
Konfigurierbare Systemsoftware
(KSS)

VL 6 – Generative Programming:
The SLOTH Approach

Daniel Lohmann

Lehrstuhl für Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universität
Erlangen-Nürnberg

SS 12 – 2012-06-27

http://www4.informatik.uni-erlangen.de/Lehre/SS12/V_KSS

06
-G

P
Sl

ot
h_

ha
nd

ou
t

About this Lecture

Problem Space Solution Space

Specif ic Problem Specif ic Solution

Domain Expert ��

��

����

������

Features and Dependencies

Architect / Developer

�����

�����	

�����Class

�����	Aspect...

Architecture and Implementation

System User

��
��
...

�

�Conf iguration
A

B

D

C

System User

in
st

an
ce

 le
ve

l
m

od
el

 le
ve

l

Variant

intended
properties

actual
 implementation

intentional side extensional side

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach 6–2

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Implementation Techniques: Classification

Decompositional Approaches

Configuration

Components Variant

Text-based filtering (untyped)
Preprocessors

Compositional Approaches

Configuration

Components Variant

Language-based composition
mechanisms (typed)
OOP, AOP, Templates

Generative Approches

Configuration

Generator VariantTemplates

Metamodel-based generation
of components (typed)
MDD, C++ TMP, generators

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach 6–3

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Implementation Techniques: Classification

Decompositional Approaches

Configuration

Components Variant

Text-based filtering (untyped)
Preprocessors

Compositional Approaches

Configuration

Components Variant

Language-based composition
mechanisms (typed)
OOP, AOP, Templates

Generative Approches

Configuration

Generator VariantTemplates

Metamodel-based generation
of components (typed)
MDD, C++ TMP, generators

“ I’d rather write programs to write
programs than write programs.”Dick Sites (DEC)

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach 6–3

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Agenda

6.1 Motivation: OSEK and Co
6.2 SLOTH: Threads as Interrupts
6.3 SLEEPYSLOTH: Threads as IRQs as Threads
6.4 Outlook: SLOTH ON TIME

6.5 Summary and Conclusions
6.6 References

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach 6–4

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Agenda

6.1 Motivation: OSEK and Co
Background
OSEK OS: Abstractions
OSEK OS: Tailoring and Generation

6.2 SLOTH: Threads as Interrupts
6.3 SLEEPYSLOTH: Threads as IRQs as Threads
6.4 Outlook: SLOTH ON TIME

6.5 Summary and Conclusions
6.6 References

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–5

06
-G

P
Sl

ot
h_

ha
nd

ou
t

The OSEK Family of Automotive OS Standards

1995 OSEK OS (OSEK/VDX) [6]

2001 OSEKtime (OSEK/VDX) [8]

2005 AUTOSAR OS (AUTOSAR) [1]

OSEK OS 7→ “Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen”

statically configured, event-triggered real-time OS

OSEKtime
statically configured, time-triggered real-time OS

can optionally be extended with OSEK OS (to run in slack time)

AUTOSAR OS 7→ “Automotive Open System Architecture”

statically configured, event-triggered real-time OS

real superset of OSEK OS ; backwards compatible

additional time-triggered abstractions (schedule tables, timing protetion)

intended as successor for both, OSEK OS and OSEKtime

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–6

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: Abstractions [6]

Control flows

Task: software-triggered control flow (strictly priority-based scheduling)
Basic Task (BT) run-to-completion task with strictly stack-based

activation and termination
Extended Task (ET) may suspend and resume execution (7→ coroutine)

ISR: hardware-triggered control flow (hardware-defined scheduling)
Cat 1 ISR (ISR1) runs below the kernel, may not invoke system

services (7→ prologue without epilogue)
Cat 2 ISR (ISR2) synchronized with kernel, may invoke system

services (7→ epilogue without prologue)

Hook: OS–triggered signal/exception handler
ErrorHook invoked in case of a syscall error
StartupHook invoked at system boot time
...

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–7

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: Abstractions [6] (Cont’d)

Coordination and synchronization

Resource: mutual exclusion between well-define set of tasks
stack-based priority ceiling protocol ([9]):
GetResource() ; priority is raised to that of highest participating task
pre-defined RES_SCHED has highest priority (; blocks preemption)
implementation-optional: task set may also include cat 2 ISRs

Event: condition variable on which ETs may block
part of a task’s context

Alarm: asynchronous trigger by HW/SW counter
may execute a callback, activate a task or set an event on expiry

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–8

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: System Services (Excerpt)

Task-related services
ActivateTask(task) ; task is active (7→ ready), counted
TerminateTask() ; running task is terminated
Schedule() ; active task with highest priority is running

ChainTask(task) 7→ atomic

{
ActivateTask(task)
TerminateTask()

Resource-related services
GetResource(res) ; current task has res ceilinig priority
ReleaseResource(res) ; current task has previous priority

Event-related services (extended tasks only!)
SetEvent(task, mask) ; events mask for task are set
ClearEvent(mask) ; events mask for current task are unset
WaitEvent(mask) ; current task blocks,

until event from mask has been set

Alarm-related services
SetAbsAlarm(alarm, ...) ; arms alarm with absolute offset
SetRelAlarm(alarm, ...) ; arms alarm with relative offset

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–9

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: Conformance Classes [6]

OSEK offers predefined tailorability by four conformance classes
BCC1 only basic tasks, limited to one activation request per task and

one task per priority, while all tasks have different priorities

BCC2 like BCC1, plus more than one task per priority possible and
multiple requesting of task activation allowed

ECC1 like BCC1, plus extended tasks

ECC2 like ECC1, plus more than one task per priority possible and
multiple requesting of task activation allowed for basic tasks

The OSEK feature diagram
OSEK OS

Control Flows

ISRs Cat. 2

Kernel Sync

ISRs Cat. 1 Tasks

Full Preemption Mixed Preemption No Preemption Multiple Tasks Per Prio

BCC2, ECC2

Multiple Activations

BCC2, ECC2

Alarms

Activate Task Set Event

ECC1, ECC2

Exec Callback

Coordination

Resources

BCC2, ECC1, ECC2

Events

ECC1, ECC2

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–10

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: System Specification with OIL [7]

An OSEK OS instance is
configured completely statically

all general OS features (Hooks, ...)
all instances of OS abstractions (Tasks, ...)
all relationships between OS abstractions
described in a domain-specific language (DSL)

OIL: The OSEK Interface Language [7]
standard types and attributes (TASK, ISR, ...)
vendor/plattform-specific attributes
(ISR source, priority, triggering)
task types and conformance class is deduced

OIL File for Example System (BCC1)

Three basic tasks: Task1, Task3, Task4
Category 2 ISR: ISR2 (platform-spec. source/priority)
Task1 and Task3 use resource Res1 ; ceiling pri = 3
Alarm Alarm1 triggers Task4 on expiry

...
OS ExampleOS {
STATUS = STANDARD;
STARTUPHOOK = TRUE

};
TASK Task1 {
PRIORITY = 1;
AUTOSTART = TRUE;
RESOURCE = Res1;

};
TASK Task3 {
PRIORITY = 3;
AUTOSTART = FALSE;
RESOURCE = Res1;

};
TASK Task4 {
PRIORITY = 4;
AUTOSTART = FALSE;

};
RESOURCE Res1 {
RESOURCEPROPERTY = STANDARD;

}
ISR ISR2 {
CATEGORY = 2;
PRIORITY = 2;

}
ALARM Alarm1 {
COUNTER = Timer1;
ACTION = ACTIVATETASK {
TASK = Task4;

};
AUTOSTART = FALSE;

}

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–11

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: System Generation [7, p. 5]

User’s
source
code

Compiler

Linker

Executable file

Files produced by SG

C code

C code

C code

optional
OSEK Builder

OSEK components, tools & related files

User written/defined

Third party tools & related files

Make tool

Object libraries

System Generator
(SG)

Application
configuration files

(OIL)

OSEK COM

OSEK OS
Kernel

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–12

06
-G

P
Sl

ot
h_

ha
nd

ou
t

OSEK OS: Example Control Flow ◭◭ ◮◮

Task Prio Level
t

0

1

2

3

4

ISR2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

init()

StartOS()

Task1

GetRes(Res1)

Task1

E
ISR2

ISR2

SetAlarm(Al1,t8)

iret

Task1 RelRes(Res1)

Task1 Term()

idle()

Task4
E

Alarm1

Act(Task1)

Term()

Task1

Basic tasks behave much like IRQ handlers
(on a system with support for IRQ priority levels)

priority-based dispatching with run-to-completion
LIFO, all control flows can be executed on a single shared stack

So why not dispatch tasks as ISRs?
; Let the hardware do all scheduling!
; Let’s be a SLOTH!

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6–13

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Agenda

6.1 Motivation: OSEK and Co
6.2 SLOTH: Threads as Interrupts

Basic Idea
Design
Results
Limitation

6.3 SLEEPYSLOTH: Threads as IRQs as Threads
6.4 Outlook: SLOTH ON TIME

6.5 Summary and Conclusions
6.6 References

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–14

06
-G

P
Sl

ot
h_

ha
nd

ou
t

“SLOTH: Threads as Interrupts” [3]

Idea: threads are interrupt handlers, Paper title of [3] is a pun to the ap-
proach taken by SOLARIS: “Interrupts
as Threads”, ACM OSR (1995) [5]synchronous thread activation is IRQ

Let interrupt subsystem do the scheduling and dispatching work

Applicable to priority-based real-time systems

Advantage: small, fast kernel with unified control-flow abstraction

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–15

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLOTH Design

IRQ system must support priorities and software triggering

IRQ Source
Task1

prio=1

request

IRQ Source
ISR2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
Task4

prio=4

request

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-
tration
Unit

CPU

curprio=X

activate(Task1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

Task Stack

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–16

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLOTH: Example Control-Flow ◭◭ ◮◮

CPU Prio Level

t

0

1

2

3

4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

init()

enable()

Task1

GetRes(Res1)

Task1
E
ISR2

RelRes(Res1)

ISR2

SetAlarm(Al1)

iret

Task1 Term()

idle()

Task4
E

Alarm1

Act(Task1)

Term()

Task1

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–17

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLOTH: Qualitative Results

Concise kernel design and implementation
< 200 LoC, < 700 bytes code memory, very little RAM

Single control-flow abstraction for tasks, ISRs (1/2), callbacks
Handling oblivious to how it was triggered (by hardware or software)

Unified priority space for tasks and ISRs
no rate-monotonic priority inversion [2]

Straight-forward synchronization by altering CPU priority
Resources with ceiling priority (also for ISRs!)

Non-preemptive sections with RES_SCHEDULER (highest task priority)

Kernel synchronization with highest task/cat.-2-ISR priority

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–18

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Performance Evaluation: Methodology

Reference implementation for Infineon TriCore
32-bit load/store architecture

Interrupt controller: 256 priority levels, about 200 IRQ sources with
memory-mapped registers

Meanwhile also implementations for ARM Cortex M3 (SAM3) and x86

Evaluation of task-related system calls:
Task activation

Task termination

Task acquiring/releasing resource

Comparison with commercial OSEK implementation and CiAO

Two numbers for SLOTH: best case, worst case
Depending on number of tasks and system frequency

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–19

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Performance Evaluation: Results

0

100

200

300

400

Cycles

Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()

w/ dispatch w/ dispatch

Speedup ≈ 2x ≈ 4x ≈ 20x ≈ 5x ≈ 3x ≈ 8x ≈ 8x

Sloth best case

Sloth worst case

Commercial OSEK

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–20

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Performance Evaluation: Comparison with CiAO

Act() Act() Term() Chain() GetRes() RelRes() RelRes()

w/o dis-
patch

w/
dispatch

w/
dispatch

w/
dispatch

w/o dis-
patch

w/o dis-
patch

w/
dispatch

SLOTH best case 34 60 14 67 19 14 36

SLOTH worst case 48 74 14 81 19 14 36

CiAO 75 206 107 139 19 66 204

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–21

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Limitations of the SLOTH Approach

No extended tasks (that is, events, 7→ OSEK ECC1 / ECC2)
←֓ impossible with stack-based IRQ execution model

No multiple tasks per priority (7→ OSEK BCC2 / ECC2)
←֓ execution order has to be the same as activation order

OSEK OS

Control Flows

ISRs Cat. 2

Kernel Sync

ISRs Cat. 1 Tasks

Full Preemption Mixed Preemption No Preemption Multiple Tasks Per Prio

BCC2, ECC2

Multiple Activations

BCC2, ECC2

Alarms

Activate Task Set Event

ECC1, ECC2

Exec Callback

Coordination

Resources

BCC2, ECC1, ECC2

Events

ECC1, ECC2

Really?

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6–22

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Agenda

6.1 Motivation: OSEK and Co
6.2 SLOTH: Threads as Interrupts
6.3 SLEEPYSLOTH: Threads as IRQs as Threads

Motivation
Design
Results
SLOTH∗ Generation

6.4 Outlook: SLOTH ON TIME

6.5 Summary and Conclusions
6.6 References

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–23

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Control Flows in Embedded Systems

Activation Event Sched./Disp. Semantics
ISRs HW by HW RTC
Threads SW by OS Blocking
SLOTH [3] HW or SW by HW RTC
SLEEPYSLOTH [4] HW or SW by HW RTC or Blocking

(RTC: Run-to-Completion)

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–24

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLEEPYSLOTH: Main Goal and Challenge

Main Goal
Support extended blocking tasks (with stacks of their own), while
preserving SLOTH’s latency benefits by having threads run as ISRs

Main Challenge
IRQ controllers do not support suspension and re-activation of ISRs

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–25

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLEEPYSLOTH Design: Task Prologues and Stacks

IRQ Source
ExtTask1

prio=1

req IE

IRQ Source
ISR2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
ExtTask4

prio=4

req IE

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-
tration
Unit

CPU

curprio=X

activate(Task1)

IRQ Vector
Table

prol1()

isr2()

prol3()

prol4()

task1()

task3()

task4()

Task Stack

Stack ET1

Stack ET4

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–26

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLEEPYSLOTH: Dispatching and Rescheduling

Task prologue: switch stacks if necessary
Switch basic task →֒ basic task omits stack switch
On job start: initialize stack
On job resume: restore stack

Task termination: task with next-highest priority needs to run
Yield CPU by setting priority to zero
(Prologue of next task performs the stack switch)

Task blocking: take task out of “ready list”
Disable task’s IRQ source
Yield CPU by setting priority to zero

Task unblocking: put task back into “ready list”
Re-enable task’s IRQ source
Re-trigger task’s IRQ source by setting its pending bit

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–27

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLEEPYSLOTH: Example Control Flow

x

CPU/Task Priority

t

1

2

3

Task BT1

act(ET3)

Prologue ET3

save(stk bt)

init(stk et3)

Task ET3

block()

Prologue BT1

save(stk et3)

load(stk bt)

Task BT1 (ctd.)

act(BT2)

Prologue BT2

nop

Task BT2

unblock(ET3)

Prologue ET3

save(stk bt)

load(stk et3)

Task ET3 (ctd.)

IRQ Source
Task1

prio=1

request

IRQ Source
Task2

prio=2

request

IRQ Source
ExtTask3

prio=3

req IE

IRQ
Arbi-
tration
Unit

CPU

curprio=3

IRQ Vector
Table

prol1()

prol2()

prol3()

task1()

task2()

task3()

Basic Stack

Stack ET3

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–28

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLEEPYSLOTH: Evaluation

Reference implementation on Infineon TriCore microcontroller

Measurements: system call latencies in 3 system configurations,
compared to a leading commercial OSEK implementation
1. Only basic run-to-completion tasks
2. Only extended blocking tasks
3. Both basic and extended tasks

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–29

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Evaluation: Only Basic Tasks

0

100

200

300

400

Cycles

Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()

w/ dispatch w/ dispatch w/ dispatch w/ dispatch

Speed-Up 2.0 4.6 19.0 4.9 3.7 8.0 7.4

Average Speed-Up: 7x
Sloth

Sleepy Sloth

Commercial OSEK

SLEEPYSLOTH outperforms commercial kernel with SW scheduler

SLEEPYSLOTH as fast as original SLOTH

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–30

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Evaluation: Only Extended Tasks

0

100

200

300

400

Cycles

Activate() Block() Unblock() ClearMask() Terminate() Chain()

w/ dispatch w/ dispatch w/ dispatch w/ dispatch w/ dispatch

Speed-Up 2.4 1.6 1.7 5.3 3.4 3.5

Average Speed-Up: 3x Sleepy Sloth

Commercial OSEK

Still faster than commercial kernel with SW scheduler

SLEEPYSLOTH: Extended switches slower than basic switches

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–31

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Evaluation: Extended and Basic Tasks

0

100

200

300

400

Cycles

Act() Act() Block() Unblock() Term() Term() Term() Chain()

BT → BT BT → ET ET → BT BT → ET BT → BT ET → ET BT → BT BT → BT

stack switch stack switch stack switch stack switch stack switch

Speed-Up 3.6 2.5 1.3 1.7 9.7 3.7 3.3 4.0

Average Speed-Up: 4x Sleepy Sloth

Commercial OSEK

Basic switches in a mixed system only slightly slower than in purely
basic system

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.3 SLEEPYSLOTH: Threads as IRQs as Threads 6–32

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLOTH∗ Generation
Two generation
dimensions

Architecture

Application

Generator is
implemented in Perl

templates

configuration

Arch-independent
templates

– Kernel object
template

– Kernel
configuration
template

Arch-specific
templates

– IRQ vector table
and management
template

– Schedule table
management
template

App-specific, arch-
independent files

– Kernel object
instantiation

– Kernel
configuration

App-specific,
arch-specific files

– IRQ vector table

– IRQ source init
and management

– Schedule table init
and management

App-independent,
arch-independent files

– Kernel interfaces
and syscalls

– IRQ suspension
management

– Event
management

App-independent,
arch-specific files

– Linker script

– Startup code

– IRQ handler
management

– Task dispatching

Application

Application/system
configuration

Verification

Common calculations

Generator

Compiler

Application–
system binary

Arch-independent Arch-specific

A
p
p
-s
p
ec
ifi
c

A
p
p
-i
n
d
ep

en
d
en

t

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Agenda

6.1 Motivation: OSEK and Co
6.2 SLOTH: Threads as Interrupts
6.3 SLEEPYSLOTH: Threads as IRQs as Threads
6.4 Outlook: SLOTH ON TIME

6.5 Summary and Conclusions
6.6 References

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.4 Outlook: SLOTH ON TIME 6–34

06
-G

P
Sl

ot
h_

ha
nd

ou
t

SLOTH ON TIME: Time-Triggered Laziness

Idea: user hardware timer arrays to implement schedule tables

TC1796 GPTA: 256 timer cells, routable to 96 interrupt sources
use for task activation, deadline monitoring, execution time budgeting

SLOTH ON TIME implements OSEKtime [8]
and AUTOSAR OS schedule tables [1]

combinable with SLOTH or SLEEPYSLOTH for mixed-mode systems

up to 170x lower latencies compared to commercial implementations

t
0 200 400 600 800 1000 1200

idle

Task1

Task2

dispatcher round length

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.4 Outlook: SLOTH ON TIME 6–35

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Agenda

6.1 Motivation: OSEK and Co
6.2 SLOTH: Threads as Interrupts
6.3 SLEEPYSLOTH: Threads as IRQs as Threads
6.4 Outlook: SLOTH ON TIME

6.5 Summary and Conclusions
6.6 References

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.5 Summary and Conclusions 6–36

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Summary: The SLOTH∗ Approach

Exploit standard IR/timer hardware to
delegate core OS functionality to hardware

scheduling and dispatching of control flows

OS needs to be tailored to application and hardware platform

; generative approach is necessary

Benefits
tremendous latency reductions, very low memory footprints

unified control flow abstraction
hardware/software-triggered, blocking/run-to-completion
no need to distinguish between tasks and ISRs
reduces complexity

less work for the OS developer :-) We are

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.5 Summary and Conclusions 6–37

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Referenzen

[1] AUTOSAR. Specification of Operating System (Version 4.1.0). Tech. rep.
Automotive Open System Architecture GbR, Oct. 2010.

[2] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz. “Predictable
Interrupt Management for Real Time Kernels over conventional PC Hardware”. In:
Proceedings of the 12th IEEE International Symposium on Real-Time and
Embedded Technology and Applications (RTAS ’06). Los Alamitos, CA, USA:
IEEE Computer Society Press, 2006, pp. 14–23. DOI: 10.1109/RTAS.2006.34.

[3] Wanja Hofer, Daniel Lohmann, Fabian Scheler, et al. “Sloth: Threads as
Interrupts”. In: Proceedings of the 30th IEEE International Symposium on
Real-Time Systems (RTSS ’09). IEEE Computer Society Press, Dec. 2009,
pp. 204–213. ISBN: 978-0-7695-3875-4. DOI: 10.1109/RTSS.2009.18.

[4] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat. “Sleepy Sloth:
Threads as Interrupts as Threads”. In: Proceedings of the 32nd IEEE International
Symposium on Real-Time Systems (RTSS ’11). IEEE Computer Society Press,
Dec. 2011, pp. 67–77. ISBN: 978-0-7695-4591-2. DOI: 10.1109/RTSS.2011.14.

[5] Steve Kleiman and Joe Eykholt. “Interrupts as Threads”. In: ACM SIGOPS
Operating Systems Review 29.2 (Apr. 1995), pp. 21–26. ISSN: 0163-5980.

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.6 References 6–38

06
-G

P
Sl

ot
h_

ha
nd

ou
t

Referenzen (Cont’d)

[6] OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf, visited 2011-08-17.
OSEK/VDX Group, Feb. 2005.

[7] OSEK/VDX Group. OSEK Implementation Language Specification 2.5.
Tech. rep. http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf, visited
2009-09-09. OSEK/VDX Group, 2004.

[8] OSEK/VDX Group. Time Triggered Operating System Specification 1.0.
Tech. rep. http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf.
OSEK/VDX Group, July 2001.

[9] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization”. In: IEEE Transactions on
Computers 39.9 (1990), pp. 1175–1185. ISSN: 0018-9340. DOI:
10.1109/12.57058.

c© dl KSS (VL 6 | SS 12) 6 The SLOTH Approach | 6.6 References 6–39

06
-G

P
Sl

ot
h_

ha
nd

ou
t

