while the protected 
subsystem is accessing the object. Since it is not possible in 
Hydra to tell the revoker when effective revocation has 
occurred (when the subsystem procedure has returned), it 
seems possible that the following situation might occur: User-I 
revokes User-2's access to a file, while User-2 is writing via a 
call to a File subsystem procedure. User-1 then reads the file 
while it is still being written on behalf of User-2, producing an 
inconsistent result. 

The error in the argument is that User-l's reading of 
the file will be effected by a call on a File subsystem 
procedure as well, and that procedure can be constructed so 
as to wait until a write of the same file is completed. 
Admittedly this is not a completely adequate answer for a 
system specified in a way that allows multiple simultaneous 
updates of a file. 

Allowing amplification to circumvent revocation has 
another interesting side-effect it allows an unsavory 
subsystem to subvert revocation. If the unsavory subsystem 
makes an amplifying template generally available, a user given 
an Aliased capability can acquire a capability for the actual 
object and thus revocation will have no effect. Clearly, we  
don't expect this kind of behavior on behalf of a subsystem. 
This problem points up yet again the delicate balance between 
trusting a subsystem and trying to find mechanisms that force 
it to fulfill certain of its specifications. 

Finally, we emphasize that Hydra revocation only 
revokes access, not information. Users may realize too late 
that they have made read access available to information that 
they considered confidential. Revocation as described here 
does not solve that problem. Another user may have already 
copied that information onto a listing device and no mechanism 
residing purely within the computer system can bring it back. 

3.7.2 Guaranteeing Access - Freezing 

Users will often want assurance that access to an object 
will not be revoked at awkward times. At first there may 
appear to be a large class of such problems, but some analysis 
indicates otherwise. First, the case of guaranteed access 
during execution of a subsystem was discussed in the previous 
section, so we need only concentrate on revocation that 
affects "users". There are two instances - a user wants 
guaranteed access to an object he simply "uses" - reads or 
executes - or he wants guaranteed access to an object he 
modifies as well. 

When two users share the right to modify an object, 
either they are cooperating or they are not. If they are 
cooperating, why are they doing something as bizarre as 
unexpected revocation? There are better ways to reach 
agreements about usage of the object. 

If they are not cooperating, we must wonder why they 
are sharing modify access. It seems that the only reasonable 
answer is that one user has contracted with a second user to 
perform some function on the shared object. Revoking access 
indicates that the first user is revoking the contract. The only 
issue facing the second user is - how can the first user be 
forced to pay for resources expended by the second user 
(perhaps plus punitive costs) before revocation took place. 
Such problems can be dealt with by user subsystems in ways 
similar to that described in the following section. 

The cases left to consider involve guarantees during 
reading and execution. Once a procedure has been called, a 
separate LN$ is incarnated, so revocation of the procedure is 
not a problem. However, a user may have expended resources 
predicated on his continuing ability to read a file or execute a 
procedure. But a guarantee against revocation is in fact not 
sufficient. Another user may simply zero the file or change 
the procedure. Thus a guarantee against revocation is only 
useful coupled with a guarantee that no other user may modify 
or destroy the object. 
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All of this is accomplished in Hydra by freezinR. 24 Once 
the creator of an object has placed within it those capabilities 
and data that it will permanently contain, she may freeze it. 
The capability for the object will have FRZRT$ set and 
MDFYRTS removed. The object can be frozen only if all 
capabilities in the object's C-list are already frozen (have 
FRZRTS set), thus FRZRTS guarantees not only that the 
contents of the object remain permanently fixed, but those of 
all objects in its representation as well. Like MDFYRTS and 
ENVRTS, FRZRTS cannot be gained through amplification. 

Furthermore, aliases cannot be frozen, and while an alias 
can be made from a frozen capability, the capability created 
for the alias will not contain FRZRTS. Thus a capability 
containing FRZRTS acts as a guarantee against revocation as 
well. 

It is worth noting once again just how useful such 
guarantees are for publicly available procedures. Users of a 
computer system cringe so often when a compiler has been 
erroneously modified and no backup version has been made 
available. If users would demand frozen versions, new 
versions would necessarily have to be made available in a 
dif ferent (and hopefully more humane) way. 25 

3.8 The Accounting and Lost Object Problems 

Let us consider a Track subsystem responsible for 
managing a disk and which makes available objects of type 
Track. Users having a Track capability may read or write the 
disk track it represents by making calls on procedures 
supplied by the Track subsystem. 

The Hydra philosophy asserts that objects do not 
inherently have owners. All holders of a capability share 
responsibil ity for it - although there may be de-facto 
ownership in the sense that one user has rights to access the 
object more powerful than other users. In the case of a 
limited resource, such as a track, it does become relevant to 
ask who pays for it? This is important not only as a billing 
issue, but also in the sense of guaranteeing that some user will 
not hog the resource. Other systems, such as one developed 
at $RI [Neu74], force such objects to be held in accounting 
directories. Even though Hydra itself does not enforce such a 
policy, it is easy to construct a subsystem which does. 

Let us suppose that whenever a user logs in, the Login 
routine places in the user's initial LNS a capability for an 
object uniquely identifying the user. 26 Before supplying a new 
track, the Track subsystem demands a capability for the User 
object and uses that to determine who will pay for the track. 
If the user has overused her disk allocation, then the Track 
subsystem could simply refuse to provide a new track. If 
mistakes are made, revocation or destruction of the Track 
object can  allow the Track subsystem to reallocate the 
physical track. 

24. Like the alias mechanism, freezing also is not yet 
implemented. 

25. FRZRTS also can be used to solve a problem described by 
Rotenberg [Rot73] as the Blind Service Problem. Even frozen 
procedures can get hold of system information, such as time of 
day, which varies from call to call. Rotenberg describes 
situations where this information may be used to sabotage the 
execution of a particular caller. We expect to solve this 
problem in Hydra by preventing procedures called through 
capabilities containing FRZRTS from obtaining such system 
information. 

Unfortunately, neither this (nor the SR! system) solves 
the Lost Object Problem. Suppose that even though a user has 
committed herself to paying for a track, she deletes all of her 
capabilities for the track without notifying the Track 
subsystem. Billing is not the issue - the problem is that the 
track has been lost. If the disk is oversubscribed, it should not 
be necessary to revoke some other user's track if the 
subsystem has discovered that some lost (unwanted) track is 
available. 

Of course, the fact that a user has deleted all of her 
capabilities for the track does not necessarily indicate that the 
track was unwanted. In many systems, users often bemoan the 
fact that they have mistakenly deleted an irreplaceable file. In 
either case, it is clear that the ability to retrieve some types 
of objects when all capabilities for them have been deleted is 
quite useful. 

In such a situation, Conservation or limiting propogation 
of capabilities is  extremely important. If a user mistakenly 
deletes all of her capabilities for an object while a capability is 
still retained by the "demonic user", the object will not be 
retrieved. 

In Hydra, a decision about retrievability may be made on 
a type by type basis when a new type is first created. A 
mechanism is provided which will retrieve a capability for an 
object of that type whose capabilities have all been deleted. 27 
A subsystem can use this mechanism to provide a wide range 
of policies with respect to lost objects. 

Through the construction of subsystems, procedures 
provide the mechanism necessary for the 'implementation of 
general policies involving future negotiated decisions. 
Subsystem procedures can contain the code that can decide, as 
situations arise, whether a user can be given access to a 
scarce resource like a track, an object previously lost, or some 
other object for which a prior unilateral access decision is 
inappropriate. ]t is subsystem procedures that can allow users 
to negotiate and make and break rules permitting access to 
information. 

4. Conclusion 

We have described how Hydra has solved a number of 
interesting protection problems by simply extending the 
interpretation of rights rather than providing a pastiche of 
unrelated mechanisms (except for Aliases and Retrievability). 

26. The details are beyond the scope of this section - but it is 
important to note that the notion of a "user" is not required by 
Hydra and can be provided by a User subsystem which has a 
capability for the device On which the user logs in. 

27. It is interesting ~o note that retrieving a lost object can 
be used to provide a channel of fairly high bandwidth. In 
order to prevent gross covert leakage out of confined LNSes, 
we do not allow objects of retrievable types to be created by 
confined LNSes. If we did, a confined LN$ could leak the 
integer n by creating and deleting n objects of a retrievable 
type. 
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As noted by Peuto [Peu74] in his comparative study of 
Real Estate Law and Protection Systems, sophisticated 
protection desired by users of a protection system is, in 
principle, no different than that desired by parties to a legal 
contract. There are the attendant issues of remedies and 
adjudication to be considered if the contract is broken, either 
purposefully by one of the parties, or accidentally due to 
machine or program error. 

]t is certainly possible that mechanisms more 
sophisticated than that provided directly may be desirable, but 
we hope that the Track example has convinced the reader that 
subsystems can fill this need. More complex protection needs 
lead inevitably to tradeoffs between the desire to restrict or 
revoke access and the desire to guarantee certain kinds of 
behavior (not only guarantees against revocation). Our 
difficulty with revocation during subsystem calls was a simple 
example of this tradeoff and leads us to conclude in general 
that such decisions should be made by users (through 
subsystems constructed by them) rather than by the 
protection system directly. 

We can make no promise that our list of protection 
problems is complete. [t is a list of those that we have tried 
to solve in our design of Hydra and those discovered by other 
operating system builders. From that perspective, and from 
the limited experience of those already using HYDRA, we 
believe that the protection mechanisms we have provided 
adequately and reasonably meet the needs of Hydra users. 

Of course, the approach taken by Hydra is based in the 
world of programming languages and file systems. The large 
Data Base systems of the future will likely have different 
protection needs. Access to information may be intimately tied 
to the values of the information itself as well as the history of 
previous access and the expectations of future access. 

Nonetheless, the problems we have discussed here will 
remain. [t is our hope that the essentially simple mechanisms 
we have provided will encourage builders of future systems to 
realize that they can do the same. Sadly, it seems that is the 
only hope for insuring the privacy of private information so 
madly collected and compulsively stored by this information 
hungry society. 
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