
PROTECTION IN THE HYDRA OPERATING SYSTEM

Ellis Cohen and David Jefferson 1
Carnegie-lvlellon University

Pittsburgh, Pa.

Abstract

This paper describes the capability based protection
mechanisms provided by the Hydra Operating System Kernel.
These mechanisms support the construction of user-defined
protected subsystems, including file and directory subsystems,
which do not therefore need to be supplied directly by Hydra.
In addition, we discuss a number of well known protection
problems, including Mutual Suspicion, Confinement and
Revocation, and we present the mechanisms that Hydra
supplies in order to solve them.

Keywords and phrases: operating system, protection,
capability, type, protected subsystem, protection problem,
mutual suspicion, confinement, revocation.

1. Introduction

Hydra was designed with the philosophy that protection
must be an integral part of any general purpose operating
system. A set of protection mechanisms should be part of the
lowest level of an operating system, and those mechanisms
must be flexible enough to support the wide range of security
policies needed by both high level subsystems and user
programs. In this paper we will describe the capability based
mechanism in the Hydra kernel, its use in constructing
protected subsystems and in solving a number of well known
protection problems. We expect that the reader is already
familiar with the contents of the companion paper [WLP75]
which discusses in greater detail our philosophy of what a
protection system should be.

When users share access to information, there is
inevitably a possibility for malicious or accidental disclosure of
that information. It is necessary to restrict the behavior of
possible computations in order to guarantee that such mishaps
do not occur. In a general sense [Coh75], a protect~n problle~=
is simply a description of some class of restricted behaviors.
A protection problem can be solved in a protection system if
the system provides some set of mechanisms which, when
invoked, guarantee that the behavior of the system will be
appropriately restricted.

I. This work was supported by the Defense Advanced
Research Projects Agency under Contract F44620-73-C-0074
and is monitored by the Air Force Office of Scientific Research.

In this paper, we will primarily be discussing access
prot:ect~ott - the permission or denial of access to information.
In a companion paper [Lev75], we discuss the related issue of
contro l prot:ect~orL which involves guaranteeing or preventing
execution of programs at scheduled times for specific durations
using specific resources. Problems of access protection can be
viewed along two orthogonal dimensions:

1) P r~ r us. Future Dac/a~nJ: By a prior
decision, we mean deciding in advance the
circumstances under which access to certain
information will be permitted or denied. By a
future decision, we mean deciding at
arbitrary times to revoke or restore access
permissions, that is, to change the
circumstances of access at some time in the
future.

2) U~lozeroJ us. Negotl~ated Dscia~nJ: By a
unilateral decision we refer to a single user
deciding how other users are to be able to
access information Under his aegis. By a
negotiated decision we refer to a user
wanting to temper or limit the restrictions to
access imposed by another user.

We can give examples to illustrate each of these
categories. In parentheses following each example are a list of
problems discussed In section 3 that fall into the same
category.

Prior and Unilateral - The creator of a file
wishes other users to be permitted to read, but
not write, the file. (Mutual Suspicion,
Modification, Limiting Propagation of
Capabilities, Conservation, Confinement,
Initialization)

Future and Unilateral - The creator of the file
wishes at some later point to revoke some
user's permission to read the file. (Revocation)

Prior and Negotiated - A user requires a
guarantee in advance that his permission to
read the file will never be revoked. (Freezing)

Future and Negotiated - A user requires a
guarantee that, if the creator ever attempts to
revoke access, the matter wilt be submitted to
(some trusted procedure which implements)
binding arbitration. (Accounting and Lost
Object Problems)

141

In section 2 of this paper, we will describe the
basic protection mechanisms supplied by Hydra, their use in
constructed protected subsystems. We will also see how the
mechanisms directly solve certain straightforward problems
and can be combined, through procec~.croJ anzbedd~nif to solve
any of the problems described above.

[n section 3, we will look at a number of well
known problems and present additional Hydra mechanisms that
can be used to solve them directly.

2. Protection Mechanisms

2.1 [ntroduction

Clearly, there are a huge number of protection
problems. Hydra cannot even begin to provide policies that
solve each one directly. But that is not Hydra's purpose. In
[Lev75], we discuss in some detail a central philosophy of
Hydra, that of Policy/Mechanism separation. Briefly, we
believe that an operating system should not attempt to provide
a fixed set of policies, particularly protection policies. Rather,
it should provide a set of mechanisms with which a large set of
policies (hopefully including all useful and interesting ones) can
be constructed. For example, we do not wire into Hydra a
policy that permits the creator of a file to revoke access to it.
;nstead, there is a mechanism that permits revocation and
another (freezing) that prevents it. Yet other mechanisms
(procedures, amplification) can be used to build arbitrarily
complex policies that determine under what circumstances
revocation is to be permitted or prevented.

The particular protection mechanisms provided have a
substantial impact on the protection policies obtainable. The
mechanisms provided by Hydra are based on five philosophical
p!-inciples. These principles and the mechanisms they induce
are:

1) Information ca._.n be divided into distinct
objects fo_zE purposes o.f. protection. We
really want a protection system to control
access to and propogation of information.
Unfortunately, we do not understand how to
do this directly. Instead, Hydra forces users
to group information together into a uniform
data structure called an object and provides
protection at the level of the object as a
whole. 2 This is often quite natural, as when a
user wishes to restrict access to an entire
file.]n other cases, the distinction makes an
enormous difference. For example, it is one
thing to revoke access to a file; it is quite
another to revoke access to all information in
the system derived from or dependent upon
the data contained in that file.

2)

3)

4)

Objects ar__e distinRushed .b.Y_ t.ype. Each
object is of a particular type, which remains
constant for the lifetime of the object.
Certain types of objects (e.g. Procedure,
Process, Semaphore) and the operations
relevant to each (e.g. CALL, START, P) are
directly provided by Hydra. Hydra also
provides mechanisms for creating new types
of objects and defining the operations which
manipulate them. At the same time, because
all objects have the same structure,
regardless of type (the type is used in
interpreting the contents of the object), the
kernel provides a set of generic operations
(for example, reading or writing the object)
which are type independent.

Access t...o objects is controlled
c~po.bUi¢~es. Capabilities may be passed from
one user to another and may be retained by
a user between terminal sessions. Each
capability contains a large (compared to
other systems) number of access rights
which determine how the object named by
the capability can be accessed; some of these
rights are type independent (related to the
fact that all objects have the same structure)
while some aretype specific.

Possession of a capability is the sole
determinant of access, although through the
use of other mechanisms (procedures,
amplification), one can construct policies that
take into account other criteria (e.g. who is
the accessor?). Objects do not have
"owners" as such. All holders of capabilities
for an object share control of it in
proportion to their rights. (Of course, one
user might retain all rights to an object
himself without granting any rights to others,
becoming the de-facto owner.)

Each proRram should execute with th.~.
smallest set of access rights necessary. The
protection domain is that set of capabilities
which may be exercised by an executing
procedure. It changes with each procedure
call. Proced~.Lres (a type of object) in Hydra
have access to "own" objects (via
capabilities), inaccessible to users with only
the right to execute the procedure. Each
time a procedure is called, it executes in a
completely new environment, determined
solely by the procedures "owns" and by
capabilities passed as arguments by the
caller. This Permits a direct solution to the
Mutual Suspicion problem and (as we shall
see) permits the construction of arbitrary
protection policies.

2. Other systems [Din73,Gr a72,Lau74] permit
differential protection of structured subsets of an
object. Actually, in Hydra, objects are divided into two
2 parts, a C-list and a Data-part, and in some ways, each
may be protected separately.

142

5) AJ_J. knowledge about th..~, representation an__d.
implementation o~ operation~ for each type
o_f object should be hidden i3 modules Failed
#u.bsystem$. in general, users of an object of
a particular type cannot access it directly~
they can only do so through procedures
associated with the subsystem for that type.
Hydra supports this through the mechanism
of riLght$ anzp~..f'i.coJ'i.on. Under certain
circumstances, when a capability is passed as
an argument to a procedure, it will have
greater rights (in particular, those necessary
to access the contents of the object) in the
new domain created for that procedure
invocation than it had in the domain of the
caller.

in the remainder of this section, we will explore the
mechanisms that support these principles in greater detail.

2.2 Objects, Capabilities and LNS's

An object is a data structure that represents an instance
of a resource, either virtual or physical. It may be thought of
as a three-tuple:

< unique-name, type, representation •

The un.i.que-nxLnze of an object distinguishes it from all
other objects that ever existed in the past or will exist in the
future. The type of the object defines the nature of the
resource the object represents. Some example of types might
be DEVICE, DIRECTORY, PROCEDURE, PROCESS, SEMAPHORE,
FILE, SEQF]LE and RANDFiLE (the last three representing
dif ferent kinds of files).

A primary purpose of a protection system is to control
access to objects. This is accomplished in Hydr a through the
use of capo.b~ULes. Associated with each executing program is
a C-Ust, a l inearly numbered list of capabilities. Each
capabil ity contains both the name of a particular object as well
as a set of ox;cess ri.ghts. An access right (for example, i'ead-
rights or write-r ights to a file) usually represents an operation
which the possessor of a capability may legally perform on the
object.

The representations of capabilities and rights are
manipulated only by the Hydra kernel, it is impossible to
"forge' a capability or gain access to an object without having
a capability for it.

In many capability based operating systems, a capability
is an attribute only of executors, in such systems, the C-list
associated with an executing program defines its protection
domain. While this is also true in Hydra, we have generalized
the notion of objects and capabilities in an important direction.
Regardless of type, ~ objects have the same structure; the
type of an object simply provides an interpretation for the
contents of the object. Capabilities are not an attribute of
executing programs alone; ~ object may contain a C-list.
This generalization has two important effects.

1) Executing programs may be represented as a
type of object. This type is an LN3, short
for "Local Name Space".

2) New object types (new kinds of resources)
may be defined in terms of existing object
types. For example, one might imagine a
File-directory which contains both a list of
files and a semaphore which provides mutual
exclusion of operations on the file-directory.
in the terminology of Hydra, the C-list of an
object of type FILE-DiRECTORY would
contain capabilities for objects of type FILE,
as well as a capability for an object of type
SEMAPHORE

in addition to a C-list, an object contains a DoXa-po.rt, a
block of storage holding relevant information. Together, the
C-list and the Data-part constitute the represetzt=~ of the
object. Returning to our FiLE-DiRECTORY example, the Data-
part of a f i le-directory might be used to hold the string names
of the files in the file-directory.

The decision to divide the representation of an object
into two parts, Data-part and C-list, was made primarily on
pragmatic rather than theoretical grounds. As Fabry notes
[Fab74], data and capabilities could, in principle, be combined
into one segment, if there were some way to allow complete
freedom to alter the datas while at the same time preventing
arbi t rary manipulation of the capabilities. This would be
possible on a processor with a tagged architecture, such as
the Burroughs 5500 [Org73]. However, we were limited to the
architectural confines of a PDP-I 1.

There are other reasons for keeping the Data-part and
C-list separate as well. Since any object may potentially
contain a capability for any other object, objects may form
general directed graph structures which require garbage
collection. Gathering capabilities together in a separate C-list
simplifies the garbage collection mechanism.

2.3 LNSes and Paths

An LNS defines the instantaneous protection domain of
an executing program; its C-list contains capabilities for all of
the objects that may be directly accessed (including
capabilities for PAGE objects, which define the LNS's address
space). ~ objects accessed must be referenced through •the
LNS, but since the objects referenced by capabilities may
themselves contain capabilities for other objects, it should be
clear that the actual protection domain extends to all objects

• reachable via some capability path rooted in the LNS. Access
to such objects is limited though, by the rights in the
capabilities along the path.

In addition to acting as the protection domain of an
executing program, the LNS also serves a naming function.
Objects referenced in the C-list of an LNS are never referred
to by their unique names. They are always named by their
LNS C-list indices. Similarly, objects indirectly accessible via a
capability chain rooted in the LNS can be directly named by
the sequence of C-list indices along the path to the object. As
a general rule, anywhere (the LNS index of) a capability may
appear in the calling sequence of a kernel call or procedure
call, a path to a more distant object may also appear, The
Hydra kernel handles all of the details of following the path to
the target object.

143

2.4 Generic Operations

Hydra supports objects of many different types. Some
o f the types are implemented by the kernel, for example
PROCEDURE, SEMAPHORE, PROCESS and TYPE. Others, such as
FILE and DIRECTORY, are defined by user level subsystems.
But all objects, regardless of type, whether defined by the
kernel or by user software, have a common underlying
structural representation, i.e. Data-part and C-list.
Furthermore, all operations on objects can be composed from
simple manipulations of their Data-parts and C-lists. Therefore
the Hydra kernel provides a number of type independent
"generic" operations for these manipulations. These
operations are kernel calls, k-calls for short, and are
implemented by instructions which trap to the kernel.

The k-call Cetd~:~ta provides access to the Data-part of
an object. Its first parameter is a path to a capability for the
object whose Data-part is to be read. The other parameters
specify what part of the Data-part of the object is to be read
(i.e. offset and length) and the address in the caller's address
space into which the information should be copied. 3 A similar
k-call, P~td~o.., allows the user to write into the Data-part of
an object. There is a third kernel call, Add~o., which allows
the caller to append data onto the end of the Data-part of the
object (extending the length of the Data-part as a side-effect.)

There are similar operations for manipulating the C-lists
of objects. For "reading" a C-list, i.e. copying a capability into
the current LNS, the user executes a Load k-call. Load's first
parameter is a path to the capability which is to be "read".
The second parameter is the index of a current LNS slot into
which the capability is copied.

Of course there is also a Store k-call which copies a
capabil i ty from the current LNS into the C-list of another
object or into a slot in the LNS. However, in addition to the
source and destination parameters, Store takes a third
parameter, a rights restriction mask. When a capability is
stored, it is often desirable for the copy that is stored to have
fewer rights than the original. Storing a capability into a
public object (or at any rate an object that at least one other
user can access) is the primary mechanism Hydra provides for
sharing access rights, and often what is desired is to share
some, but not all, of the rights to an object, e,g. read-rights,
but not wri te-r ights to a file. The rights restriction mask
passed to 3tore acts as a rights "filter", and is "anded" with the
set of rights contained in the source capability to produce the
restricted rights that are placed in the destination capability.
In the case that the source and destination are the same, Store
simply removes the masked-out rights from the designated
capability.

An Appen.d k-call, which appends a capability to a C-list,
is also provided. As with 3tore, the user can restrict the rights
of the appended capability.

The Delete k-call removes a capability from the C-list of
an object. Deleting a capability from a C-list does not cause it
to collapse, with the consequent renumbering of the higher
numbered capabilities. The slot in which the deleted capability
sat is simply written over with a capability of the special type
NULL (whose only use is the indication of empty C-list slots.)
Note that the Delete operation does not destroy the object
referred to by the capability; it only destroys the capability
itself. Only if al_L of the capabilities for an object have been
deleted is the object itself eligible for destruction. We are
planning to implement a Destroy k-call which will destroy an
object even though capabilities for it are still outstanding.
Attempts to access a destroyed object will signal an error.

Finally, there is a Copy k-call which copies the Data-part
and C-list of an object, given a capability for it, to a new
object, placing a capability for the new object in a designated
slot in the caller's LNS. The capability for the new object will
contain the same rights as did the original. 4 The Cre~e k-call,
which creates an entirely new object will be discussed in
section 2.11.

The generic operations are important because they form
the primitive basis for the definition of "higher level" type
specific operations implemented as procedures. The C-list
manipulating operations are especially important because they
allow the construction of collections of objects which are
passed around and manipulated together as a unit.

It should be noted that each of the generic operations
described above is implemented indivisibly. This means that
two processes cannot operate on the same object at the same
time even if they are executing concurrently on different
pi'ocessors. However, this mutual exclusion holds for the
duration of a single kernel call only. For mutual exclusion of
composite operations requiring more than one kernel call, some
other form of synchronization, such as semaphores, is
necessary.

We did expect that users would desire certain sequences
of k-calls executed indivisibly frequently enough that we
packaged them as separate k-calls. For example, the k-calls,
Take and Po.ss are equivalent to the composites (Looxi; De/el:e)
and (Store; Delete) respectively.

2.5 Sharing

Perhaps the major benefit of the very general
object/capabil i ty structure is the ease with which it permits
sharing. If two executing LNS's, User-1 and User-2 both have
a Capability for some object Comm-1, they can easily share
both data and capabilities. User-1 can store data into Comm-
l 's Data-part and User-2 can then retrieve it (assuming their
capabilities contain the rights that allow the necessary k-calls).
More interestingly, imagine a situation where User-1 has rights
tha t permit both read and write access for some file and
wishes to grant User-2 read access only. As figure 2.1
illustrates, it is possible for User-1 to store a capability for
the file in Comm-1, restricting rights so that the capability for
the fi le placed in Comm-1 only contains the rights permitting
read access. Through Comm-1, User-2 can then gain read
access to the file (steps (1) and (2) in the figure),

3. Hardware limitations prevent mapping the Data-parts of
objects directly into the user's address space. 4. This is not strictly true, but will suffice for this discussion.

144

Our-, (X.,~S)

Before

-- -- -- ~ After

| ° ' ° I ~

.... / / I----1 o - \ \

I-----I
, oo=., \ @ ' II

- " ~ . r - - - ' ~ ' l i / ~l , |
A , = = = = = . t j ,,' :1 " ' " ,.I

u,~-3 (u~s) / L-.-.--I ~ ~ I

I "1
: I "-" I "/ I--I

v - wire-rights

i "'" I

Figure 2.1

If User-2 can communicate with User-3 via Comm-2,
then User-2 can then share access Of the file with User-3
(steps (3) and (4) in the figure). 5 One can view User-2 as an
intermediary, receiving files from User-I and then passing
them on to User-3. Our general object structure actually
permits User-2 to withdraw from this arrangement while still
arranging for files to be shared between User-1 and User-3.
User-2 can simply store his capability for Comm-1 into Comm-
2 (step (5) in the figure). User-3 can now access Comm-1
directly through Comm-2 and retrieve any data or capabilities
placed in it by User-1.

2 . 6 R i g h t s

As described above in section 2.2, a capability contains
the name of an object and a set of rights to that object. In
general, each right corresponds to a class of allowed accesses
to the object. The rights list is in fact implemented as a bit
vector of length 24. Each bit represents the presenc e or
absence of one right.

Most rights are associated with a single operation. The
presence of a particular right in a capability permits the
associated operation to be performed on the object, and the
absence of the right causes the operation to fail. But some
rights, those used directly in the solution of protection
problems, are used to permit or deny certain wider classes of
behavior. The important property of rights in Hydra is not
one-to-one correspondence with operations, but monotonicity:
the presence of a right in a capability always allows more (or
at least no less) behavioral freedom for the holder of the
capability than the absence of that right.

The rights lists in Hydra are divided into two parts: the
(16) gen.erLc r~ghts and the (8) o~/Ji.o.ry rights. Generic rights
affect type independent behavior, either by permitting the
generic operations discussed previously or through their use
in the direct Solution of problems.

5. If User-1 desires, this can be prevented as we shall see in
our discussion of Limiting Propogation of Capabilities.

The interpretation of auxiliary rights is type dependent.
Thus, in a capability for an object of type PROCEDURE, one of
the rights, known as CALLRTS (call-rights) permits the user to
CoJL the procedure. Such a right makes no sense for objects
that are not procedures. Similarly, a capability for an object
of type FILE may have one of the auxiliary rights bits
interpreted as WRITERTS (write-rights). This right makes no
sense for objects of type SEMAPHORE or PROCESS or
PROCEDURE.

The representation of rights lists as bit vectors is
particularly convenient because it makes the two basic
operations on rights lists, namely rights checking and rights
restriction, very simple. Testing whether a capability contains
a certain set of rights involves a single (24 bit) comparison.
Restricting rights is just a single "and" operation.

The fact that rights checking and rights restriction are
merely bit vector operations gains more than just speed and
simplicity. It means that the mechanism of rights checking and
restriction can be implemented without regard to the meaning
of the rights. The assignment of meaning to the auxiliary
rights is a matter left up to the software defining the types.
This is a clear example of the basic Hydra principle of
policy/mechanism separation.

There are only a small number of generic rights defined
by Hydra, and we can list them here. They are divided into
two groups. The first nine rights control the nine generic
operations discussed in section 2.4. |n each case, the
appropriate right must be present in a capability or else, an
attempt to perform the corresponding operation on the object
it references will fail.

1. GETRTS - to get data from an object's Data-
part

2. P U T R T S - to put data into an object's Data-
part

3. ADDRTS - to add (append) data onto an
object's Data-part

4. LOADRTS to load a capability from an
object's C-list (into an LNS)

5. STORTS - to store a capability into an
object's C-list

6. APPRTS - to append a capability onto an
object's C-list

7. KILLRTS - to delete a capability from an
object's C-list

8. COPYRTS - to copy an object

9. OBJRTS - to destroy an object

The remaining rights, DLTRTS, MDFYRTS, UCNFRT5,
ENVRTS, ALLYRTS and FRZRTS are used in the direct solution
of protection problems, and with the exception of DLTRTS,
discussed below, are left to section 3.

145

As we mentioned in section 2.4, a version of Store allows
a user to restrict his own access to an object. A good
protection mechanism protects users not only from other
users, but from themselves as well. This is especially
important when a user is testing a program about which he is
still a bit uncertain, and wants to limit the havoc he can wreak
among objects he can access.

DLTRTS provides an example of such a safeguard.
Normally all capabilities contain DLTRT$, though we will not
show them in any of our diagrams. A capability may not be
deleted, nor may any right be removed from it, unless it
contains DLTRTS. v Thus, an uncertain user can remove DLTRTS
from capabilities in his own LNS in order to guarantee that he
wild not mistakenly reduce his own access rights. A user may
also find ff occasionally useful to restrict DLTRTS when storing
a capability in an object before granting K[LLRTS for that
object to another user.

2.7 Procedures and LNSs

A procedure is an object which serves as an abstraction
of the ordinary programming notion of procedure or
subroutine. Thusj it has some "code" and some "owns"
associated with it.]t may take capabilities as parameters and
it may return a capability to its caller. Procedures may Ca//
one another in a potentially recursive manner, because
procedure activations (LNSes) are stacked.

However, Hydra procedures go beyond this simple model
by including protection facilities. The procedure object
actually serves as a prototype or model for the LNS created
when the procedure is called. For example, the procedure's C-
list Contains a capability for each of the objects considered to
be "own" to the procedure, and copies of those capabilities are
placed in the instantiated LN$ during a procedure call. In
addition, the C-list of a procedure may contain structures
which are not capabilities at all, but "prototype capabilities"
called tertzplo.te$. There must be one template for each "formal
parameter" of the procedure, which specifies the type and

• r!ghts required of the parameter. During a procedure call
these templates are replaced by "actual parameter" capabilities
derived from the capabilities passed as arguments. 7

The Data-part of an LNS contains a variety of useful
information which is initialized from the Data-part of the
procedure when the LN$ is instantiated. This information
includes specification of the LNS's address space, software
trap and interrupt vectors (hardware traps and interrupts are
handled by the kernel) and the location of the first instruction
of the procedure.

6. This differs from KILLRTS. A •user requires a capability
containing KILLRT$ to delete •capabilities i n the object
refer.enced by the given capability.

7. Hydra Procedures are very similar to a combination of what
CAL-TSS calls domains and gates [Gra72]. The former
specifies the procedure "owns", while the latter specifies the
form of the procedure arguments. For a number of reasons,
including efficiency, we have come to believe that the
separation is probably desirable.

We believe that ideally, all procedures, including simple
subroutines such as sq~ or sine, should execute in an
environment providing the smallest set of access rights
necessary. This implies frequent changes in the protection
domain. But in much the same way that one might decide
whether a subroutine should be called or expanded in line, one
must consider the costs involved in switching protection
domains. Unfortunately this cost in Hydra is considerable, due
to the limitations of hardware and to certain design flaws. As
a result, users package routines as Hydra Procedures only
when the protection domain must be changed to protect either
the caller or the supplier of the routine, or when the routine is
so large that the overhead of domain switching is insignificant.
For example, a compiler might be packaged as a procedure
which takes a capability for a source file as an argument and
returns a capability for an object file.

The difference between a procedure and an LNS is an
important one even though it is frequently blurred. (We
sometimes speak of the executing procedure when we actually
mean the LN$ created from that procedure during the call
operation.) An LN$ may change during the course of its
execution, for instance by creating new objects and storing
capabilities for them in the LNS's C-list. But the procedure
object itself is never affected by the LNS's execution. Thus~
procedures are potentially reentrant and recursive.

2,8 Processes

Objects of type PROCESS correspond to the usual
informal notion of a process, that is, an entity which may be
scheduled for execution. The Data-part of a process object
contains process state information (e.g. scheduling parameters).
The C-list of a process object contains a list of LNS's, treated
as a stack. The "top" LN$ defines the current protection
domain of the process.

The current protection domain of a process may change
many times during execution of the process, corresponding to
calls and returns of Hydra Procedures. Each time a procedure
is called, a new LN$ is created, initialized and pushed onto the
top of the LN$ stack, becoming the current LNS. When the top
LN$ returns, it is popped from the top of the LNS stack and
destroyed. Control returns to LN$ below it on the stack. 8

Holders of a capability for a process object may start
and stop it, as well as change the process state. (Additional
details can be found in [Lev75]), however no capability for a
process contains the generic rights necessary (LOADRT$, etc.)
to permit access to the process' C-list. A user scheduling a
process does not necessarily have a right to know what the
process is doing. This is especially true in the case that a
propr ietary procedure has been called. If the process'
scheduler could access the process' C-list, it would be able to
access the proprietary procedure's "owns".

8. There is a facility that allows LNS's to be saved after they
return. The LNS may then be continued, causing control to be
transfered just beyond the return point. This does not require
any changes in the LNS stack as described. The stack is used
only for control (call/return discipline), rather than for access.
Any object accessed is reached through a path rooted in the
current LNS, not through any LNS in the stack. Actually, there
is a set of capabilities accessible indirectly. The creator of a
process, in addition to specifying its initial LN$, also may
associate a process base with a process, an object whose C-
list can be accessed by any LN$ executing under the process.

146

2.9 Types and Subsystems

We have already mentioned that all objects are a three-
tuple:

< unique-name, type, representation >.

In this section, we will discuss the representation of
types and its role in defining type su.bsystemJ.

The type of an object is actually the name of some other
object whose type is TYPE. That is, just as there objects of
type PROCESS, PROCEDURE and perhaps FILE-DIRECTORY,
there are objects of type TYPE, each one of which
"represents" the class of objects of that type. For example,
the object whose name is SEMAPHORE and whose type is TYPE
"represents" all objects whose type is SEMAPHORE

Of course, all those objects of type TYPE must be
represented by a TYPE object whose name is also TYPE. This
all can be depicted by a three level tree with the TYPE-TYPE
object at the root. Figure 2.2 shows part of the tree
containing objects of type TYPE, PAG~ FILE and SEMAPHORE.

Figure 2.2

Given a capability for some TYPE object, a new object of
that type may be created (the details may be found in section
2.11). In particular, new types may be defined by
starting with the TYPE-TYPE object.

The Data-part of a TYPE object contains a variety of
useful information, such as the maximum permissible sizes of
the C-list and Data-parts of objects of that type (enforced by
the kernel). As we shall see shortly, the C-list is more
interesting.

The concept of "type" in Hydra is closely related to the
concept of "data type" in a number of programming languages
designed for "structured programming", i.e. "class" in Simula
[Dah66], "cluster" in CLU [Lis74] and "form" in Alphard
[Wu174b] (this relationship is discussed more thoroughly in
[WLP75]). The central notion is that a type is an abstraction
of a class of objects, and that the abstraction specifies not
only the representation of the objects, but the operations that
apply to the objects as well. A key feature of type
abstraction is that the representation of an object should not
generally be known to users of the object. Manipulation of the
object should only be possible by invoking thos e operation
specific to its type.

In the case of user defined types in Hydra, these
operations are specified as Hydra Procedures, and the C-list of
the TYPE object contains capabilities for these procedures. 9
We call this collection of procedures a S~bs:ts~ern. For
example, a File-directory subsystem would likely contain one
procedure that would store a file in a given file-directory by
symbolic name as well as one that would return a capability
for a file given a fi le-directory and the file's symbolic name.

As already noted, the representation of an object,
whatever its type, is simply the contents of its C-list and Data-
part. There is no explicit declaration of how that
representation is to be interpreted; rather it is implicit in how
the representation is used by a subsystem's procedures. For
example, the procedures in a File-directory subsystem might
interpret the Data-part of a file-directory object as containing
a map from the symbolic name of a file to the index in the file-
directory's C-list where the capability for the file might be
found.

Hydra must somehow guarantee that ordinary users
cannot access or manipulate an object's representation except
by calling subsystem procedures, especially since outside
access might threaten the integrity of the assumptions made
by the subsystem regarding the format of the representation.
This implies that ordinary users do not have capabilities
containing the various generic rights (LOADRTS, PUTRTS, etc.)
that permit access to an object's representation. Yet, a
subsystem procedure must be able to gain these rights when a
capabil i ty for an object of the type it supports is passed to it
as an argument. In other systems, objects are "sealed"
[Mor73,Red74a] by a subsystem when presented to a user.
The subsystem procedures must then be able to "unseal" them
in order to manipulate them directly. In Hydra, sealing simply
means the restriction of the appropriate generic rights.
Unsealing is accomplished by Ri~ght~ A~pb~[~o.ci.on [Jon73].
The exact mechanism which supports amplification is discussed
in section 2.11.

As we noted in section 2.6, the auxiliary rights of user
defined types are not specially interpreted by the kernel. Like
the generic rights, they may be restricted via the generic
operations already discussed (section 2.4) and may not be
gained except through rights amplification. It is possible to
check whether a capability contains a particular right (section
2.11), and thus a subsystem may use auxiliary rights to
allow or disallow calls on various procedures in much the same
way that the kernel uses generic rights to allow or disallow
the application of various generic operations.

For example, a File-write procedure might require a
capabil i ty for a file containing auxiliary right #2, while a File-
read procedure might require a capability for a file containing
auxil iary right #5. If the "owner" of a file holds a capability
with both rights, but shares only a capability with auxiliary
right e5 with other users, then while other users will be able
to read the file, only the "owner!' will be able to write it.

9. One does not need a capability for the Type object in order
to call one of these procedures. Using the TCALL operation
supplied by the kernel, they may be called through any object
of the specified type. A similar mechanism may be found in
the Plessey system [Cos74].

147

2.10 Kernel Types

While all types may be though of as defining
subsystems, certain types, such as PROCEDURE, LNS and
PROCESS, are crucial to the operation of Hydra. These types,
plus certain others useful as building blocks for user-defined
types, are defined and implemented directly by the Hydra
kernel. Operations on these kernel-supported types are
implemented as k-calls instead of procedure calls.

The following is a list of the kernel-defined subsystems.
In some cases operations specific to the type are mentioned.
Each such operation is protected by an auxiliary right.

LNS - An LNS serves as a protection domain
and as a dynamic activation of a procedure. It
is the root of the tree (graph) of objects
accessible to a program and provides a
framework for naming them.

Procedu.re - Procedures are the Hydra analogue
of ordinary programming of procedure.
However, a procedure call in Hydra causes a
change in protection domain. The CoJJ
operation requires the auxiliary right CALLRTS.

Process - A process object represents an
independently schedulable activity, the unit of
parallel decomposition. Processes consist of
some scheduling data and a stack of LNSes.
The primary operations on them are sto.rt and
stop.

P~ge - A page object is an image of one of the
4k word defined by the hardware. One can
think of the address space of an LNS as defined
by a table found in the Data-part of the LNS;
each entry containing an index into the LNS's
C-list where the capability for the
corresponding page can be found. A more
accurate and complete description is included in
[Lev75].

Sem.aphore - These are Dijkstra-style
semaphores with P, V and conditionaI-P
operations defined.

Port - Ports are the basic objects of the Hydra
interprocess message communication system.
They act as message switching centers and
synchronization structures. Operations on
ports include connect and cJ.sconnect (to form
and break channel connections between ports)
and other primitives for sending and receiving
messages.

Oeuice A device object is the software
representative of a physical i/o device. In
Hydra it is treated as a variety of port. The
only operations currently defined on devices
are connect and ~sco~mect: to ports.

Pol l~y - Policy objects are mailboxes used by
the kernel to communicate with policy systernJ
responsible for scheduling processes. Details
can be found in [Lev75].

DoJa - The kernel provides data objects as a
convenience to users who wish to seal data in
protected objects without going to the trouble
of defining a formal subsystem. Data objects
have Data-parts, but no C-list. Their only use
is as simple data carriers.

Urd.uersoJ - Universal objects are similar in
concept to data objects except that universal
objects do have C-lists, and thus can act as
carriers of capabilities as well as data.

Type Type objects represent entire
subsystems. The C-lists of type objects contain
capabilities for all of the operations in the
subsystem (if the system is not one of these
kernel defined subsystems). One auxiliary right
defined is TIVlPLRT$, which permits a template
to be made from a Type object (section
2.1t).

2.11 Templates

We have delayed discussing until now three mechanisms
that Hydra must provide in oder to support Type Subsystems:

1) Creation - A user wishes to create a new
object of a specific type.

2) Type and Rights Checking- A user wishes to
guarantee that a capability references an
object of a specific type and contains
required rights. This is particularly
important in specifying procedure "formals".

3) Rights Amplification - Given a capability for
an object of a particular type, the subsystem
for objects of that type wishes to gain the
rights necessary to manipulate the object's
representation.

Hydra provides a single mechanism, tentp~tes, which
serves all three purposes.

Templates, like capabilities, may appear in the C-list of
an object, and through the use of the generic operations
already discussed, may be moved from the C-list of one object
to another. Unlike capabilities they do not contain a reference
to an object. Rather they can be thought of as prototype
capabilities for all objects of a given type. Through the use of
the generic operation Tentp~te, a template of a particular type
may be created by a user already holding a capability for the
TYPE object of the same type. Thus, a File-directory Template
could only be created by someone having a capability for the
Fi le-directory TYPE Object.

There are three kinds of templates, Creation Templates,
Parameter Templates and Amplification Templates,
corresponding to the three functions described above. Each
template contains a field designating its type, and depending
upon which kind of template it is, contains one or both of the
two fields required-ri.ght$ and new-rights.

148

1) Creation Templates. Creation templates
contain a type field and a new-rights field.
Through the use of the generic operation
CreoJ'e, the holder of a creation template can
create a new object whose type will be the
same as that of the template. A capability
for the new object will be placed in the
creator's LN$ with the same rights as as
those specified in the new-rights field of the
template.

When a template is initially created, its new-
rights field contains al_l. rights. Through the
use of generic operations, these rights may
be selectively removed. A subsystem may
choose to make creation templates generally
available after first removing those rights
from new-rights that would permit direct
access of the object (e.g. STORTS, PUTRTS,
etc.). Thus, while a user could create a new
object, he still would be unable to manipulate
its representation without calling subsystem
procedures.

Often, when an object is newly created, a
subsystem wishes to initialize it in some way.
In that case, the subsystem might not choose
to make creation templates generally
available. It might simply retain a creation
template itself and make a procedure
available to users, which when called, would
both create and initialize the object,
returning a capability with appropriately
restricted rights to the caller. (Also see
section 3.6).

2) Parameter Templates. Parameter templates
contain a type field and a required-rights
field. They can be compared against a
capability to determine whether or not that
capability is of the same type and has at
east those rights listed in the required-

rights field of the template. (Here, Hydra
goes beyond type checking generally found
in programming languages in that it checks
rights as well as type.) It is expected that a
SUbSystem will make these templates
generally available to users. 10

3) Amplification Templates. Amplification
templates contain a type field, a required-
rights field and a new-rights field. Given a
capability of the same type as the template,
with all the rights specified in the template's
required-rights list, a new capability can be
produced, referencing the same object as the
original capability, but containing the rights
specified in the new-rights field of the
template. It is expected that amplification
templates will never be made generally
available by a subsystem. In particular,
amplification templates for kernel-supported
types (Process, LNS, etc.) are never made
available.

10. A special kind of parameter template, a Null
Template, is made available by the kernel. It matches
~nY type and only checks rights.

2,12 The Hydra Procedure Call Mechanism

We have discussed in a general way the effects of a
procedure call. Now that we have explained templates, we can
discuss in more detail the heart of the Call Mechanism, the
initialization of the LNS's C-list. The CoJ/. operation is a k-call
having the following form:

Col.l. (cproc, retcu'n.-$Lot, p J, rn.oJkl, ... pn., rn.oJkn)

The first parameter, cproc, must be (a path to) a
capabil ity for a Hydra procedure object. The second
parameter, retu.rrL-s~t, is an index into the current LNS (the
calling LN$) indicating where the called procedure should store
the capability it returns. The rest of the parameters to Co../.l
are grouped in pairs. Each pair consists of a path to a
capabil ity and a mask used to restrict the rights in the
capabil ity passed.

Each capability (and creation template) in the
procedure's C-list is then copied into the corresponding slot of
the LNS's C-list. These are the procedure "owns" and are said
to be inherited from the procedure.

A number of slots in the procedure's C-list will contain
amplification and parameter templates. The capabilities passed
as arguments to the procedure are bound to these templates
in left to right order. Each LNS slot corresponding to an
amplification or parameter template is filled by the matching
capability passed as an argument.

If a parameter template is encountered in the parameter
binding process, the matching argument capability (with rights
restricted as specified by its associated mask) is compared
against the template. If both type and rights match as
required, the capability, with rights restricted according to the
associated mask, is placed in the appropriate C-list slot. In the
case of an amplification template, the same algorithm is used,
except that the capability placed in the LNS will have the
rights specified by the new-rights field of the template. If the
type or rights of any argument fails to meet the requirements
of the template, the LNS is destroyed and control returns to
the caller with an indication that the Call failed.

2.13 An Example

We have noted that files are not a kernel supported
type. Instead they must be provided through a user defined
File subsystem. In one possible implementation, a sbbsystem
might have sole access to a disk (of type Device). It could
make fi le objects available whose Data-part would contain the
location on the disk where the file could be found. Of course,
the Data-part could only be accessed by the File subsystem
procedures. This is similar, in fact, to Hydra's implementation
of kernel-supported Page objects.

Alternately, files could be constructed directly from
kernel-supported objects. The C-list of a file object might
then contain capabilities for Page or Data objects. We will
br ief ly explore the latter alternative by examining the
construction and instantiation of Datafile-Append, a procedure
supplied by a Datafile subsystem.

Datafile-Append takes two arguments, a Datafile and a
Data object, and appends the data encapsulated in the Data
object onto the end of the Datafile. The creator of the Datafile
subsystem must store three things in in the C-list of the
Datafile-Append procedure when he creates it.

149

3) A Datafile amplification template. The new-
rights field of the template contains those
rights necessary so that the procedure can
manipulate the representation of the Datafile
passed to it. In addition, the template
requires the Datafile passed to it have the
second auxiliary right set. In essence, this
means that the second auxiliary right is
interpreted as an "append-right" for Datafile
objects; it permits a Datafile capability to be
used as an argument to Datafile-Append.

~Jser (Lt~S)

t - LOADRTS

s - STORYS
- GETRTS r - PR.EADRTS

x~ - APPe~td~tsrzg p- - pL~£RT S k - KILLRTS

Figure 2.3

Figure 2.3 illustrates what happens when Datafile-
Append is called by User (of type LNS) with arguments Arg (of
type DATA) and D (of type DATAF]LE) instantiating the LNS,
Datafile-Append'. The C-list slots in the procedure specifying
the Data and Datafile templates have been replaced in the LNS
by the corresponding arguments, while the capability for the
code page in the procedure has been inherited by the LNS.

2.14 Protection Mechanisms and Protection Problems

The mechanisms of procedure invocation and rights
amplification combine to form a powerful tool for the
construction of arbitrary protection policies. If direct access
to an object can be prevented except through a procedure
call, then the procedure can decide when access should be
permitted. In general, where mechanisms do not exist to
direct ly solve a protection problem, procedures can be used in
constructing a solution. Thus, there are two ways that
protection problems can be solved:

1) Direct Solution. The mechanism directly
solves the problem. For example, a
mechanism that provides separate rights for
read and write access to a file, on a user by
user basis, directly solves the problem of
finding a way to allow some users to read a
file while permitting others to both read and
write it.

2) Procedural Embedding. The mechanism
merely provides an appropriate protected
environment for code which implements the
solution to the problem. Procedures in Hydra
provide just such an environment. Imagine a
procedure to which a user could pass a file
and a set of "keys" (capabilities for type key
objects) as arguments, which the procedure
would store in its "own" area. Subsequent
callers of this procedure would be permitted
access to the file only if they presented one
of the designated keys. This kind of
arrangement could be used to implement lock
and key protection [Lain69] or the Military
Clearance Classification system
[Wei69,Wa174~

Procedural embedding has other possibilities as well.
Imagine almost any common protection problem relating to
usage of another user's program. (For example, consider a
user who requires a guarantee that a procedure given access
to a file will not destroy the file - especially important on a
system that, unlike Hydra, does not provide separate rights fo r
read and write access.) Let us suppose that some very
t rustwor thy (and very bright) programmer constructs a
procedure which accepts source programs written in a special
language that makes it easy (well.. generally possible) to
decide whether the program exhibits certain repugnant
behavior (e.g. would it destroy a file passed to it as an
argument?). This very trustworthy procedure would compile
the programs (into Hydra Procedures) and would store them
away with their repugnance ratings.

Subsequent callers of this very trustworthy procedure
could retr ieve procedures along with their repugnance ratings.
Using the repugnance information~ users could deduce
specifications of the program's behavior.

Both the "direct" solutions and the "procedural
embedding" solutions that we have described are d:ynx~rn./.c in
the sense that they require overhead during the execution of
programs. We could consider, however, going one step further
to statically determined protection by complete certification of
programs. If users can verify, in advance, that procedures
they interact with exhibit only unobjectionable behaviors
presumably there would be no need to supply any dynamic
protection mechanisms. (Although it is not clear, of course,
how a user could know, in advance, of all procedures with
which it might interact.) Certification is still an art, and one
would not want to rely upon it as the answer to protection in
a current system. Further, certification requires a language
(or set of languages) in which protection questions are
decidable. We did not want to restrict ourselves to such a
language, especially since no such language is presently
available.

Certification, as a static process, ideally need only be
performed once, whereas Hydra's dynamic protection
necessitates a continuing overhead. But programs are not
always correct or complete, even when their protection
properties have been certified, and thus, the tradeoff between
recertif ication and dynamic protection is by no means obvious.
In the case of the ideal machine (though unfortunately not the
one upon which Hydra runs), dynamic protection of the sort
available in Hydra should cause very little overhead at all.

150

In Hydra, procedural embedding of protection is
expensive because of the cost involved in calling a Hydra
Procedure. Even supposing a suitable architecture, a
procedure would generally have to make many of the same
dynamic protection decisions interpretively that are already
available directly from Hydra.

There are a set of protection problems (such as Mutual
Suspicion, Confinement and Revocation) which are reasonably
well understood, and for which users frequently need
solutions. It is desirable that Hydra make mechanisms directly
available that can be used to provide solutions to these
problems, especially if the mechanisms are useful in building
other general protection policies (via embedding) and do not
"clutter up" the basic system design.

It is not especially difficult for a clever designer to
generate such mechanisms. Rotenberg [Rot73], in his thesis,
described a large number of interesting protection problems
(many for the first time), but he attempted to forge solutions
to some of them by positing somewhat awkward or complex
additions to the Multics File System.

The basic protection mechanisms already described
above go a long way towards providing an ideal environment
in which protection problems can be solved. In section
3, we will see that by some simple extensions~
primarily through extending the concept of access rights, we
have produced what we believe are some elegant direct
solutions to some difficult problems.

3. Protection Problems

3.1 Mutual Suspicion

In most operating systems, whenever one user calls a
program belonging to another user, or even a utility belonging
to the operating system, he takes a risk. He has no way of
being sure that the program he calls will not, through
maliciousness or error, do something disastrous (such as
request that the operating system delete all his files.) Most
users simply take such risks for granted and rely on backup
systems to aid recovery in the unlikely event that disaster
should occur. But in a system in which security is important
such faith is not enough. The user needs some way to limit or
circumscribe the amount of damage a procedure that he calls
can do.

A similar problem is faced by the author of a util ity
program intended to be called by many different users. The
ut i l i ty presumably has to manipulate certain private files or
data structures which it cannot allow its callers to manipulate
directly. The author of the utility program needs some
guarantee that, except during execution of the program, users
cannot access these sensitive data structures.

These two problems together are known as the Mutual
Suspicion Problem [Sch72]. Restated in the language of Hydra
the problem is this: The caller of a Hydra procedure needs a

guarantee that the callee is not granted access to any of his
objects except those for which capabilities are explicit ly
passed as parameters. The callee (i.e. the owner or maintainer
of the procedure) needs a guarantee that the caller cannot
gain access to any objects private to that procedure except
when the procedure explicitly allows it. Note that, in our
earlier terminology, mutual suspicion is not a problem of
negotiation, but a pair of mutually unilateral problems.

151

The Hydra procedure call mechanism described in
section 2.12 was designed as a direct solution to the Mutual
Suspicion problem.

A procedure's execution environment is not determined
solely by its caller; procedures may have "own" capabilities,
inherited by the LNS incarnated by the procedure and
unavailable to the caller. Thus, sensitive or private data
structures need never be made available to the caller of the
procedure. Furthermore, there is no way that the caller can
automatically inherit any capabilit!es from the called LNS,
unless a capability is explicitly returned.

Because an LNS does not inherit access to the
capabilities in LNSes deeper in the process's stack, the only
capabilities from the caller that are available are those
acquired through the parameter binding process of the call
mechanism. Thus, even the most malicious procedure could, at
worst, access or damage only those objects reachable through
the parameters. All files and directories and other sensitive
objects that are not passed as parameters are absolutely safe.
Of course the procedure might make copies of the capabilities
passed to it and store the copies away someplace where they
could be used for mischief later. (Section 3.4 indicates
how this may be prevented.) But even so, the later damage
would still be confined to only those objects passed as
parameters. (It should, of course, be clear that the caller's
guarantee is still preserved even if the procedure should call
another procedure.)

So the Hydra call mechanism solves the Mutual Suspicion
problem. It actually does a little more. Not only can the caller
control the set of objects that he must allow the callee to
access, but by restricting the rights lists of the capabilities he
passes, he can actually control the kinds of accesses he risks.
lie thus has extremely tight access control of his objects.

There is one technical exception to the tight access
control: if the procedure in question has an amplification
template for some type, then it may be able to acquire more
rights to an object than the caller passed (or even hadD This
phenomenon, however, should not be viewed as a genuine
breach of security. For one thing, it does not affect the class
of obiects which can be accessed by the procedure. An
amplification template does not allow acquisition of new
capabilities -- only new rights to objects that were passed as
parameters anyway. Thus, the amount of damage that can be
done is still limited to the objects actually passed as
parameters.

But there is another reason, as well, why the existence
of amplification templates does not constitute a security
breach. Any procedure having an amplification template must
be considered to be part of the defining subsystem for that
type. Thus, one generally presumes that it is reliable and does
only "correct" things with objects of that type. If a user is
unwill ing to trust the defining subsystem for a type, he
probably should not be using it. If he does use a subsystem
that he doesn't completely trust, there are other protection
tools available that help guarantee certain aspects of the
behavior of ~ procedure, whether or not it contains
amplification templates. The details are discussed in the
fol lowing sections.

3.2 Mod i f i ca t ion

Users often want guarantees that an object passed as
an argument to a procedure will not be modified as a result of
the call. Ordinarily, it is sufficient to restrict those rights that
allow modification (PUTRTS,STORTS,etc.) before passing the
Capability for the object as an argument. However, in the case
that a subsystem procedure is called, rights amplification may
reinstate those rights.

In general, of course, users must trust that a procedure
supplied by a subsystem fulfills its specifications, else there is
no reason to use the subsystem. Just as one expects that a
subsystem will not promiscuously make amplification templates
available, one expects that a subsystem procedure will not
modify an object passed as an argument if its specifications
declare that it will not.

Unfortunately, this ideal is not always realized in
practice. Subsystems believed to be trustworthy may not be,
due either to maliciousness or to hardware or software error.

imagine a user who wishes to list a tediously
constructed Datafile. in the nick of time, she is warned that a
curious bug has mysteriously appeared, and that the Datafile-
List procedure might zero out the Datafile passed to it as an
argument. Now, our heroine desperately needs a listing of the
Datafile and can't afford to wait until the bug is excised. She
can't f irst make a copy of the Datafile, since that would entail
calling the Datafile-Copy procedure, and there is no guarantee
that it has not been afflicted with the same ailment troubling
Data file-List.

Hydra solves this problem through the use of MDFYRTS.
Each Hydra k-call that modifies an object i_n ~ way requires
a capability with not only the right that allows the specific
modification but MDFYRT$ as well. Thus, to store a capability
in an object, one must have a capability for the object with
both STORTS and MDFYRTS. To put data in the Data-part of
an object, one needs a capability for the object with both
PUTRTS and MDFYRTS. 11 To solve the Modification Problem
though, we must demand that MDFYRTS can never be gained
through amplification as other rights are, since a capability
lacking MDFYRTS represents an intention that the object it
references can never be modified by using that capability.
Thus, a capability produced by amplification will only contain
MDFYRTS if both the amplification template and the original
capabil i ty have MDFYRTS. If the caller of the Datafile-List
procedure passes a capability for the Datafile restricting
MDFYRTS, there is no way that the procedure can modify the
Datafile.

Daua f i l e - L i s t
(LSSS)

b e f o r e I . L O A D R T S m - M D ~ t R T S

- C ~ R T S
- - - - - - ~ s t t t e r p PUTRTS

o f r e s t r l e t t n g r i g h t s

Figure 3.1

in fact, MDFYRTS is more potent. [t prevents
modification of the representation of an object as well. As
f igure 3.1 shows, loading a capability into one's LNS through a
capabil ity without MDFYRTS masks out MDFYRTS in the loaded
capability, i f a user calls Datafile-List passing a Datafile
capabil ity that does not contain MDFYRTS, she is assured that
the Datafile (including the Data objects which, possibly
unbeknownst to her, comprise its representation) will not be
modified. 12 (This assumes that Datafile-List does not already
have "own" access to the Datafile via a different capability
which does ~ontain MDFYRTS. 13)

We have stated the Modification problem only in the
context of calling a subsystem procedure that might misbehave.
Restricting MDFYRTS is of course necessary in calling any
procedure that could potentially misbehave, since the called
procedure could itself call the subsystem procedure.

This kind of guarantee against modification may force
some undesirable constraints on a subsystem. For example, if
the Datafile-List procedure wanted to compact or reconfigure
the Datafile before listing it, it would not be able to do so if
called with a Datafile lacking MDFYRTS. The subsystem could
copy the Datafile and modify the copy. The issue here is that
the subsystem is prevented from performing internal
housekeeping in the original object that could expedite
subsequent calls.

We have traded subsystem generality for protection. Of
course, a subsystem need not give up such generality. The
amplification template in the Datafile-List procedure could
require MDFYRTS. Callers of the procedure would then be
required to pass a capability with MDFYRTS (else the Call
would fail) and could make their own decisions about whether
they trusted the Subsystem enough to use it under those
circumstances.

3 .3 L imi t ing Propogat ion of Capabi l i t ies

Occasionally, a user wishes to allow another user to
access an object but wants to guarantee that the other user
cannot share access with yet a third user.

11. A k-call that modifies the internal structure of a kernel
supported object requires MDFYRTS as well. Thus, P and V (k-
Calls that operate on type Semaphore objects) require a
capabil ity for the Semaphore with MDFYRTS.

12. [n fact, this is actually accomplished in Hydra by a
separate right, UCNFRTS. MDFYRTS does not actually cause
masking as described, instead, UCNFRTS masks out both
UCNFRTS and MDFYRTS during loads. This division is
especially useful when copying an object using a capability in
which both MDFYRTS and UCNFRTS are missing. Capabilities
for copied objects gain MDFYRT$ but not UCNFRTS. This
permits a user to modify a copied object (including storing or
deleting of capabilities) but prevents objects in the
representation of the copied object from being modified where
that modification would not have been possible using the
original object (due to masking of MDFYRTS in capabilities
loaded from the object). For purposes of clarity, we have
described MDFYRTS in this paper as including both the
functions of MDFYRTS and UCNFRTS as they are used in Hydra.

13. We will discuss how this may be avoided in the section on
the initialization problem.

152

..... c~, 3 . 4 Conservation

(DATA)

"EZ]
.

s - S T O K ' r S

! • ' I " ' " I
m - M D I ~ / R T $

• I " " " | • - Em'RTS

Figure 3.2

Hydra provides ENVRTS in order to sQIve this problem.
Without ENVRTS, a capability may not escape outside of an
executing ENVironment (LN$). A capability may. only be stored
in an object if the capability contains ENVRTS. t4 As figure 3.2
shows, if User-1 stores the capability for the Data object in
Comm-1 without ENVRTS, User-2 will be able to load the
capabil ity but will not be able to store it into Comm-2. (User-
1 must also know that User-2's capability for Comm-1 lacks
ENVRT$ or else User-2 could simply store a capability for
Comm-1 into Comm-2.)

Let us briefly pause here and determine whether there
really is a problem. For if User-1 trusts User-2 enough to let
her use the Data object, she may as well trust that User-2 not
share it with other users. There are a number of answers.
Like the use of MDFYRTS in the Modification Problem, ENVRT$
is simply an additional small safeguard against error that Hydra
can provide. A more important issue though, is one of
accountability. If User-} notices bizarre happenings in the
Data object, she knows that User-2 is directly responsible. 15

it should be clear that, like MDFYRTS, we cannot allow
ENVRT$ to be gained through amplification, for the absence of
ENVRTS also represents a permanent restriction on the use of
the capability. And, much like MDFYRTS, ENVRT$ masks out
ENVRTS in loading a capability. If User-} had shared with
User-2 a list structure, she would want to guarantee that
User-2 would be prevented from sharing any sublist of the
structure with User-3 as well as a capability for the entire list
structure. Thus ENVRTS prevents the storing not only of the
given capability but of all capabilities reachable through the C-
list of the object referenced by the given capability.

14. Of course, the executing LNS must also contain a capability
with STORT$ for the object in which the above-mentioned
capabil ity is to be stored.

15. This is orthogonal to the issue of revocation, in this case,
we could imagine a report to a higher authority instituting
some action taken against what/whoever is responsible for
User-2's behavior.

In a later section, we will discuss the general Revocation
Problem. Fk)wever, here we will show how ENVRTS provides a
solution to a particular revocation problem, the Conservation
problem, Often, a user wishes to pass a capability for an
object to a procedure. After the procedure returns however,
he wants to revoke any accesses retained or propagated by
the procedure. There are a number of reasons why he may
want to revoke access. Though he expects the procedure to
modify the Object, he may also want to guarantee that no one
wil l continue to modify the object after the procedure returns.
In particular, he wants to guarantee that the executing
procedure cannot share the capability with a demonic user
who will arbitrari ly scribble on the object at unexpected times
in the future.

From the previous discussion, we know that without
ENVRTS, a Capability may not escape from its executing
environment. $o, if the capability for an object is passed to a
procedure with ENVRTS restricted, the LNS incarnated from the
procedure cannot store the capability in any object that
another user can access. When the LNS returns execution to
the caller, the capability passed as an argument is erased
along with the called LN$. Lack of ENVRTS does not prevent a
capability from being passed as an argument to another
procedure. When execution returns to the original caller, the
Call/Return discipline guarantee's that al...I, called LNS's are
erased and that the capability escaped from none of them. t6

if the procedure did not need to modify the object
passed as an argument, we might at first think that restricting
ENVRTS would not strictly be necessary. For if the object
were passed to the procedure simply without MDFYRTS, even
though capabilities for the object could be propagated beyond
the incarnated LNS's environment, absence of MDFYRTS would
guarantee that the object could never be modified by the
demonic user.

Unlimited propogation has other effects that will be
explored in more detail in a discussion of the Lost Object
Problem. But, in addition, there is another reason for
Conservation that only the ENVRTS solution addresses. A
object passed as an argument to a procedure may, at times,
contain certain sensitive information. When a user calls the
procedure, he may know that there is no sensitive information
in the object. But, after the procedure returns, he may once
again: wish to stare sensitive information in it. Thus he:wants
t o guarantee that no capability to the object' can be retained
bY a spy.

3.5 Confinement

While ENVRTS is useful in preventing propogation of
capabilities, it is of limited usefulness in preventing
propagation (disclosure) of information. Even though a
capabil ity lacking ENVRTS may not escape outside of its
execution environment, nothing prevents a user from creating
a new object (which wil___[have ENVRTS and MDFYRTS), copying
data from the old object to the new one, and sharing a
capabil ity for the newly created object.

16. Hydra does provide a mechanism by which LNS% may be
retained and subsequently continued, even by another process,
after they return. Capabilities lacking ENVRTS may not be
used in incarnating these LNSes.

153

The problem of guaranteeing that no information initially
contained in some selected subset of objects can escape
outside of its execution environment is called the Selective
Confinement problem. 17 HYDRA makes no attempt to solve the
Selective Confinement problem but concentrates instead on the
less general, but still important Confinement problem, which
requires a guarantee that no information at all may escape
from a suitably called procedure (incarnating a confined LNS)
except to objects designated by the caller.

The best example illustrating the use of selective
confinement is the problem faced by a confined LNS producing
a bill for services rendered. Either the system must provide a
faci l i ty for producing prix fixe bills under such circumstances
(with minor variations as described by [Rot73]) or the caller
runs the risk that the bill can be used to encode information
that should remain confined. With selective confinement, the
caller can allow the confined LNS to produce a bill that may
vary depending upon the non-sensitive arguments only.

Figure 3.3 illustrates a well known example of the
need for confinement and shows how Hydra solves it.
Consider a user (Nelson) who wants to execute a Tax
Procedure. He passes in a capability for an object containing
all relevant data concerning his income, expecting that when
the procedure returns, the same object will contain a
completed tax form. Unfortunately, the tax program potentially
could communicate with a spy and Nelson wants to prevent
that communication. Even a single bit of leakage might be
harmful (it might, for example, encode whether or not Nelson
has controll ing interests in more than 10 major banks).

N e l s o n (LNS)

(DATA)

V--
I - LOADRTS "l
s - STORT$

k - KILLRT S

g - GETTRTS

p - PUTRTS

m - MDFYRTS

¢ - CALLRTS

Tax (PROCEDURE)

C o = ~ (t r ~ r l v)

'<..., : ,- . . , \
(LNS) ,

~ ,;

, gpml~ L_..__J / , L 'I x,
', I , I I ~ ~

\ . . - , i
,, t. , I I

Figure 3.3

Nelson guarantees confinement by calling the Tax
procedure through a capability from which Nelson has removed
MDFYRTS. 18 Just as MDFYRTS masks MDFYRTS on loads, it
masks MDFYRTS in all capabilities in the incarnated LNS
inherited from the procedure (but not those passed as
arguments). This guarantees that information cannot be leaked
to a spy, as figure 3.3 shows, since such leakage would require
modification of some object (such as Comm in the figure)
inherited from the procedure. 19

The use of MDFYRTS to confine LNSes is a little different
than its usage as explained under the Modification section.
However, there are some interesting effects of this marriage of
usage. First, we must guarantee (in general) that any
procedure called from a confined LNS incarnates a confined
LNS as well, else a confined LNS could leak information through
a procedure it calls. However, as figure 3.4 illustrates,
all inherited procedure capabilities in a confined LNS
automatically have MDFYRTS removed and thus, when called
must produce confined LNSes. Lampson calls this proper ty
Transit iv i ty [Lain73].

User (L':S) P (PPROCEDLrKE)

,""

• | c m | % m - MDFYRT$

I "'" I "~ LLV- - J

Figure 3.4

Note though, that only the inherited capabilities and not
those passed as arguments have MDFYRTS removed. The
objects passed as parameters represent safe channels through
which data and capabilities may be returned to the caller. In
particular, the caller may provide as a parameter, a capability
for a procedure with MDFYRTS. In such a case, the procedure
when called, will no._[be confined. This is acceptable because
the original caller, in passing such a capability, has effectively
vouched for its safety. Thus, transitivit~Df confinement need
not be absolute as required by Lampson. cu

17. Jones and Lipton [Jt75] produce a solution to a version of
this problem that corresponds to a situation in which objects in
general contain only data but not capabilities. Their formulation
can be extended, although one must be careful to avoid the
"sneaky signalling" problems detailed by Rotenberg [Rot73].
The reader is invited to construct a solution to the Selective
Confinement problem by positing additional rights and
combining the solution to the Confinement problem given here
wi.th the results of Jones and Lipton.

18. UCNFRTS in the actual implementation.

19. This solution does not prevent (nor need to prevent) the
confined LNS from copying information which is to be confined
into a new object created by the LNS (which wil_.J, have
MDFYRTS) since no capability for the new object can escape
the confined LNS. But, it must be noted that Hydra's solution
does not solve the confinement problem completely. Covert
channels may still be used to leak information [Lain73], though
at a low bandwidth. For example, the pattern of memory
access of a confined LNS may cause certain memory
interference patterns that could be detected by a spy.

154

3.6 Initialization

In our earlier discussion of the Conservation problem we
showed how a procedure could be prevented from storing
away or sharing a capability for an object (or objects in its
representation) passed to it. This solution depended upon an
assurance that the procedure did not already have "own"
access to the object or some object in its representation. This
expectation may especially be violated in the initialization of
the object.

Initializing a newly created object entails the generation
of its representation. Suppose that Datafile-lnit initialized a
Datafile passed to it by creating a Data object and storing it in
the Datafile. We want to prevent Datafile-lnit from either
making the Datafile or the newly created Data object available
to a demonic user, else that demonic user might scribble on it
at unexpected times in the future. Restricting ENVRTS when
passing the Datafile to Datafile-Init will not suffice, since a
capabil ity for the newly created Data object could be made
available to the demonic user at the same time i t is used to
initialize the Datafile. This can be prevented by confining
Datafi le-Init (calling it without MDFYRTS). In that way, no
capabil ity for either the Datafile or the newly created Data
• object can be propagated beyond Datafile-lnit's environment.

Unfortunately, confinement alone is not enough. Instead
of initializing the Datafile with a newly created Data object,
Datafi le-lnit might use a Data object that it already shares with
the demonic user. Hydra solves this problem by restricting the
inheritance of ENVRTS across amplification in the same manner
as for MDFYRTS. A capability produced by amplification will
contain ENVRTS only if both the given capability as well as the
amplifying template contain ENVRTS.

Dater [[e-lnlt

U s e r (L.NS) (PROCEIXI RE)

K2=.:o ./

p - ~ ' r R T S I
" . e - E ~ V R T S

1 - tOADRI'S / /
• - S T O R T S ~ ~ ~ ~ ~ - ~ F Y R T S

k - K I L L R T S
e - C A L L R T $

Figure 3.5

20. This overly strict requirement of Lampson's is an instance
of a more general issue - one of Sufficiency. How are we to
insure that a solution to a protection problem does not
unnecessarily exclude perfectly acceptable behaviors (such as
un.__confined calls to safe procedures by confined LNS's)? A
complete discussion of this issue is beyond the scope of this
paper but may be found in [Coh75]. There it is shown that
even the Hydra solution is insufficient (though only slightly).

As illustrated in figure 3.5, when a procedure is called
through a capability lacking ENVRTS, all capabilities in the
incarnated LNS inherited from the procedure have ENVRTS
removed. In the example above, no object already available to
the Datafile-lnit procedure could be stored in the Datafile, only
newly created objects (or capabilities passed to Datafile-Init
with ENVRTS) may be stored in it.

To safely initialize an object (or to completely solve the
Modification Problem whenever we pass a capability for an
object containing MDFYRTS to a procedure), it is necessary to
call the procedure via a capability containing neither ENVRTS
nor MDFYRT$. In that way, we guarantee that any new
capabilities placed in the object will be for newly created
objects and that the entire representation of the object will be
unavailable to the demonic user.

3.7 Revocation and Guarantees

Users do not always correctly predict what rights should
be extended to other users. Forgetful book borrowers, drunk
drivers and unscrupulous business partners are but a few of
the real world instances where some kind of revocation is
desirable.

Protection systems have an edge over the rear world.
We can provide mechanisms to support revocation more
eff icient than the courts, yet less bloody than police states or
organized crime. However, revocation without recourse
evokes an additional set of problems. A protection system that
provides revocation has a responsibility to provide mechanisms
that can prevent revocation as well.

We again note how this conflict supports the validity of
the Hydra philosophy of policy/mechanism separation. Hydra
provides mechanisms that support both revocation and its
prevention. The matter of providing policies that determine
whether ei~.her mechanism can be used in a specific instance is
not provided. Rather, that is left to user subsystems which
can be used to legislate arbitrarily complex sets of rules.

3.7.! Revocation

Users may want the ability to revoke access to objects
they have shared with others. There are a number of
di f ferent kinds of revocation. Any system (in particular Hydra)
wil l probably attempt to solve only some of them. Some issues
are:

Immediate Revocation. Does revocation occur
immediately? if not, is there a way to know
when it has taken place?

Permanent Revocation. Can access be
permanently revoked - can it be guaranteed
that some class of users/programs will never
be able to gain access to an object?

Selective Revocation. Must we revoke
everyone's access to an object or can we be
more selective?

Partial Revocation. Can some subset of
access privileges (e.g. MDFYRTS but not
LOADRTS) be revoked?

155

Temporal Revocation. Can access be revoked
and then granted again?

Sharing and Revoking the right to revoke. If
a user has the right to revoke some access,
can that right be shared, and if so, can that
r ight itself be revoked?

Redell [Red74a] has described a system in which users
could share capabilities indirectly in such a way that the
original holder of the capability could at any time revoke one
or more rights from any capabilities propagated from the
original. His solution provides for immediate, selective and
partial revocation, and can be extended readily to provide the
abil i ty to share and revoke the right to revoke [Red74b], and
provide temporal revocation.

We believed that immediate, selective and temporal
revocation were the most necessary and implemented a variant
of Redell's scheme using a mechanism of "Aliases". 21

L's~:~ - 1 0 . N s)

I I

Figure 3.6

The important issue in selective revocation is how to
selectively specify the class of users that have their accesses
revoked. The solution adopted by Hydra was to allow an Alias
(a new kind of entity) to be interposed between a capability
and the object it referenced. Figure 3.6 shows how an Alias
may be created for an object and a capability for the Alias
shared with another user. A new capability references the
Alias which contains a pointer to the original object. The Alias
is ordinari ly completely transparent and all accesses proceed
as if the Alias were not there at all. The capability created for
the Alias contains a new right, ALLYRTS, which may be
exercised to break the link between the Alias and the object it

o n 22 p i n t s to, thus effecting revocatio .

The Temporal Revocation problem is solved since, with
ALLYRTS, the link between an Alias and an object may be re-
established. Re-allying requires a capability both for the alias
(with ALLYRTS) and a capability for the object originally
referenced by the alias before revocation took place.

21. The implementation of aliases is not yet complete.
Unfortunately, neither is Destroy, the k-call which would effect
non-selective revocation.

22. Since breaking or not breaking a link can be used to
encode information, an absence of MDFYRTS (actually
UCNFRTS) masks ALLYRTS as well as MDFYRTS.

Uaer-1 (Z/rS) User-2 (LNS)

~ i! I -

Figure 3.7

Figure 3.7 illustrates how Aliases may be nested. In the
diagram, User-1 has shared an Alias capability with User-2.
But User-2 (perhaps not even aware that his capability is for
an Alias) has interposed yet another Alias so that he may
additionally revoke access from anyone with whom he shares
the capability. User-2's ALLYRTS will allow him to break or
re-al ly the link between the old Alias and the new Alias, but
not between the old Alias and the actual object.

We promised early in this paper that our solution to
various protection problems would not introduce additional
mechanisms other than additional interpretation of Kernel
rights. We admit that Aliases are an exception to that
statement. However, we don't believe that they contradict the
more important criterion that additional mechanism not "clutter
up" the system design. With additional effort we could have
implemented partial revocation as well. We were not
completely convinced that partial revocation was necessary,
and the additional mechanism that would have been required to
implement it would have caused what we felt was unnecessary
clutter.

On the other hand, we could envisage a number of uses
for temporal revocation. Access to sensitive data might be
revoked except from 9 a.m. to 5 p.m. on weekdays. Or,
access to a generally available list structured library might be
temporari ly revoked while the structure was being garbage
collected or reorganized.

We were skeptical about partial revocation because we
believed that it would be most useful in Hydra when a user
erroneously made an object available to an untrustworthy user
with r~hts allowing modification rather than read access

z~ nf m alone. U ortunately, ' Hydra, aliases involve a certain
overhead and in the situation above it seemed equally likely
that the user would have neglected to use Aliases in the first
place.

Even if such an error were made, the original holder of
the capability could simply make a copy of the object and then
destroy the original, effectively causing revocation. The only
question that remains is how to disperse the new copy to
those who legitimately could read the original.

23. Partial revocation is useful in implementing revocation of
the right to revoke. However, we felt that there would be
l i tt le need for such a feature.

156

Fortunately, early experience with Hydra indicates that
users will not hold tightly onto capabilities for shared objects.
Rather, we expect that some kind of Directory subsystem will
be made generally available (a primitive version currently
available is used very heavily) and that the Directory
subsystem will supply procedures to store, retrieve and
control the access to various objects. Users will likely only
retr ieve a capability from the Directory subsystem when
needed, retaining the capability only as long as it is useful.
Thus, a copy of a destroyed object can be dispersed simply by
having a capability for it replace one for the destroyed object
in the appropriate directory. Users still holding onto a
capability for the destroyed object will eventually find they
can no longer use it and can retrieve its replacement from the
directory.

The introduction of Aliases was not Without difficulties.
It raised an interesting issue (also discussed by Redell) that
clearly points out the tradeoff between permitting and
preventing revocation.

Operations that manipulate the representation of non-
kernel-supported objects generally take place in procedures
(like Datafile-Init) that comprise the protected subsystem for
that object's type. During execution of such.procedures, it is
l ikely that for some amount of time the object may be in an
inconsistent state. If access to the object is revoked during
that - t ime, subsequent calls on the protected subsystem,
especially with that object as an argument, may produce
undefined results.

Daca f t l e . . ~ u n 8
U s e r (L,IS) (PROCEDLrPJ~)

~-,, L===J

~ 1 - - - - -] " - . . - - :~ ",",
/=====.-I~,~ ".. . . . / ,

1 - LOADRTS c . C A L L R T S
s - STORTTS
k - K I L L R T $ m - F tDFVRTS

Figure 3.8

Hydra's solution to this problem is illustrated in figure
3.8. When amplification takes place, the new capability
references the actual object rather than the Alias. Thus,
revocation will not actually take effect while the protected
subsystem is accessing the object. Since it is not possible in
Hydra to tell the revoker when effective revocation has
occurred (when the subsystem procedure has returned), it
seems possible that the following situation might occur: User-I
revokes User-2's access to a file, while User-2 is writing via a
call to a File subsystem procedure. User-1 then reads the file
while it is still being written on behalf of User-2, producing an
inconsistent result.

The error in the argument is that User-l's reading of
the file will be effected by a call on a File subsystem
procedure as well, and that procedure can be constructed so
as to wait until a write of the same file is completed.
Admittedly this is not a completely adequate answer for a
system specified in a way that allows multiple simultaneous
updates of a file.

Allowing amplification to circumvent revocation has
another interesting side-effect it allows an unsavory
subsystem to subvert revocation. If the unsavory subsystem
makes an amplifying template generally available, a user given
an Aliased capability can acquire a capability for the actual
object and thus revocation will have no effect. Clearly, we
don't expect this kind of behavior on behalf of a subsystem.
This problem points up yet again the delicate balance between
trusting a subsystem and trying to find mechanisms that force
it to fulfill certain of its specifications.

Finally, we emphasize that Hydra revocation only
revokes access, not information. Users may realize too late
that they have made read access available to information that
they considered confidential. Revocation as described here
does not solve that problem. Another user may have already
copied that information onto a listing device and no mechanism
residing purely within the computer system can bring it back.

3.7.2 Guaranteeing Access - Freezing

Users will often want assurance that access to an object
will not be revoked at awkward times. At first there may
appear to be a large class of such problems, but some analysis
indicates otherwise. First, the case of guaranteed access
during execution of a subsystem was discussed in the previous
section, so we need only concentrate on revocation that
affects "users". There are two instances - a user wants
guaranteed access to an object he simply "uses" - reads or
executes - or he wants guaranteed access to an object he
modifies as well.

When two users share the right to modify an object,
either they are cooperating or they are not. If they are
cooperating, why are they doing something as bizarre as
unexpected revocation? There are better ways to reach
agreements about usage of the object.

If they are not cooperating, we must wonder why they
are sharing modify access. It seems that the only reasonable
answer is that one user has contracted with a second user to
perform some function on the shared object. Revoking access
indicates that the first user is revoking the contract. The only
issue facing the second user is - how can the first user be
forced to pay for resources expended by the second user
(perhaps plus punitive costs) before revocation took place.
Such problems can be dealt with by user subsystems in ways
similar to that described in the following section.

The cases left to consider involve guarantees during
reading and execution. Once a procedure has been called, a
separate LN$ is incarnated, so revocation of the procedure is
not a problem. However, a user may have expended resources
predicated on his continuing ability to read a file or execute a
procedure. But a guarantee against revocation is in fact not
sufficient. Another user may simply zero the file or change
the procedure. Thus a guarantee against revocation is only
useful coupled with a guarantee that no other user may modify
or destroy the object.

157

All of this is accomplished in Hydra by freezinR. 24 Once
the creator of an object has placed within it those capabilities
and data that it will permanently contain, she may freeze it.
The capability for the object will have FRZRT$ set and
MDFYRTS removed. The object can be frozen only if all
capabilities in the object's C-list are already frozen (have
FRZRTS set), thus FRZRTS guarantees not only that the
contents of the object remain permanently fixed, but those of
all objects in its representation as well. Like MDFYRTS and
ENVRTS, FRZRTS cannot be gained through amplification.

Furthermore, aliases cannot be frozen, and while an alias
can be made from a frozen capability, the capability created
for the alias will not contain FRZRTS. Thus a capability
containing FRZRTS acts as a guarantee against revocation as
well.

It is worth noting once again just how useful such
guarantees are for publicly available procedures. Users of a
computer system cringe so often when a compiler has been
erroneously modified and no backup version has been made
available. If users would demand frozen versions, new
versions would necessarily have to be made available in a
dif ferent (and hopefully more humane) way. 25

3.8 The Accounting and Lost Object Problems

Let us consider a Track subsystem responsible for
managing a disk and which makes available objects of type
Track. Users having a Track capability may read or write the
disk track it represents by making calls on procedures
supplied by the Track subsystem.

The Hydra philosophy asserts that objects do not
inherently have owners. All holders of a capability share
responsibil ity for it - although there may be de-facto
ownership in the sense that one user has rights to access the
object more powerful than other users. In the case of a
limited resource, such as a track, it does become relevant to
ask who pays for it? This is important not only as a billing
issue, but also in the sense of guaranteeing that some user will
not hog the resource. Other systems, such as one developed
at $RI [Neu74], force such objects to be held in accounting
directories. Even though Hydra itself does not enforce such a
policy, it is easy to construct a subsystem which does.

Let us suppose that whenever a user logs in, the Login
routine places in the user's initial LNS a capability for an
object uniquely identifying the user. 26 Before supplying a new
track, the Track subsystem demands a capability for the User
object and uses that to determine who will pay for the track.
If the user has overused her disk allocation, then the Track
subsystem could simply refuse to provide a new track. If
mistakes are made, revocation or destruction of the Track
object can allow the Track subsystem to reallocate the
physical track.

24. Like the alias mechanism, freezing also is not yet
implemented.

25. FRZRTS also can be used to solve a problem described by
Rotenberg [Rot73] as the Blind Service Problem. Even frozen
procedures can get hold of system information, such as time of
day, which varies from call to call. Rotenberg describes
situations where this information may be used to sabotage the
execution of a particular caller. We expect to solve this
problem in Hydra by preventing procedures called through
capabilities containing FRZRTS from obtaining such system
information.

Unfortunately, neither this (nor the SR! system) solves
the Lost Object Problem. Suppose that even though a user has
committed herself to paying for a track, she deletes all of her
capabilities for the track without notifying the Track
subsystem. Billing is not the issue - the problem is that the
track has been lost. If the disk is oversubscribed, it should not
be necessary to revoke some other user's track if the
subsystem has discovered that some lost (unwanted) track is
available.

Of course, the fact that a user has deleted all of her
capabilities for the track does not necessarily indicate that the
track was unwanted. In many systems, users often bemoan the
fact that they have mistakenly deleted an irreplaceable file. In
either case, it is clear that the ability to retrieve some types
of objects when all capabilities for them have been deleted is
quite useful.

In such a situation, Conservation or limiting propogation
of capabilities is extremely important. If a user mistakenly
deletes all of her capabilities for an object while a capability is
still retained by the "demonic user", the object will not be
retrieved.

In Hydra, a decision about retrievability may be made on
a type by type basis when a new type is first created. A
mechanism is provided which will retrieve a capability for an
object of that type whose capabilities have all been deleted. 27
A subsystem can use this mechanism to provide a wide range
of policies with respect to lost objects.

Through the construction of subsystems, procedures
provide the mechanism necessary for the 'implementation of
general policies involving future negotiated decisions.
Subsystem procedures can contain the code that can decide, as
situations arise, whether a user can be given access to a
scarce resource like a track, an object previously lost, or some
other object for which a prior unilateral access decision is
inappropriate.]t is subsystem procedures that can allow users
to negotiate and make and break rules permitting access to
information.

4. Conclusion

We have described how Hydra has solved a number of
interesting protection problems by simply extending the
interpretation of rights rather than providing a pastiche of
unrelated mechanisms (except for Aliases and Retrievability).

26. The details are beyond the scope of this section - but it is
important to note that the notion of a "user" is not required by
Hydra and can be provided by a User subsystem which has a
capability for the device On which the user logs in.

27. It is interesting ~o note that retrieving a lost object can
be used to provide a channel of fairly high bandwidth. In
order to prevent gross covert leakage out of confined LNSes,
we do not allow objects of retrievable types to be created by
confined LNSes. If we did, a confined LN$ could leak the
integer n by creating and deleting n objects of a retrievable
type.

158

As noted by Peuto [Peu74] in his comparative study of
Real Estate Law and Protection Systems, sophisticated
protection desired by users of a protection system is, in
principle, no different than that desired by parties to a legal
contract. There are the attendant issues of remedies and
adjudication to be considered if the contract is broken, either
purposefully by one of the parties, or accidentally due to
machine or program error.

]t is certainly possible that mechanisms more
sophisticated than that provided directly may be desirable, but
we hope that the Track example has convinced the reader that
subsystems can fill this need. More complex protection needs
lead inevitably to tradeoffs between the desire to restrict or
revoke access and the desire to guarantee certain kinds of
behavior (not only guarantees against revocation). Our
difficulty with revocation during subsystem calls was a simple
example of this tradeoff and leads us to conclude in general
that such decisions should be made by users (through
subsystems constructed by them) rather than by the
protection system directly.

We can make no promise that our list of protection
problems is complete. [t is a list of those that we have tried
to solve in our design of Hydra and those discovered by other
operating system builders. From that perspective, and from
the limited experience of those already using HYDRA, we
believe that the protection mechanisms we have provided
adequately and reasonably meet the needs of Hydra users.

Of course, the approach taken by Hydra is based in the
world of programming languages and file systems. The large
Data Base systems of the future will likely have different
protection needs. Access to information may be intimately tied
to the values of the information itself as well as the history of
previous access and the expectations of future access.

Nonetheless, the problems we have discussed here will
remain. [t is our hope that the essentially simple mechanisms
we have provided will encourage builders of future systems to
realize that they can do the same. Sadly, it seems that is the
only hope for insuring the privacy of private information so
madly collected and compulsively stored by this information
hungry society.

5. Acknowled[ement=

The authors wish to express their appreciation to those
who were active in the implementation and design of the Hydra
system, notably Bill Wulf and Anita Jones. We also wish to
thank numerous members of the MIT community whose
comments on an early presentation of this material helped
considerably in improving the contents of this paper.

6. Reference=

Coh75 Cohen, E., Modelling Protection, Ph. D. thesis, Carnegie-
Mellon University (to appear).

Cos74

Dab66

Din73

Fab74

Gra72

Jon73

JL75

Lain69

Lam73

Lau74

Lev75

Lis74

Mor73

Neu74

Org73

Peu74

Red74a

Red74b

Cosserat, D. C., "A Data Model Based on the Capability
Protection Mechanism", International Workshop on
Protection in Operating Systemsj]RiA, 1974.

Dahl, O.-J., and Nygaard, K., "Simula - An Algol-Based
Simulation Language", Communications of the ACM 9, 9
(September 1966).

Dingwall, T. J., Communication within Structured
Operating Systems, Cornell University Computer Science
Dept., TR 73-167, May 1973.

Fabry, R., "Capability-Based Addressing",
Communications of the ACM 1.7, 7 (July 1974).

Gray, J., Lampson, B., Lindsay, B., Sturgis, H., The
Control Structure of an Operating System, IBM Research
RC 3949, July 1972.

Jones, A., Protection in Programmed Systems, Ph.D.
thesis, Carnegie-Mellon University, June 1973.

Jones, A. and Lipton, R., "The Enforcement of Security
Policies for Computation", Proceedings of the 5th
Symposium on Operating System Principles, Austin,
Texas, Nov. 1975.

Lampson, B. W., "Dynamic Protection Structures",
AFIPS Conference Proceedings, FJCC 1969.

Lampson, B., "A Note on the Confinement Problem",
Communications of the ACM 1.6, 10 (October 1973).

Lauer, H. C., "Protection and Hierarchical Addressing
Structures", International Workshop on Protection in
Operating Systems, JR[A, 1974.

Levin, R, Cohen, E., Corwin, W., Pollack, ~'., Wulf, W.,
"Policy/k4echanism Separation in HYDRA", Proceedings
of the 5t!'~.Symposium on Operating System Principles,
Austin, Texas, Nov. 1975.

Liskov, B,, A Note on CLU, Computation Structures
Group Memo 112, M[T Project MAC, Nov. 1974.

Morris, J., "Protection in Programming Languages",
Communications of the ACM 16, I (January 1973).

Neumann, P. et. al., "On the Des|gn of a Provably
Secure Operating System", International Workshop on
Protection in Operating Systems, [R]A, August 1974.

Organick, E., Computer System Organization: The
B5700/B6700 Series, ACM Monograph Series,
Academic Press, 1973.

Peuto, B., Comparative Study of Real Estate Law and
Protection Systems, Ph. O. thesis, University of
California at Berkeley, ERL-k/A39, May 1974.

Redell, D., Naming and Protection in Extendible
Operating Systems, Massachusetts Institute of
Technology, MAC TR-140,.November, 1974.

Redell, D. and Fabry, R., "Selective Revocation of
Capabilities", International Workshop on Protection in
Operating Systems, [RIA, 1974.

159

Rot73

Sch72

Wa174

Wei69

Wu174b

WLP75

Rotenberg, L., Making Computers Keep Secrets, Ph. D.
thesis, Massachusetts Institute of Technology, MAC
TR-116, September 1973.

Schroeder, M., Cooperation ofMutually Suspicious
Subsystems in a Computer Utility, Ph. D. thesis,
Massachusetts Institute of Technology, MAC TR-104,
Sept. 1972.

Walter, K., et. al., Primitive Models for Computer
Security, Case Western.Reserve University Technical
Report ESD-TR-74-117, January [974.

Weissman, C., "Security Controls in the ADEPT-50
Time-Sharing System", AFIPS Conference Proceedings
35, FJCC 1969.

Wulf, W., Alphard: Toward a Language to Support
Structured Programs, Carnegie-Mellon University
Technical Report, 1974.

Wulf, W., Levin, R., Pierson, C., "An Overview of the
HYDRA Operating System Development', Proceedings
of the. 5th Symposium on Operating System Principles,
Austin, Texas, Nov. 1975.

160

