
Entwicklung einer Infrastruktur für
Energiesparverfahren

Diplomarbeit im Fach Informatik

vorgelegt von
Holger Wunderlich

geboren am 24. April 1980 in Kemnath

Institut für Informatik,
Lehrstuhl für Verteilte Systeme und Betriebssysteme,
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Dipl.-Inf. Andreas Weißel
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 1. Juli 2005
Abgabedatum: 2. Januar 2006





Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung an-
derer als der angegebenen Quellen angefertigt habe und dass die Arbeit in glei-
cher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat
und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als
solche gekennzeichnet.

Erlangen, 13. Januar 2006





Operating System Support for Power
Management of Mobile Robots

Diploma Thesis

by
Holger Wunderlich

born April 24st 1980 in Kemnath

Department of Computer Science,
Distributed Systems and Operating Systems,

University of Erlangen-Nürnberg

Advisors: Dipl.-Inf. Andreas Weißel
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Begin: July 1th, 2005
Submission: January 2th, 2006





vii

Copyright c© 2005/2006 Holger Wunderlich.

Permission is granted to copy and distribute this document provided it is com-
plete and unchanged.
Parts of this work may be cited provided the citation is marked and its source is
referenced.
The programs described herein are also copyrighted by Holger Wunderlich. They
are free software; you can redistribute them and/or modify them under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.



viii



Abstract

For battery-driven devices it is important to guarantee a defined runtime or to
complete a given task with the available battery capacity.

Two prerequisites are needed in order to achieve this goal:
The energy usage of a device has to be known.
Fine grained limitation of the energy usage has to be possible.

Gaining knowledge of the energy usage of a system can be done by account-
ing the energy consumption of the devices. Thereby it is not enough to account
the energy used by the running applications as this is only a part of the total con-
sumption. Energy is also consumed during idle periods since the devices are not
switched off.

To be able to efficiently limit the energy usage it is also necessary to know
which applications consumed the energy. Hence it is not sufficient to only estimate
the energy consumption but to accounted it to the responsible applications.

Reducing the energy consumption can be done by limiting the energy usage
and by exploiting the different power management modes of the devices to also
reduce the consumption during idle periods.

However, only reducing the energy of a system is not sufficient to be able to
complete a given task.

A robot for example may have the following tasks to fulfill:

• Exploring the environment.

• Taking images and building a graphical map.

During normal operation both tasks are executed with equal priorities. If the robot
runs on low batteries taking images and processing them should be delayed. It
should continue exploring until only enough energy is left to return to the charg-
ing station. Then exploring should also be delayed and the robot should return.
After charging the battery the robot can continue executing the tasks.

To accomplish this, it is necessary to change the priorities for the tasks during
runtime. This can be done by restricting the available energy for one task, while
not doing so for the second one.

ix



x

The decision, which tasks to limit and how to limit them is done by dedicated
programs, the so called energy-aware policies (these are not part of this work). A
policy requires information about the energy consumption of each application and
the remaining runtime (or battery capacity). Therewith it can calculate and set the
limits for the applications.

The main objective of this work is to develop an infrastructure that provides
the accounted data (consumed energy, device usage) and that sets and maintains
the limits for the applications. Furthermore it provides feedback about the effects
of the limitations. This feedback can be used by the policies to adapt the limits
in case the energy consumption is still too high or the consumption is lower than
expected. This can happen due to interdependencies between the devices. For
example limiting the energy usage of the CPU also reduces the usage of other
components if the limited application is very CPU intensive.

The infrastructure has to be implemented within the operating system layer
since only there it is possible to get the required device information and to control
the devices and applications as required.

It is shown that using such an infrastructure enables accurate accounting and
fine grained limitation of the energy consumption while still being able to accom-
plish set targets.



Contents

1 Introduction 1

2 Related Work and Background 3
2.1 Robertino-Robotsystem . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Resource accounting and limitation . . . . . . . . . . . . . . . . . . . 6

2.2.1 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Refreshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Further work about accounting and limiting . . . . . . . . . . . . . 9
2.3.1 ECOSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Nemesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Gaining Control over the energy usage 13
3.1 Resource Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Hard disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Network - especially WLAN . . . . . . . . . . . . . . . . . . 15
3.1.4 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.5 Motors and sensors . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Battery - A Special Resource . . . . . . . . . . . . . . . . . . . 17
3.1.7 Other possible resources . . . . . . . . . . . . . . . . . . . . . 18

3.2 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Accounting activity . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Accounting state changes . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Accounting idle-energy . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Accounting the resources . . . . . . . . . . . . . . . . . . . . 27

3.3 Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Limiting basics . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Hard disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 WLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.6 Motors and sensors . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



3.3.7 Interdependencies . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Controlling energy usage . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Required data . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Controlling resource usage . . . . . . . . . . . . . . . . . . . 40
3.4.3 Example policy . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Implementation 43
4.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Hard disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Idle-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.6 State changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Refreshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Measurement and Evaluation 49
5.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Hard disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.3 WLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.4 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.5 Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.6 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Accounting and Limiting . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Future Work 59
6.1 Multiple devices per resource . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Uniform configuration interface . . . . . . . . . . . . . . . . . . . . . 60
6.3 Observe length of accesses and state changes . . . . . . . . . . . . . 60

7 Conclusion 61

List of Figures 63

List of Tables 65

Bibliography 68



Chapter 1

Introduction

Mobile devices have grown more and more powerful over the last years. This lead
to higher energy consumption which cannot be countervailed by batteries with
higher capacities. Thus it was necessary to develop new strategies and methods
for saving energy.

New hardware was developed that supports different states of operation in
which the energy consumption is reduced. Until now each device is managing
the power for itself. Using an all-embracing power management would lead to
higher energy savings and with an appropriate infrastructure energy usage may
be controlled in such a way that given goals can be achieved though the energy
would normally not suffice. For instance, for battery operated devices it is impor-
tant that a defined runtime is reached with the available battery capacity. For a
cleaning robot a goal that has to be fulfilled is not running out of energy before the
chores are done. Another example is detecting and reacting to different kinds of
power-related emergencies. If a robot runs out of battery all normal work should
be suspended in favor of returning to the charging station. This can be done by
prioritizing the different tasks into tasks that have to be fulfilled and into those
which can be fulfilled if enough energy is available and changing the priorities of
the tasks depending on the energy available.

Such an infrastructure is not only useful for mobile devices but also for other
computers, especially high-end servers. For those, enough energy is available but
the critical factor is the heat dissipation. Currently throttling the system if the
temperature reaches critical values is done by the hardware itself. Using this in-
frastructure enables a fine grained control over the system which allows to throttle
the affected components, by limiting the energy usage, as long as it is needed. It
is also possible to detect emerging thermal emergencies and react to them prema-
turely.

Often the given tasks are not processed by one single application. Hence it
is essential to distinguish applications and to handle them differently. This also
incorporates the limitation of energy usage. For a robot for example the mobility
has a higher priority than any other task (e. g. recording images) to assure that

1



2 Chapter 1. Introduction

the robot reaches the charging station before the energy is depleted. In this case
any other task is postponed, while during normal operation other priorities may
apply. These for example may prefer applications using the camera over those
that use the motors. Distinguishing applications also requires the knowledge of
the energy usage of each single device of the system to be able to map the usage
to the applications.

Controlling and limiting is only possible at the operating system layer since
this is the only location where full access to the hardware and all applications is
possible.

This work introduces services to determine this data, accounting it to the re-
sponsible applications during operation. Policies implemented in user-space or as
operating system services make use of this information to manage and control the
energy consumption.

To provide feedback and further details for the policies not only the energy but
also the device usage is accounted since there is no point in limiting devices that
are hardly used.

Feedback is also given about the effects of limiting. This enables the policies to
correct the set limit in case the discrepancy of energy savings and planned savings
is substantial.

The main objective of this work is to develop such an infrastructure that sup-
ports accounting and limiting. A sample implementation is done for Linux and is
tested on Robertino, an autonomous mobile robot.

The work is structured as follows:
The first part introduces the resources that need to be accounted. This is followed
by a discussion on the usable strategies for accounting and limiting. After that
methods are shown how to control the energy usage and a sample policy is pre-
sented. Then a short look is taken at the implementation and thereby occurring
problems.

The second part of this thesis is the evaluation of the measurements. Within
this part the energy consumption of the different devices is measured and mapped
to the resources. Thereafter the accuracy of accounting is compared to measure-
ments and the effects of limiting are discussed.

The work is finished with some proposals for future investigations and a con-
clusion.



Chapter 2

Related Work and Background

While a lot of work has been done for resource accounting and scheduling, there
are no papers dealing with full control over the energy usage of a system.

This chapter introduces the Robertino-Robotsystem which is the platform this
work is implemented and tested on. Later on this work resource and energy ac-
counting and scheduling is discussed.

2.1 Robertino-Robotsystem

The Robertino-Robotsystem, from now on called Robertino, was developed at the
TU Munich. The goal was to design a small, easy to use, but fully operational,
autonomous mobile robot.

Robertino consists of a PC104+-PC, a firewire camera, three motors for driving
and six distance sensors. Additionally it is possible to mount an actuator which
was not mounted on the Robertino used in this work.

The PC is equipped with a Pentium 3 M with 500 MHz, 128 MB RAM, a 20 GB
hard disk, onboard graphics, PCMCIA, LAN, IEEE1394 and USB connectors and
two CAN controllers.

Additionally there is a 802.11b WLAN card plugged into the PCMCIA slot.
The camera system was developed at the Fraunhofer Institut for the Volksbot

and is connected via firewire. The AISVision is a omnidirectional camera sys-
tem that is able to transmit 30 pictures per second with a maximum resolution of
640 x 480 pixels per picture [Wis04].

The motors are mounted on the round base-plate arranged in an equilateral
triangle.

This means that Robertino can control every of the three degrees of freedom
when moving on a flat surface independently. These are: movement in x-direction,
movement in y-direction and rotation.

A drawback of this maneuverability is that relatively complex calculations
have to be done to set the speeds for the motors. Figure 2.2 shows the schematics

3



4 Chapter 2. Related Work and Background

!"#$%&'()*(+$,$-$&./,0(1&2(3,&.0$&4&.5."/672( 8&$%&(9:(4;,(:9(

(

(

(

!" #$%$&$'()%*"+',"-%'(*$'.'(/(0)12,"

3$,&('",0&(4&.2;.0/,02<.&$&(="/<>&$%?(&$,&.(1&.(@$67%$02%&,(A2#&B%&(5&$(1&.(3,%@$6BC
'/,0(4;,(,&%>/,"57D,0$0&,(E&.D%&,(/,1(F'"%%<;.-&,G(8$&(B",,(,&5&,(&$,&.(&,%2#.&C
67&,1( 0.;H>I0$0&,( J$-&,2$;,$&./,0( 1&2( 0&.D%&$,%&.,&,( 3,&.0$&2#&$67&.2( "/67(
1/.67(&$,&(+$,$-$&./,0(1&2(3,&.0$&4&.5."/672(1&2(E&.D%&2(2&'52%(&..&$67%(@&.1&,G(
J"5&$($2%(&2(>@&6B-DH$0?(5&$(K&1&.(&$,>&',&,(!;-#;,&,%&(1&,(3,&.0$&4&.5."/67(>/(
/,%&.2/67&,G(

 

3//$4+)%*"!567"8$'")%9'(,)129'":;/;9'(<4099=;(&":;/'(9$%;">"

Figure 2.1: Openrobertino

of the motors and the driving direction. For each motor there are several vectors:
One vector pointing into driving direction. This one is representing the actual
speed of the motor.

If the known values for the movement are: vx, vy (velocity in x- resp. y-direction
in mm/s) and omega (rotational velocity in counter-clockwise direction when look-
ing on Robertino in mdeg/s) the speed for each motor ~vx (in mm/s) can be calcu-
lated using Equation 2.1, where rb is the distance (in mm) from the center to the
wheel’s center (for the complete derivation see [url]).

~vw = 2∗π∗ rb∗ omega
360000

~v0 = −0.5∗
√

3∗ ~vx+0.5∗ ~vy+ ~vw
~v1 = −~vy+ ~vw
~v2 = 0.5∗

√
3∗ ~vx+0.5∗ ~vy+ ~vw

(2.1)

Each motor and two sensors are controlled by one Atmel ATmega8535 micro-
controller which is also managing the communication with the PC over CAN1.

1CAN means Controller Area Network this is an asynchronous serial bus-system which was de-



2.1. Robertino-Robotsystem 5

Figure 2.2: Definition of wheel motion vectors

For this purpose it is connected to a Intel 82527 CAN controller.
The motor-speed is regulated with pulse width modulated signals. When the

motor is not running a braking circuit ensures that the wheel does not turn (which
is needed so the robot does not slide away if it is being operated on an unlevel
plane.

The power for the robot is supplied by two lead accumulators with 12 V and
6 Ah each which should lead to a theoretical runtime of 4 h [CV01]. Measurements
in [Höl05] show that the real runtime under full load is about 2.5 h (respectively
2 h if runtime is defined as everything running - after about two hours the mo-
tors stop because of low voltage, whereas the PC keeps running for another half
hour). Own measurements show a runtime of about 40 minutes because of defect
accumulators2.

For this work this is not a problem, because the goal is to have complete control
over the used energy - no matter if there is energy for some minutes or a couple of
hours available.

veloped for the automobile industry [Bos]
2Lead acid accumulators need a special charge current and voltage which the used power sup-

ply does not produce ([HLG05]).



6 Chapter 2. Related Work and Background

Unfortunately Robertino was developed with pattern recognition which means
high performance, in mind. This raises problems because it is not very energy-
efficient or at least energy-aware.

• The batteries cannot be controlled and monitored (they do not have any in-
telligence built in like smart batteries in modern notebooks have [FD98]).

• The omni-directional drive has a big disadvantage: Besides rotation the motors
do not move in the direction the robot drives, there is always a movement to
the wrong direction that has to be compensated by the other motors which
leads to higher energy usage.

• The motors consume energy, even if they do not rotate, because of the braking
circuit that ensures that the wheels do not turn if they are stopped.

2.2 Resource accounting and limitation

To be able to gain control over the energy usage of whole system, the energy usage
per time of each component has to be known.

For this reason a data structure is needed that holds the information about
available resources and their energy consumption. A method for accounting re-
sources to processes, respectively independent activities, and handling them as
new abstraction, called resource containers, has been presented by Banga et al. in
[BDM99]. A powerful, yet easy to use accounting model based on resource con-
tainers has been developed by Martin Waitz [Wai03].

Banga et al. developed the resource containers as a model for fine-grained
resource management. A resource container (RC) is an abstract OS entity that
logically contains all system resources (e. g. CPU time, sockets, protocol control
blocks) that may be used by an application to execute a particular independent
activity. All resources used by user and kernel level processing for such an activ-
ity are accounted to the appropriate RC. Each RC has attributes that are used to
provide scheduling parameters, like QoS or limits. The scheduler can access this
information and uses it to schedule the processes associated with the container.

An independent activity is not necessarily a process. Often one process han-
dles many independent activities (like for example a webserver (= process) and a
single client connection (= independent activity)). Or the activity consists of more
than one thread, because the application is split into different parts, for example
to provide fault isolation. Additionally resources are consumed when the kernel
is working for the activity which, until now was not accounted correctly, or not
accounted at all.



2.2. Resource accounting and limitation 7

To be able to control the resource usage of the entire system, or a subsystem,
the resource container form a hierarchy. The usage of a child is also applied to the
parent container. If one container is limited it and all its children combined must
not exceed these limits.

Martin Waitz used and improved the resource containers by introducing a new
energy aware resource model which is based on the RCs in [Wai03]. With this
model it is possible to account and limit the power consumption of the different
processes. Unlike Banga et al. he split resource accounting off the processes and
used a separate structure. Another novelty is that a process may be attached to
more than one resource container

These changes were needed, because one of the targets of his work was to ac-
count client-server-relationships correctly. Decoupling resource accounting from
processes also has the advantage that the OS is able to correctly account for work
done within the kernel, as the kernel can change the resource container for ac-
counting independently of the current process.

Mostly the clients access servers via pipes or sockets. These requests can be
detected by the OS and used to determine the correct RC for accounting the re-
sources used by the server. The server does not need to provide own resources.
When working for a client it gets scheduled with the priority of the client RC.
Servers have own resources as a fallback if the clients resources are depleted and
the request is not finished yet, and for work that has to be done for the server itself.

2.2.1 Accounting

Originally the only supported resource was the CPU-time which was changed in
this work by introducing a generic resource structure to which new resources may
be attached simply. The used resources are CPU- and energy usage.

The during activity used resources are accounted to the thereby active process
respectively its resource container. Idle times and energy used during that time is
not accounted.

CPU accounting is done by periodically sampling the running process. In this
case sampling is done every timer-interrupt. If the resource container is changed,
the sampling function has to be called before and after the switch to update the
values of both containers. Sampling means that the time stamp counter (TSC) is
read and the difference to the last update is calculated. This difference is the CPU
usage of the currently active process in the last timeslice. The TSC is a monotoni-
cally increasing counter.



8 Chapter 2. Related Work and Background

Energy accounting is accounting the energy a process needs during activity.
This is done by using a method introduced in a ’Studienarbeit’ by Simon Kell-
ner [Kel03]. He uses a linear combination of performance counters. These count
several events that are generated while executing code and allow to obtain infor-
mation about how the code is executed to estimate the power consumption of the
CPU.
For estimation the change of the counters in the last interval is multiplied with
configurable weights and then summed up. The result is the consumed energy
which is then accounted to the RC.

2.2.2 Limiting

For limiting the time is split in epochs. These epochs are called timeslices. Within
each timeslice the RC and therefore the process, has a given amount of resources
that it may consume. This limit is configurable. To reduce peaks in usage very
short timeslices can be used. To set coarse limits long timeslices can be used. For
fine grained limitation short timeslices are used. For this reason it is possible to
use more timeslices concurrently.

Each resource needs separate limits and accounting information stored in the
RCs because on the one hand the limits may differ from application to application
and on the other hand it is not possible to set one limit for all resources.

If more resources than allowed are consumed within a timeslice the processes
are temporarily stopped. This is done by setting the state of the process to
TASK_UNINTERRUPTIBLE. When they are allowed to run again the state is set
to TASK_RUNNING. This is similar to waiting for hardware to complete a task.

To determine if the resources of a RC are depleted, the resource usage of the
timeslice and the set limit are compared if the usage is higher than the limit the
resource container is marked as out of resources. This check has to be done for
every available resource container that consumed resources since the last check.
To assure that the limits are held, checking if the RC is depleted has to be done
frequently.

2.2.3 Refreshing

At the beginning of each timeslice the limits are calculated. This is done using
maxnew = min(maxold,usage)+ limit, where maxnew is the limit, maxold the old limit,
usage the actual usage of the last period and limit the amount of resources that
may be consumed per epoch. Because an over-consumption in the last timeslice
has to be considered min(maxold,usage) instead of usage is used. This guarantees
that bursts in the usage are limited correctly. If the process used to many resources
in one timeslice it has less or even none resources left in the next timeslices.



2.3. Further work about accounting and limiting 9

2.3 Further work about accounting and limiting

In this section further work is presented that deals with accounting and limiting
energy.

2.3.1 ECOSystem

Heng Zeng et al. developed a system called ECOSystem that is using a currentcy model
for managing energy as a first class operating system resource [ZFE+02, ZELV02].

The subjects of this development were unified energy accounting over different
hardware components, fair allocation of available energy among applications and
extending battery lifetime by limiting the average discharge rate

ECOSystem is a modified Linux that incorporates the currentcy3 model. For
accounting the resources (energy, disk, CPU) the resource containers from Banga
were modified.

On contrary to Banga or Waitz applications do not get a certain amount of en-
ergy per time interval for each resource but they get a certain amount of Currentcy
that they may consume.

The applications have to pay for resource usage, whereas the price for each re-
source is variable. The price reflects the power management mode of the resource.
To switch the mode a certain amount of Currentcy has to be payed. If there is
not enough Currencty for changing the mode, the application must not use the
resource.

The amount of Currentcy is determined at the beginning of each time interval
and reflects the total energy usage (discharge rate) that is desired within that in-
terval. Limiting the usage is done by not distributing 100 % of the Currentcy that
is needed to drive a fully active system.

The energy of not considered devices and the base energy (energy consumed
in the low-power modes of the managed devices) is separately accounted to the
processes . This energy cannot be limited and on top of it it reduces the opportu-
nity of improvements.

Since this work is based on the RCs by Banga, server-client-relations are not
observed, and that is why it is possible that resource usage is accounted to the
wrong processes, resulting in delays because server processes run out of Currentcy
earlier than normal processes which then have to wait until the server receives
new Currentcy.

Like in the other papers, only the energy usage of the processes is accounted
while idle energy is ignored. And although the power management modes of the

3Currentcy is a coined term, combining the concepts of current (i. e. amps) and currency (i. e.
$)



10 Chapter 2. Related Work and Background

devices are recognized for accounting, they are not taken into consideration for
limiting.

2.3.2 Nemesis

In [NM01] it is shown that with an appropriate operating system structure, energy
may be managed as just another resource.

It is investigated how energy management could be implemented into Neme-
sisOS which was designed to provide detailed and accurate resource accounting
capabilities and QoS to applications, and how a decentralized resource manage-
ment architecture can be used to manage energy consumption.

Limits have to be set by the user, who defines all goals that have to be fulfilled.
Goals are for example a defined battery runtime, maximum discharge rate. The
user has no options to assign different priorities to the goals, for example the run-
time has to be obtained in every case, while it should be tried to reach another
goal.

Other than before, the applications running on this OS know how much re-
sources they consume. The operating system defines charges for the different re-
sources (higher if more resource contention) which are announced to the applica-
tions. By limiting the amount of credits available the resources are encouraged to
adapt themselves to the current resource situation (decentralized resource man-
agement). This adaption means not to access resources that are heavily used or
consuming a lot of energy, while only little energy is available.

If an application does not support this adaption, the user has to intervene and
define rules how the application should be treated if it should run unlimited, or if
it should be stopped until enough resources are available.

The problem with anonymous resource usage has also been taken care of. De-
vice drivers are implemented as privileged user-level processes which register in-
terrupt handlers with the system. The driver only performs the single demulti-
plexing function for the hardware device. All other functionality is performed at
the user level using shared libraries.

Thus the resources are used directly by the application and not by the kernel.



2.3. Further work about accounting and limiting 11

Taking advantage of the different power management modes of the devices
is not provided by the OS. The applications could be modified to use the modes
themselves which leads to high development costs, since each application has to
be changed if new hardware is used.

Also it is not possible to determine, how much energy may be saved when
limiting a resource, except the applications themselves know it.

Porting the resource management and accounting system to Linux would lead
to a implementation similar to the resource containers, since the drivers are struc-
tured completely different. Also one of the prerequisites of this work was that no
modifications to the applications are needed.



12 Chapter 2. Related Work and Background



Chapter 3

Gaining Control over the energy usage

To be able to control the energy usage of a given system the usage of each compo-
nent in each possible state has to be known.

First of all every component consuming energy has to be identified and the
possibilities for saving energy have to be evaluated. This will be done while not
disregarding side effect that occur because of limiting components (For example
performance loss, or decreased speed).

Thereafter it is shown how, when and to whom used resources should be ac-
counted.

Finally it is discussed which data needs to be stored, how long and where it
needs to be stored respectively who stores it.

3.1 Resource Classification

In this section the different resources of the Robertino are introduced.
But first of all a brief definition of resource is given to understand, why the

resources are chosen as they are.
Commonly resources are defined as the contrivances that may be used by a pro-

cess during execution. Resources are CPU-time, energy usage, disk usage. His
perspective was looking from the process layer to the devices providing the re-
sources. Energy was modeled as an own resource, and all energy spent for the
process1 was accounted to this resource. Limiting is simply done by not schedul-
ing the process.

This work uses another approach. Gaining full control over the energy usage
implies knowledge about which device is using how much energy and therefore
using one resource for accounting the all energy is not applicable. For this reason

1Although a resource container may have several processes attached here it is assumed that
every process has its own resource container. For this reason ’resource container’ and ’process’ are
used interchangeably.

13



14 Chapter 3. Gaining Control over the energy usage

another definition of resources is used in this work. Resources are the devices2

that consume energy, and that provide the contrivances for operation. The energy
a process uses, is accounted to the originating resource in the resource container
(RC) of the process. The figures 3.1 and 3.2 show the connections of the resources.
Details about how the implementation changed compared to the original resource
containers are shown in chapter 4 Implementation.

Process

CPU Disk
...

Energy

Figure 3.1: Resource definition according to M. Waitz

System

CPU

Energy Usage

Disk

Energy Usage

WLAN

Energy Usage

Camera

Energy Usage

... Motors

Energy Usage

Figure 3.2: Current resource definition

3.1.1 CPU

The unquestionable most important resource of a PC is the CPU. No process may
run without using the CPU.

For this reason the CPU may be used to limit the energy usage of the whole
system, whereas limiting other resources has only impact on the energy usage of
the limited resource.

2More specifically the device classes but at the moment it is assumed that only one device for
a device class is attached (e. g. one hard disk). Supporting more than one device per device class
may be done by introducing more resources (e. g. disk0, disk1, etc.) or by enhancing the resource
structure to support more devices per resource.



3.1. Resource Classification 15

The CPU used for Robertino is an old Pentium III mobile which does not sup-
port any power management modes (except idle-state, when the CPU is just do-
ing nothing). Modern CPUs (like newer Intel Pentium/Centrino M 3 or Mobile
AMD Athlon/Sempron4) support different power management strategies such as
dynamic frequency scaling (the frequency is reduced during periods of sparse ac-
tivity) or dynamic voltage scaling (the voltage is reduced during such periods).

3.1.2 Hard disk

Another resource using a lot of energy is the hard disk. A peculiarity of the disk is
that the firmware has its own power management algorithm built in which yields
in some unpredictability of the energy usage. But this power management can
often be disabled and ’manually’ set from the computer.

The disc supports different power management modes (shown in Table 3.1)
but it may only be accessed if it is in the active mode.

Mode Description
active The disk is spinning at full speed and instantly accessible
idle The heads are moved into parking position. Everything else is active.

standby The mechanics of the disk are powered off.
sleep Additionally to the mechanics the electronic for request handling is

turned off. The device has to be reset in order to leave this state.

Table 3.1: Power management modes of the disk

3.1.3 Network - especially WLAN

Though Robertino is equipped with both 10/100 Mbit ethernet controller and IEEE
802.11 b WLAN this work focuses on accounting the energy usage of WLAN be-
cause during normal work the robot will communicate over WLAN and not trail
a cable for communication.

The energy characteristics of WLAN are different from other resources: The
difference between idle-energy and active-energy is very small and since the WLAN-
interface is idle most of the time, most energy is not used during activity (sending
and receiving) but during idle-times. To be able to reduce the idle energy usage
the IEEE 802.11 standard[Com99] defines two power management modes.

These are the Active Mode (AM, or CAM (for continuously-aware mode)), in
which the interface is always awake and ready for transmitting and receiving

3http://www.intel.com
4http://www.amd.com

http://www.intel.com
http://www.amd.com


16 Chapter 3. Gaining Control over the energy usage

Figure 3.3: Reception of packets for wireless network interfaces working in Power
Save mode, from [Com99]

packets and the Power Save (PS or PSM (for power saving mode)) mode in which
the device is dozing and not able to receive packets. The data sent to a device in
PS has to be stored by the access point. The WLAN device is periodically waking
up and checking if there are packets waiting at the access point. In this case the
packets are received and the device goes back to doze again afterwards. If there
are no packets the device enters doze instantly. The interval the device is dozing is
called beacon period. The longer this period is, the more energy may be saved but
the longer is the latency, the time a packet needs to be transmitted, because it has
to wait until the device wakes up again. This may lead to a couple of problems, for
example if there are streaming applications running it may come to slow downs
because the buffers run empty. Or, again, deadlines won’t be met which may yield
in retransmissions and though higher energy usage, or even failure of the appli-
cation because the data cannot be transmitted in time. If the interval is too short,
more energy may be needed than staying awake all the time, because after each
wake-up a so called traffic indication map (TIM) has to be sent which informs the
device about buffered packets and also energy is used to re-sync the device. An
example of two wireless network interfaces in PSM using different beacon periods
and their access point is shown in Figure 3.3.

3.1.4 Camera

The firewire camera is an important device for determining the position and for
detecting obstacles. Thus on Robertino it will be used often and consume energy
which has to be accounted.



3.1. Resource Classification 17

The camera supports different image resolutions and different framerates.
Higher resolution means higher image quality but also more data that needs to be
processed which needs more energy. Higher framerate means that more images
per second are taken. This leads to increased energy usage, too.

3.1.5 Motors and sensors

Two other resources that have not been researched yet are the motors and the sen-
sors. Robertino is equipped with three identical motors. Each motor is managed
by a microcontroller which also manages two distance sensors.

The sensors always use an almost constant amount of energy, as does the mi-
crocontroller5.

When talking of the motor in future, the combination of motor, two sensors
and a microcontroller is meant.

Because of the arrangement of the motors most of the time it is necessary to
use all three motors when driving into one direction. All motors are accounted to
one resource, and therefore also have a combined limit. Accounting and especially
limiting the motors separately could lead to bogus movement if not all limits are
equal and there is no advantage in accounting the motors separately.

Another thing that has to be considered is that the motors are attached via
CAN-bus which has only a limited bandwidth. Since the microcontrollers stop
the motors if after about 100ms no message was received, the software at the PC
has to send the control commands continuously which leads to a constantly high
traffic on the CAN-bus (because this is necessary for every motor). It has to be
assured that the normal traffic on the bus is not affected, while accounting and
limiting messages should always be possible and preferably not delayed.

3.1.6 Battery - A Special Resource

A resource that must not be forgotten is the battery. It is not consuming energy
but it is providing the needed energy for the whole system. It is important to
account the remaining energy and build a history to be able to calculate the re-
maining runtime of the system. Most modern laptops use smart batteries which
provide detailed information about remaining capacity, actual voltage and drain
rate [FD98]. With this data it is possible to calculate the energy that may be used
per time to reach the desired targets.

5The energy usage of the sensors varies a bit, reflecting the measured distance. The energy used
by the microcontroller is almost constant, because the software is not using interrupts and for this
reason cannot benefit from the different power management modes the controller supports. The
energy for both parts is assumed to be constant (an average is used), because the variations are
negligible compared to the variations when using the motor.



18 Chapter 3. Gaining Control over the energy usage

On Robertino unfortunately no smart battery is available. The only possibility
to get information about the battery are the ADCs (Analog-to-Digital Converter)
of the microcontrollers. One of them can be used to measure the current voltage
of the batteries. This voltage represents the capacity of the batteries, once it falls
below a certain threshold, the battery is depleted.

3.1.7 Other possible resources

There is still some energy that is not accounted, and there are also some devices
that are used by processes but until now not mapped to resources.

One large source of energy consumption that has not been discussed is dissipa-
tion loss. Because no device has a efficiency of 100 %, energy is lost (more precisely
transformed into heat). The power supply for example has a maximum efficiency
of 95 % ([TM03]).

To account this energy correctly, it has to be split according to the energy usage
of the resources and the shares have to be accounted to the processes using these
resources which is an expensive calculation that yields no advantage.

For other devices it is simply impossible (or only with very high effort) to de-
termine the energy usage, or the energy usage of a device must not be accounted
to one single resource.

The devices that may be accounted to separate resources are:

• The RAM and mainboard are accounted together with the CPU. This is be-
cause the costs of measuring the CPU and the other components separately
are very high, and the RAM cannot be limited.

• The energy consumed by the firewire controller should not be accounted to
the resource camera, although it is currently the only device attached to this
bus. It is possible that other devices are attached and then the accounting
has to be changed. If the camera is removed, the accounting to this resource
is not possible and the energy use would not be accounted.

• For the CAN controller at the PC applies the same. The device cannot be
switched off, or in any other way limited.



3.2. Accounting 19

3.2 Accounting

While in [Wai03] a separate resource for energy accounting was used now the
device-usage and energy-usage are accounted to one resource. Doing this allows
to distinguish the energy needs of the different resources which only can be done
when the energy usage of the device is exactly known.

The values that have to be accounted can be split into two groups: Usage and
energy. While accounting usage is quite simple accounting energy is more com-
plex. The energy that has to be accounted consists of three different classes: idle-
energy, transition-energy and active-energy.

Accounting

Usage Energy

idle transition active

Figure 3.4: Accounting

Idle-energy is the energy that is used if the device is doing nothing. If there
are different power management states there is a different idle-energy for each
state. The idle-energy may also be 0 if no energy is consumed (if for example it is
possible to switch the device on/off using software).

A novelty is the accounting of the different states a resource may be in. These
states represent the different power management modes of the device. When a
device is put into another mode (for example from active to sleep) the state of the
resource is changed and all henceforth used energy is accounted to the new state
until the device switches the mode again. Switching from one power management
mode to another uses transition-energy. If no energy is used its value is 0. An
example for transition-energy is the energy needed to spin up the motors of a hard
disk when it switches from standby to active. This energy has to be accounted
when changing the state.

The energy used during device accesses is the active-energy. There can be dif-
ferent values for the different types of usage, for example read and write. Ac-
counting active-energy can be done together with accounting usage. Often the
active-energy is directly calculated with the usage (usage∗ energy_per_usage).



20 Chapter 3. Gaining Control over the energy usage

It has to be observed that active-energy may not only be accounted in the state
active but in every state the device may be accessed. Figure 3.5 shows the idle and
active energy usage in the different power management modes of a device.

Sl
ee

p

St
an

dby
Id

le

Low
Pow

er

A
ct

iv
e

active (write) energy

active (read) energy

idle energy
E

n
er

g
y

Figure 3.5: Composition of the total energy usage of a device

The idle energy has to be accounted periodically and additionally the transition-
energy and the active-energy have to be accounted whenever they occur. This
poses the problem that the idle energy must not be accounted, when the device is
active or changing states. To enforce this there are three options.

The first option is not to account idle-energy when the device is active or
changing states. This is problematic since every time the idle-energy should be
accounted it has to be checked if the device is idle which produces a lot of over-
head.

The other two options take advantage of the fact that active-energy6 is higher
than the idle-energy. For this reason the idle-energy can be accounted no mat-
ter what the device is doing (of course it has to be adapted if the state changed).
When the device is active the difference of the active-energy and the idle-energy
has to be accounted. This difference may be determined using two different meth-
ods. The first method is that the active-energy is calculated using the equation
usage∗energy_per_usage and then the idle-energy for the time the activity lasted is
subtracted. This has the advantage that the active-energy needs not to be saved for
every state in which the device may be used but only once. The disadvantages are

6transition-energy is handled equivalently. For this reason only active-energy is discussed here



3.2. Accounting 21

that the calculation has to be performed whenever the device is accessed, and the
length of the usage has to be known which is in most cases a problem to determine
since the devices often have own buffers, or the drivers optimize the accesses at a
level where it is no longer known who induced the access.

Another possibility is to calculate the differences offline and to save them to-
gether with the other values. This needs more memory, because for every state in
which the device may be accessed the values have to be saved. The advantage of
this method is that the energy per access (without idle-energy) can be calculated
very exactly, because the length of the access, the used energy and the idle-energy
per time are known. Another advantage is that the calculations are done offline
and for that, no additional calculations to determine the energy during accounting
are needed which saves energy and time.

Regardless of how the energy is accounted, it has to be decided where to ac-
count the used energy.

3.2.1 Accounting activity

The device usage and active-energy are accounted to the resource container that
uses the resource. This is normally (synchronous access) the current RC. When
accesses are done asynchronous the RC that initiated the access has to be charged
with the usage and energy.

The energy used for the activity can be calculated by multiplying the resource
usage (e. g. written bytes) with a factor (e. g. µJ/ byte) that has to be determined
for each activity that a resource may perform first.

3.2.2 Accounting state changes

Accounting transition-energy is not as simple as accounting activity, since often
more than one process benefits from the change.

Accounting to the resource container that caused the state change

Simply accounting to the RC that caused the change is the solution that uses the
least resources itself (CPU-time and energy) but it is also the unfairest solution
because if more processes are running, and all want to use the resource, it is coin-
cidental which one is first. If the whole energy for the state change is accounted
to this process, the other processes which may be using the resource immediately
after the first are the winners, because no transition energy is accounted to them
although they benefit from the state change.



22 Chapter 3. Gaining Control over the energy usage

Accounting to all the resource containers that use the resource in a certain time
period after state change

This may be avoided if the transition energy is accounted to all processes that use
the resource in a certain period after the state is changed (for example 30 sec). If
only one process is using the resource, all energy is accounted to it. The problem
thereby is that it is not known how many processes and which processes use the
resource during this period. Because of that the accounting has to be delayed until
the period passed, or the energy is redistributed every time a new process uses the
resource.

Delaying the accounting causes problems if a process terminates before the
period ends, because then its share has to be accounted to another RC (for example
the parent RC, or it is accounted to the other RCs that used the resource).
Another problem is that if the accounting is delayed, limiting the usage may be
inaccurate during that period, because the processes have more energy left than
they may consume, and then, after accounting, because they used more than they
were allotted, they are suddenly delayed for a long time until they have enough
resources to run again. This may lead to bursts in resource usage and to long idle
periods.

Redistributing the energy during the period causes computational overhead
and also has impacts on the limiting.
If redistribution should be avoided, it is possible to split the transition energy
in shares, and account one share per time to the processes. The apportionment
is recalculated every time splitting the share in as many parts as processes have
been using the device until now (since the state changed) and account one part
to each process. This also solves the problem if a process terminates and its RC
is no longer existent, because then the energy may be shared amongst the other
processes.

Accounting to a separate resource

If the computational overhead of the last method should be prevented, and if it is
not important that the transition energy is accounted to each process as accurate
as possible but the global accounting should be accurate, it is possible to account
it to a separate resource container.

Deciding which method should be used depends on the transition energy it-
self. If it is only a very small value, it is probably better to account to the separate
resource, because calculating the distribution may use more energy than the tran-
sition energy originally was. If, however, the states are changed infrequently and
the energy usage is high, it may be worthwhile to distribute the energy because
eventually the policies that limit access to the resources may need this information.



3.2. Accounting 23

Accounting state changes into a better power management mode

Another problem is the transition energy if the resource switches back to the pre-
vious state, or if it switches from active mode into a low-power mode (e. g. sleep).
This energy has to be accounted before it is used, because if the state is changed,
no processes are using the resource. The best solution is, to sum up the transi-
tion energies that are needed to switch to the state that uses more energy and to
switch back again and account this energy with one of the beforehand introduced
methods.

It has to be observed that the energy is accounted in the state that has the higher
energy usage, because this is the one into which is only switched if the resource
is used. Summing the transition energies up in sleep mode (switching from active
to sleep-mode and back) yields nothing, because there are no active processes the
energy may be accounted to, whereas doing it vice versa (sleep-active and active-
sleep) allows to account the energy to processes.



24 Chapter 3. Gaining Control over the energy usage

3.2.3 Accounting idle-energy

Idle-energy represents a large part of the overall used energy but accounting it is
not as easy as accounting transition-energy or active-energy.

The idle-energy is not finite like the transition-energy and accounting it is prob-
lematic, because there may be no RCs available. This is the case if no processes
run, or if no processes used the resource, or all processes that used the resource
terminated.

Below some more or less fair methods of accounting idle energy are shown.
Accounting the idle-energy to any RC that is available is no solution, because then
limiting is not possible.

Account to the resource container that used the resource at last

This approach is quite simple: If a process uses a resource this is saved and when
the resource is idle the idle energy is accounted to the process that used the re-
source last.

The first problem of this approach is that if the resource has not been used at all
the idle energy cannot be accounted to a resource container. This may be solved by
using a special resource container as fallback which will be used, when no other
RC is available.

A similar problem occurs if the process terminates to which the idle energy
is accounted and for this reason the resource container no longer exists. But in-
stead of using the fallback-RC here it is possible to use the parent RC (which poses
problems if the resource container has more than one parent).

Besides this approach is not fair, because if a process uses the resource for a
long time and then directly afterwards another one uses the resource very short
no idle energy is accounted to the first process but everything would be accounted
to the second one.

Account to every resource container that used the resource

To avoid the problem that all idle energy is accounted to one resource container
although other processes have also accessed the resource, the idle energy is split
and accounted to all resource containers that accessed the device. Splitting the
energy may be done using different methods. The most important are described
later in this section.

First a look is taken at how long the idle energy should be accounted to a process
that used the resource once.

One possibility is that if a process used the resource, idle energy (whereas idle
energy is here not the complete idle energy but the share that is determined by
the later on described methods) is accounted to it, until it terminates. Accounting



3.2. Accounting 25

continuously poses problems, because calculating the shares will get more and
more complex over time, when more processes have been using the resource. Also
it may become inaccurate because of rounding differences due to many divisions
and small numbers.

Another possibility is that the idle energy is only accounted to the process for
a certain time after it used the resource the last time. This will assure, assumed a
well chosen interval, that the idle energy is accounted to only few processes. Also
a process using the resource only once for a short time is not charged forever. A
problem of this approach is that after some idle time, there is no process left, to
which the idle energy may be accounted to which leads to the need of accounting
the idle energy to a special resource.

The other question is, how the complete idle energy should be shared among the
processes. The arguable simplest approach is to equally share the energy between
all processes (processes are the processes the idle energy has to be accounted to
as selected by the beforehand described methods). Although very simple, this is
not fair, because it does not incorporate the time the processes have been active.
A process that used the resource for just a very short time is treated equally as a
process that used the resource for a long time, or repeatedly uses the resource. This
may be improved by introducing weights which are used to compute the shares
that are accounted to the processes.

The weights can be determined using the time since the last use of the resource
of a process. The longer it has been, the smaller is the weight, i. e. the smaller
is the share of idle energy that is accounted to the process. If a process uses the
resource again, the weight is set to the maximum and then decreasing again over
time. The advantage of this method is that to processes which have not used the
resource for some time only a small share of the idle energy is accounted, whereas
the most is accounted to recently active processes. However this method does not
reflect the device-usage of the processes. To a process that uses the resource for
the first time the same amount of energy is accounted as to a process that uses the
resource regularly and for a long time.

This can be avoided by not using the idle-time but the active-time to compute
the weights. The longer a process has been using the resource the higher is the
weight and the more idle energy is accounted to the process. Though it is the most
expensive method, because the active-time of each process has to be saved for each
available resource, and a lot of computation has to be done to get the shares that
are accounted to the processes, the fairest accounting of idle energy is achieved.

A further issue to be considered is the time period over which the weights
should be calculated. It is possible to recalculate the weights using all data since
the system started which means that it is likely that accounted energy has to be
redistributed.
For example if one process used the resource all idle energy is accounted to it.
Then after some time a second process uses the resource which means that half



26 Chapter 3. Gaining Control over the energy usage

of idle energy since the system start has to be accounted to the first and the other
half to the second process. As however the idle energy has been accounted to
the first process, it now has to be subtracted and added to the second process.
This has to be done for each process that uses the resource which leads to a very
high overhead while accounting (values for idle-/active-time have to be saved
and the weights, how the energy has been distributed until now). There is another
problem: limiting is no longer possible, because it may happen that a process
suddenly ’loses’ a lot of accounted energy which it can use again, whereas another
process that gets this energy accounted, exceeds the set limits and is not allowed
to run for a long time, until the limits are met again.

Another problem occurs when a process terminates. It is no longer possible to
account to this process and the weights must be reconfigured. The energy must not
be subtracted from this process and added to the others but new weights would
exactly do that. A solution would be to begin a new time period, where the ac-
counted energy until now is fixed and only the new energy is distributed.

This will be quite similar to calculating the weights from the moment the re-
source is idle again. With this method idle-energy is accounted and not redis-
tributed. The weights are calculated after the resource is idle again, and then
it is constant (or may decrease, depending on the method used but the propor-
tions stay constant) until the resource is used again which then leads to a re-
computation of the weights.

Using this method, the idle- or active-times of the processes have to be saved
for each resource also but no other additional data has to be saved, because dis-
tributed energy cannot be redistributed. This leads to a reliable limiting, because it
does not have to be considered that large amounts of energy are transferred from
one process to another.

For both methods there is yet another problem: If no one was using the re-
source or if all processes the idle energy is accounted to have terminated the idle
energy cannot be accounted to a process. To not lose this energy amount, it may
be accounted to a special resource container. This also applies if there are no pro-
cesses left to account the idle energy to, for example because to much time has
passed and the resource has not been used again, or if not the complete idle-energy
is distributed amongst the RCs.

3.2.3.1 Account to a separate resource

If it is not important, to accurately share the idle energy7 but to account the total
used energy accurately a simple solution may be used: The complete idle-energy
is accounted to a special resource container.

Actually there is an advantage using a separate resource for accounting the idle
energy: The other resources only show the real usage of the device which may be

7Which is the case in this work, since limiting the idle-energy is hardly possible



3.2. Accounting 27

used to calculate accurate limits and to perform better estimations, because the
values are not tainted with the idle energy.

Another advantage of this method is that a lot of time and energy is saved,
because no complex calculations need to be performed in order to find out how
much energy is charged to what RC.

3.2.4 Accounting the resources

3.2.4.1 CPU

The power consumption of the CPU can be determined by counting how long
it stays in the different states (active, idle, halt, ...). More detailed information
can be obtained analyzing which code is executed or by reading the performance
counters. They count events inside the processor and can be used to determine
how much energy was used because it is possible to draw conclusion from the
counters to the activity of the different parts of the processor. The runtime of a
process may be calculated using the time stamp counter (TSC) which has a higher
resolution than the normal timer (which has only 100 or 1000 ticks per second
depending on the architecture and the kernel version).

Finally, to get a correct global energy usage, the idle consumption of the CPU
has to be accounted. This is done by counting the idle time of the CPU and mul-
tiplying this time with a weight. Using the performance counter is not possible
because during idle periods no events are counted.

3.2.4.2 Hard disk

Accounting the hard disk is possible by counting the number of read and write
accesses and accounting the time the hard disk was in the various idle-modes.
Accounting the transitions between the states is important, since a lot of energy is
used for it.

3.2.4.3 WLAN

Accounting WLAN is done similarly to the way of accounting the disk. The bytes
sent and received are counted. Additionally it is important to accurately account
the idle times since the device is normally idle for most of the time and a lot of
energy is used during that period.

3.2.4.4 Camera

Accounting the camera can be done by counting the number of pictures taken.
Accounting the used energy is done by multiplying this number with the energy
that is needed for taking one picture.



28 Chapter 3. Gaining Control over the energy usage

3.2.4.5 Motors and sensors

Robertino is equipped with three identical motors which will be accounted to one
resource. There are different possibilities for accounting since not only the PC is
involved but also the microcontrollers to which the accounting may be sourced
out.

Accounting directly at the PC: This has the advantage that there is no additional
traffic on the CAN-bus and accounting can be done as often as needed. But there
are also problems using this method: The speed has to be extracted out of the
packages that are sent over the CAN-bus. This delays the messages and may lead
to problems if the robot has to react quickly, for example to evade an obstacle. The
next difficulty is that the speed of the motor does not represent the used energy.
This is because energy depends also on the underground the robot is driving on.
This may be the same underground for all motors but it may be different for each
motor, or at least two of the motors. This may happen if the robot drives along
the transition of two different undergrounds. The frictional resistance of these un-
dergrounds is different and for that reason the motors need a variable amount of
energy. The needed adaption of the speed is done automatically by the micro-
controllers. These are also limiting the maximum speed of the motors to not risk
damage of too high current.

For these reasons the accounting at the PC using only the speed of the motors
is only a rough estimate. It is not countervailed by accounting the data as often as
needed.

Accounting at the microcontrollers and then sending the data to the PC: In
this case all needed information is available and the used energy can be accounted
exactly. The accounted data may be summed up for some time (e. g. 100ms)
and then send to the PC where it is added to the resource. Collecting the data
and sending it after some time is done to reduce the traffic on the CAN-bus. A
drawback of this method is that the accounted energy is always behind the actual
energy used.

3.2.4.6 Battery - a unique resource

Accounting the battery is very important, because without accurate battery-data
no valid estimation of the runtime can be made.

Since on Robertino no SMBattery is available one of the ADCs of a microcon-
troller is used to measure the current voltage. Measuring the remaining capacity
is not possible without discharging the battery due to the measurement. This is
because for a short time the maximal current has to flow which then may be mea-
sured using a current-to-voltage converter attached to the ADC.



3.2. Accounting 29

A simpler method is to measure the voltage and to determine the runtime from
it. This is possible because the voltage drops when the battery is discharged8.

The remaining runtime of the robot can be estimated with two different meth-
ods:

• Comparing the current value with a representative discharge curve.
This is quite accurate if the discharge curve has no parts where it is parallel
to the x-axis. Unfortunately these curves do not exist but have to be deter-
mined. The next problem is that there is not only one curve but there are
many for the different discharge currents. This complicates the runtime esti-
mation, because the current drain of the robot is not constant and therefore
there would be a couple of points where the current voltage fits the reference
curves which results in inaccurate runtime.

• Estimating the remaining runtime. This may be done in different ways:

Simple extrapolation v1: The easiest solution is to divide the remaining volt-
age (Vremaining) by the voltage drop of the previous (Vprev) and the current
interval (Vcurr)9 and multiply the result with the length of the interval .
This is shown in Equation 3.1, where RT is the remaining runtime, Vcrit is
the critical voltage, where the robot cannot operate anymore and Tinterval
the length of an interval.

RT =
Vcurr−Vcrit

Vprev−Vcurr
∗Tinterval (3.1)

A big problem of this extrapolation is that if the voltage of the last and
the current interval are the same, the runtime is undefined.
This problem may be avoided using a longer interval. But then the
estimation is less precise as with a shorter interval. On the other hand
a longer interval is better, because prior to dropping to a lower value
the voltage is oscillating between the current and the lower voltage for
some time which is smoothed in a longer interval, whereas with shorter
intervals it is possible that one is the low and the next is the high voltage
again.
With these problems in mind, the method has been extended to:

8There are of course more sophisticated methods to get the remaining capacity but this one is
quite simple and sufficient for this work. Using another method is possible by adapting the code
of the resource battery (see subsection 4.2.4.

9During one interval (e. g. 1 sec) the voltage is measured periodically (e. g. every 100ms) and
then an average for this interval is calculated.



30 Chapter 3. Gaining Control over the energy usage

Simple extrapolation v2: Instead of always using the last interval the first
interval which has a higher voltage than the current one is used (search
direction is from the last interval to the first interval measured). If no
matching interval is found the runtime cannot be determined.
This solves the problem that occurred if the last interval had the same
voltage as the current. The oscillating problem still exists but it is eased,
as the last higher value is used. At worst the runtime is determined
shorter that it is in fact which will be corrected withing the next few
intervals but a runtime can be calculated every time.

Weighted simple extrapolation: To avoid huge fluctuations of the remain-
ing runtime also older estimates may be used. A problem may be that if
the runtime has changed a lot because new limitations are set or older
ones were canceled, this will not be noticed immediately but only after
some intervals.
A simple way of calculation is e. g. (Vx is the voltage before x intervals;
Vcurr = V0):

RT =
V0−Vcrit

(V3−V2)∗1+(V2−V1)∗2+(V1−V0)∗3
6

∗Tinterval (3.2)

Sophisticated extrapolation: A completely different approach is also possi-
ble.
Instead of using constant timeslices and observing the voltage drop the
time (Perioddrop) is measured that passed until the voltage has dropped
by a certain value.
With this time it may be calculated how long the energy may last:

RT =
(

Vcurr−Vcrit

Vdrop
∗Perioddrop

)
−Periodcurr (3.3)

Here Periodcurr is the time that has passed since the start of the current
period.
The problem of voltage fluctuation does also exist therefore a smooth-
ing should be used to obtain more stable values. The advantage of this
method is the need of less storage than with the previous method for a
new interval is not started until the defined change in voltage occurred.
Hence there do not exist empty intervals. This simplifies the calculation
because intervals without a voltage change do not have to be consid-
ered.

The voltage loss may not only be used to calculate the remaining runtime but
also to trigger events (e. g. change limits) if the voltage drops below a threshold.



3.2. Accounting 31

3.2.4.7 Global overhead

Accounting the in subsection 3.1.7 mentioned energy consumption to the special
resource global overhead is required to cover all used energy, and concurrently be
able to account the usage of the other resources as detailed as possible to be able
to limit them correctly. Although this energy cannot be reduced, accounting it is
required since the information may be necessary for example for thermal manage-
ment. Limiting is also possible if the herein accounted energy is accounted to the
other resources in a fair way which is only possible with high complexity which is
again using time and energy.

The simplest possible solution is to introduce a resource that is located beyond
the resource container hierarchy (and exists only once) where this amount of en-
ergy is accounted to.

This resource is for accounting only and the total energy usage that cannot be
accounted to other resources for any reason is stored here which simplifies the
accounting a lot without posing any downsides.



32 Chapter 3. Gaining Control over the energy usage

3.3 Limiting

This section analyses if resources may be limited and which side effects may occur.
Refreshing the consumed resources is done as described in subsection 2.2.3.

3.3.1 Limiting basics

Limiting is possible using two different methods. The common method is to
not schedule the process anymore if one resource is depleted. The disadvantage
hereby is that the process must not run anymore until it has enough resources
gained to run again.

The second method is to limit the energy usage of devices by utilizing the dif-
ferent power management modes of the device. Doing this allows the processes
to continue using the resource but with a reduced performance (speed, quality,
response) while the energy usage is lower, too. Of course, if a process runs out of
resources it still has to be stopped but it may run for a longer period of time since
its resources do not drain as fast as with an unthrottled device since this is now
using less energy. This may necessarily lead to a longer runtime of the process but
since the process may not use the full capacity of the resource it may not notice the
throttling.

3.3.2 CPU

Limiting CPU-usage and hence the energy-usage may be done by not allowing the
process to run. So it does not need resources and the CPU uses less energy.

Problems like exceeding deadlines and therefore needing extra energy due to
recalculations may always happen when limiting. For this reason one has to act
with caution when using this system on real-time systems.

Additionally, to be able to calculate the total energy usage, the idle consump-
tion of the CPU has to be accounted. Since the CPU used in this work does not
support any power management the energy consumption during idle periods is
constant and cannot be reduced.

3.3.3 Hard disk

Limiting the disk is not as simple as limiting CPU because restricting the access
could result in data loss.

Read accesses may be delayed by halting the process until enough resources
are available because it will wait until the access is completed. A problem is that
the process probably may never gain enough resources to complete the read re-
quest and for this it will never run again, or it needs a long time until it gets the
resources and for that reason it may miss deadlines, needed for successful work
of the robot.



3.3. Limiting 33

Write accesses are normally done asynchronously. That means the process
writes the data into a buffer and after some time the data is written to disk by
another process. Delaying this write will yield nothing, because the process that
issued the write is no longer involved and will not be detained from issuing more
write accesses. Only the process writing the buffers to disk would be delayed
which is critical, because other write accesses could have enough resources left
and they would be delayed too when they are queued after the one that is out of
resources. Another possibility is to cancel such an access which is not an opportu-
nity, because this leads to data loss. Rearranging the accesses, so the one that has
not enough resources will be processed later and the others are preferred, is pos-
sible but then a lot of memory may be used if a process has not enough resources
to write but schedules a lot of writes before it is stopped. The computational over-
head (time and energy) for resorting the accesses is also very high which renders
this option useless.

Therefore writing always should be possible, no matter if there are enough re-
sources left. If, after writing, the resources are depleted, the process will not be
scheduled until there are enough resources again. So the process just gets a credit,
and over a longer period of time the energy-usage of the complete system will be
within set limits although there probably will be peaks overshooting the limits.

Limiting energy usage by changing the state is only possible for the idle en-
ergy. As shown in subsection 3.1.2 there is only one state where the disk may be
accessed. To reduce the idle energy the disk may be put into standby mode but
it has to be observed that switching from standby to active needs time and addi-
tional energy. For this reason switching to standby may not always lead to energy
savings.

3.3.4 WLAN

Limiting the WLAN interface may be done similar to the disk. Writing (sending)
may be delayed until enough energy is available. Receiving data may be delayed
by putting the device into Power Save (PS) mode.

Determining the optimal beacon period is problematic, because a too high inter-
val may lead to a couple of problems, for example if there are streaming applica-
tions running it may come to slow downs because the buffers run empty. If the
interval is too short, more energy may be needed than staying awake all the time,
because after each wake-up a TIM has to be sent.

Another possibility to save energy would be reducing the speed of the device
but as stated in subsection 3.1.3 the most energy is used in idle-mode and for
that reason the savings would be minimal and not worth the effort changing the
speed. Also reducing the speed raises the energy needs of the device since the
transmissions take longer.



34 Chapter 3. Gaining Control over the energy usage

3.3.5 Camera

Limiting the energy needs of the camera could be done by reducing the image size
(resolution) of the taken image, or reducing the rate the images are taken.

Changing the image size is not a good solution. Because the applications using
the camera are expecting a specific size, namely the one they configured the cam-
era for. Changing the size could yield in crashing the application, or in erroneous
image processing which again may lead to other errors, like colliding with an ob-
stacle. Whereas limiting the framerate should not pose any problems, because the
application has to be able to deal with missing frames because this may happen if
the resolution and the framerate are very high, or the traffic on the bus is very high
(for example if other applications are using hardware also attached to the firewire
bus). Of course limiting the framerate has a drawback: the video possibly made of
the pictures will buckle and have dropouts. But for image processing, for exam-
ple to build maps or to detect obstacles, the lowest framerate the camera supports
which are 3 FPS, should be enough, also because if the camera is limited there is
a high possibility that the motors are limited, too, and for that reason the robot is
not driving as fast that obstacles may not be detected.

3.3.6 Motors and sensors

Limiting the sensors is not possible, because they do not support any power man-
agement. When limiting the motors it has to be observed that the energy is not in-
creasing proportionally to the speed. As it is shown in Figure 5.1 (on page 55) the
energy increases and then, after a certain speed threshold is passed it decreases.

Limiting like accounting (see page 28) is possible at the microcontroller or at
the PC.

Limiting at the PC

Limiting the motors at the PC is affected by not certainly knowing the speed and
thus the energy usage and the speed may be changed by the microcontroller. This
may lead to a higher usage than desired and in worst cases to undesired move-
ment if not all motors are limited equally.

To be able to limit all motors equally, the limit should set as a percentage of the
original speed. For example if the limit is 100 % the speed is not limited. If the limit
is 60 % the speed is set to 60 % of the given speed. This ensures that the ratio of
the speeds stays constant and the robot is always able to drive. A percentage rate
has the disadvantage that the energy needs after throttling cannot be determined
easily. When limiting other resources it is known how much energy is saved, here
it can only be estimated, because the speeds of the motors vary and for this reason
the energy usage and savings vary, too. Thus the limit has to be corrected if the



3.3. Limiting 35

limit is not kept, i. e. the usage is higher or lower.10

An advantage of limiting at the PC is that all motors can be limited simultane-
ously.

Limiting the speeds has to be done before the speed is send to the microcon-
trollers. To ensure that all motors are limited equally, the messages that are sent
have to be delayed until there is one for each motor. After the speed has been
modified the messages may be sent. This may lead to critical delays if for example
the robot has to evade obstacles.

Another possibility is, to save the current unlimited speeds of the motors and if
the limits change, the new speed is calculated with the saved values and then sent
to the motors. This reduces the delays but the traffic on the CAN bus is increased.

Limiting at the microcontrollers

When limitation is done at the microcontrollers the energy usage and the speed
are known but the speeds of the other motors are unknown. Throttling the motor
without this knowledge may lead to different limits on each motor and thence
driving in the desired direction will no longer be possible. The only possibility is
that the motors communicate with each other and try to find a limit themselves
but then again the base energy limits have to be sent from the PC which is the only
device that knows all speeds and then at least three messages are needed before
the limit can be applied.11

Limiting using both, the PC and the microcontroller

Probably the best solution is to combine both methods:
The calculation of the limit is done on the PC, whereas the limit is a percentage of
the original speed which is then sent to the microcontrollers that are responsible
for applying it to the speeds. With this method no delay (except the calculation of
the new speed) is occurring so the robot does not lose its ability to respond quickly
and there is only one broadcast message sent over the CAN bus to distribute the
limits.

10A lower energy usage means more savings but also higher performance loss, so it should be
tried to get as close as possible to the limit.

11Three messages, because one microcontroller has to get the energy usage from the other two,
calculating the limits and then distributing the limits which can be done broadcasting the limit
with one message.



36 Chapter 3. Gaining Control over the energy usage

3.3.7 Interdependencies

A side effect that may happen while limiting one resource is that more energy than
expected is saved because other resources need less energy, too.

If for example the CPU is limited and their resources are depleted the process
is not allowed to run until the resources are refreshed. During this time no energy
can be consumed by the other resources. This leads to higher energy savings than
intended.

In this section interdependencies are analysed and their assets and drawbacks
are discussed.

It is granted that the application(s) attached to the limited RC are using all
resources available. Decreasing performance and increasing response times are
not mentioned for each resource. It should be clear that limiting normally leads
thereto.

Limited resource
CPU disk WLAN motor camera

CPU -
√ √ √

disk
√

- (
√

)
√

Interdependencies WLAN
√

(
√

) -
√

motor
√

(
√

) -
camera

√
(
√

) -

Figure 3.6: Overview of interdependencies when limiting resources.√
means direct dependencies, while (

√
) denotes indirect dependencies.

CPU If the limits of the CPU are exceeded, the process may not run anymore
which leads to further savings:

Energy is saved in the resource disk, because no more read accesses are made,
and only the already made write accesses will be executed.

The resource WLAN is also using less energy, because it is not accessed. But
data for this application may be received and for that energy may be con-
sumed.

The motors stop after about 100ms of CPU limiting, because they need a drive
command periodically.

No energy is saved by the camera, because the camera delivers pictures with
the set rate, no matter if they are used or not.

For this reason the longer the CPU is limited, the less resources are con-
sumed.



3.3. Limiting 37

The drawbacks are that data received over WLAN is not processed and may
be lost.

DISK Exceeded limits of the resource disk result in delayed read accesses. The
write accesses will always be executed for safety reasons (If the robot runs
out of energy it is better to use some more energy to save the results of the
work done, than to lose all data but drive some more centimeters).

If a read access is delayed, the process is stopped and the same savings as
with exceeded CPU limits apply.

WLAN Limiting WLAN, like the disk, also saves CPU energy, because transmit-
ting (writing) is also delayed by scheduling away the process. Since receiv-
ing data may be delayed, further energy may be saved, depending on the
applications and what they do with the received data (write it to disk, pro-
cess it, ...).

But it is also possible that more energy is used, because data has to be re-
transmitted, or the application has to recalculate data.

The motors and the camera are not directly affected by the limitation.

MOTOR Limiting the motors has no direct effect on the energy needs of the other
resources. Depending on the running applications it is possible that the CPU
and camera also use less energy if the motor-speed is used to adapt the fram-
erate of the camera, or to adapt the algorithm that detects obstacles with the
sensors.

CAMERA Limiting the camera may save CPU as well as disk and WLAN energy.
This is because the framerate is limited, and less pictures are available per
second. Processing fewer images means less CPU usage and therefore less
energy consumption. Depending on the application it also means less data
written to disk and/or transmitted over WLAN but only if the application
just writes new images and not one image per interval, no matter if it is new
or not.

The energy usage of the motors is not affected by limiting the camera.



38 Chapter 3. Gaining Control over the energy usage

3.4 Controlling energy usage

To process the accounted data and to limit energy consumption an interface is
needed that provides the data and possibilities to set the limits.

3.4.1 Required data

Here the data required for adaptive policies is presented.
At first it is useful to query the global data, like the number of resources and the

number of special resources available and number of timeslices in combination with
the length of the timeslices. The data of the special resource is shown later in this
section. For each resource the following global information can be queried:

• The name of the resource.

• The device state, i. e. if it is online, or switched off.

• The available power management states and the

• current power management state.

• If the resource is limitable or for accounting only.

• The unit in which the usage is accounted.

Additionally for each resource the energy-profile is available. This consists
of the transition energies from each state into each other state (if a state change
from one state to another is not possible the energy is 0), the idle energy which is
consumed in each state and the active energy. The active energy is the energy that
is consumed if the device is accessed. This may consist of different values, for
example energy for reading and energy for writing. Depending on the strategy
used for idle-accounting it is possible that there is separate active energy value (or
more) for each state. This value may also be only the difference between idle and
active (for details see subsection 3.2.3). If the device cannot become active in a
state the active energy is 012.

Except the device state and the current power management state this information
is constant and it is sufficient to query it once.

12It is assumed that activity is always consuming an additional amount of energy. If this is not
the case 0 may be replaced by another value that is not used as energy value (like NULL or -1).



3.4. Controlling energy usage 39

For each resource container the following information is available:

• Amount of energy used and

• device usage since the start of the accounting.

• The limits for energy consumption and the usage for each timeslice.

• Additionally the PIDs of the processes attached to this RC

• if they are servers

• and the children of the RC are available.

The resource container reference that is needed may be obtained by reading it
from another RC, searching for a PID and its respective RC, or by opening a file in
the resource container file system introduced in [Wai03] which is also used in this
work.

For the special resources other values are provided.
These are the measured unit, the current value, the critical value which is for exam-
ple when the threshold where the measured value is too low to guarantee opera-
tion (in this case, the voltage is too low to drive).

Hence the runtime cannot be calculated without having older values and ex-
trapolating it from these values, it is necessary to store a history of the values. This
poses the problem of where to store the history. Below the pros and cons of both
possible locations are discussed.

Keeping it inside the kernel has the advantage that the data can be updated
whenever a new battery value is accounted.

Updating the history in the user-space means periodical querying the battery
value. If the policy has a low priority it is not guaranteed that the values are
updated periodically. This leads to more complex calculations to generate the
history.

An advantage of the user-space is that unlimited space for storing and time for
calculation is available. This means that more sophisticated methods for generat-
ing and handling the history are possible.

A severe disadvantage of storing the history in the user-space is that on switch-
ing the policies the history is lost since a policy is an application and switching
implies terminating the application and starting another one. This may be solved
in various ways, for example implementing a daemon that stores the history and
the policies query that history, or one policy saves the history and the other loads
it. However, all of these proposals consume additional resources.

For these reasons the history be maintained within the kernel and additionally
to the beforehand mentioned values the remaining runtime has to be provided.



40 Chapter 3. Gaining Control over the energy usage

3.4.2 Controlling resource usage

The energy usage can be controlled by setting other (needing a smaller amount of
energy) state for the resources. The energy savings can be calculated using:

energysavings = energyidlecurrent_state
− energyidlenew_state

This is only effective for a longer period of time if the resource supports becom-
ing active in the state it is switched to, otherwise the next access to the resource
will yield to a change back to the current state. It is possible to determine this,
by checking the energy-profile. If the active energy of the new state is 0 it cannot
become active in this state.

The benefit of this method is that the policy needs no knowledge about how
to set the states. The needed data which are the costs for changing a state and
the energy needed within the new state are known, because they are part of the
energy-profile.

Another way of controlling the energy usage is to limit the device usage and
therefore the energy that is consumed additionally to the idle energy. The energy
used for activity is either saved directly as the usage, or it may be calculated using
(for one resource):

energyactive = energytotal− energyidle ∗ timedevice_online

Which of the two possibilities is applicable depends on which strategy for ac-
counting shown in subsection 3.2.3 is used.

With the usage in the current state and a given total energy limit the policy
is able to calculate the usage limits for the resources using Equation 3.4. If the
resource is not limited before, limitresourceold has to be replaced by usageresource.

limit percent =
energyactive− energylimit

energyactive
limitresourcenew = (100%− limit percent)∗ limitresourceold (3.4)

If the energy usage exceeds the set total limit the limits have to be adapted.
Interdependencies may be detected automatically, by monitoring the energy

usage of all resource before and after setting limits, or switching states of one re-
source. If the energy used in an other resource changes instantly after the first
resource was changed, then there is an interdependency which leads to other en-
ergy savings than expected. Normally they are higher, because other resource
cannot work all the time as they may depend on data or calculations done by the
limited resource. But the contrary may also happen, the energy usage of one re-
source is limited and the usage of another device increases. This may happen if
an application uses for example an attached network drive (via WLAN) and the
hard disk for data storage and detects that the access to the network drive is very
slow due to limitation and stores all data to the local disk which leads to a higher
energy usage of the hard disk.



3.4. Controlling energy usage 41

3.4.3 Example policy

In this section a sample policy is introduced. It is shown that it is possible to
easily adapt existing applications for adaptive power management to benefit from
the infrastructure. First a brief synopsis of self-tuning wireless network power
management is given. Thereafter the modifications that are needed that it takes
advantage of using the infrastructure are shown.

In [ANF03] self-tuning wireless network power management is introduced.
This is needed, because in different situations different power management strate-
gies are needed and that cannot be achieved with a ’one fits all’-approach. The
self-tuning power management (STPM) adapts to the characteristics of the hard-
ware and the applications. A novelty of STPM is that energy and time needed
for changing power modes and the base power usage of the devices are consid-
ered. To be able to adapt to the applications STPM provides a simple interface
that allows applications to disclose hints about their intended network usage. For
unmodified applications (they do not disclose hints) a special hinting module was
developed that attempts to identify these applications and to predict their network
usage.

STPM uses hints from applications to switch the power management mode of
the WLAN device. The applications inform the module of the maximum latency
they accept and the amount of data that is to be transferred. STPM then decides
if the device should be put to CAM (continuously-aware mode) or stay in PSM
(power saving mode). After finishing the transmission the applications informs
the STPM again which then may switch back to PSM.

For unmodified applications the hinting module tries to predict the usage. This
is done by observing all network traffic and mapping the network ports to appli-
cations. If the applications disclose hints the traffic is ignored by the hinting mod-
ule. At this point the first big problem arises. If an unmodified application uses
the port that was formerly used by a hinting application the traffic and therefore
the application is not considered.

The hinting module informs the STPM of transfers and the device is depend-
ing on the traffic put into CAM. If for a defined period of time no more packets are
sent, the STPM is informed again and the device may be put back to PSM.

STPM can be modified to take advantage of the resource accounting and lim-
iting infrastructure. To be able to effectively manage a device STPM has to know
the energy profile of this device. This information can be obtained querying the
infrastructure. Setting the power management modes of a device is also possible.
This enables the STPM to be used much more flexible because it adapts itself to
new hardware since it can gather the needed information and no changes to the
STPM are needed if devices are changed.

Adapting the hinting module not only simplifies the hinting but renders it
more accurate.



42 Chapter 3. Gaining Control over the energy usage

This is because the detection of unmodified application can be improved by not
mapping the applications to network ports but by checking whether the RC is al-
ready known and processed. If it is unknown it has to be checked whether the
application supports hinting or not.

An unmodified application is similarly handled as with the original module.
However, the data needed for determining when to switch power management
modes (transmitted bytes, last transmission) can be queried from the infrastruc-
ture.



Chapter 4

Implementation

The accounting and limiting system described in this work was implemented for
the Robertino-Robotsystem running a Linux system as introduced in section 2.1.
The kernel version is 2.6.7 modified to support the original resource container
structure which was then enhanced and adapted to fit the needs of this work.

Lots of the original implementation from [Wai03], like for example the core
system, the resource container structure and the propagation of resource bindings,
could be reused while the structure of the resources had to be changed extensively.
This was required because with the original implementation it was not possible to
account the different states and more values (energy and usage) per resource.

Changing the resource structures leads to changes in the accounting proce-
dures. For example it is no longer possible to only account to the current resource
container, or switch the resource container in certain situations. Additionally idle
time also has to be accounted which neither Banga nor Waitz did.

This chapter describes the new resource structures followed by a detailed view
on the implementation of the different resources and their particularities in ac-
counting and limiting.

4.1 Resources

While the original resource structure was kept very simple, this is no longer pos-
sible, because additional data has to be saved to be able to account and limit the
system efficiently.

Also by changing the point of view the definition of resource has changed (as
described on page 13). While earlier the view was towards the processes now it
covers the complete system. Back then the question was: Which resources will a
process use? Now it is: Which resource requires how much energy and what is
this energy used for?

The new resource structure is split into two parts: A global structure that exists
once for each resource, holds the static data and the data that must not be managed

43



44 Chapter 4. Implementation

for each resource container. The second structure exists once for each resource
container. Within this structure the data per RC, like usage, and limits, is saved.

The global structure holds the following data: The resource description which
consists of a name, the units and scales1 to convert the accounted data to the unit.

The needed energy profile which consists of idle energy for each state and tran-
sition energy from each state into each state.

The energy needed in active periods is recorded separately, because the amount
of energy values may vary in different resources. For example in the resources
WLAN and disk the read and write accesses use different amounts of energy
which also depends on the amount of data transferred. Contrary to that the mo-
tors need no values for active periods because all calculations are done directly at
the microcontrollers which transmit the totally used energy to the computer.

Additionally different flags and the current state of the resource are saved. The
current state needs to be saved to determine the correct energy values, and to ac-
count to the adequate states. There are flags to determine if the resource is online,
or offline (i. e. switched off or removed) and if the resource is used for accounting
only. Amongst others these flags have been implemented for optimization pur-
poses, because, for example checking if the resources are depleted for a device
that is not online is not useful. It is also not reasonable to assign resources to of-
fline resources, or to resources that are accounted but not limited. A resource may
only be accounted to determine the energy usage of the device, or it cannot be
limited, because it only supports one state, or the states cannot be switched2.

Listing 4.1 shows the data structure used in this implementation. The current
state and flag if the device is online have been put into a separate structure because
these values change during operation, while the other values are constant.

The other part of the resource structure (shown in Listing 4.2 is saved within
the resource container. In this structure that exists for each resource the limits
for the resource are stored. Limiting is only possible for the resource but not the
different states. This is because limiting each state separately is of no avail but
would produce high computational overhead.

The energy usage is accounted for each state separately, so the policies can
determine in which state the most energy is used and if it is of use to limit the
resource by setting it into another state. The amount of energy that is needed to
switch from one state to another is accounted independently of the states. This
is done to be able to determine, how much energy is used due to state changes.
If for example most of the energy usage of a resource is caused by state changes
it would be reasonable not to switch the resource anymore but leave it in one
state that probably uses more energy than the other states, however, the switching
overhead would be avoided.

1Scaling is necessary, because within the kernel floating point arithmetic is not easily available,
whereas within user-space the real units are preferred to abstract integers (like timer ticks).

2The CAN-bus could be represented by such a resource however, the effort needed to determine
the energy needed by device is very high but leads to no advantages.



4.2. Accounting 45

1 s t r u c t r e s _ d r i v e r _ i n f o {
2 const char ∗ const name ;
3 const char ∗ const uni t [RES_CNT_COUNT ] ;
4 const char ∗ const unit_per_t ime [RES_CNT_COUNT ] ;
5 const u32 s c a l e [RES_CNT_COUNT ] ;
6 const u32 sca le_per_ t ime [RES_CNT_COUNT ] ;
7 const u32 idleEnergy [RES_STATE_COUNT ] ;
8 const u32 t r a n s i t i o n E n e r g y [RES_STATE_COUNT ] [ RES_STATE_COUNT ] ;
9 const u8 i s L i m i t a b l e [RES_CNT_COUNT ] ;

10 const u8 a v a i l S t a t e s ;
11 } ;
12

13 s t r u c t r e s _ d r i v e r _ s t a t e {
14 u8 c u r r S t a t e ;
15 u8 devOnline ;
16 } ;

Listing 4.1: Global values for a resource

4.2 Accounting

To be able to schedule the processes according to the information saved within the
resource containers the accounted data has to be correct.

A generic interface for resource accounting is provided which then internally
distributes the data to the accounting function of the according resource. Ad-
ditional interfaces are provided for adding/removing devices and for changing
power management states.

Accounting activity is done by recording the difference from idle to active-
usage as described in subsection 3.2.3. In the following particularities of the im-
plementation and arising problems of the accounting for the different resources
are described.

4.2.1 CPU

Accounting CPU usage (time) is done by sampling the TSC as introduced by Mar-
tin Waitz. Measurements (see subsection 5.1.1) show that the smallest deviation
between measured and accounted energy is achieved when only sampling the TSC
and multiplying it with an energy weight. It turned out that using performance
counter is far more inaccurate.



46 Chapter 4. Implementation

1 s t r u c t r c _ s t a t e s {
2 u64 stateChanges ;
3 u64 used [RES_CNT_COUNT ] ;
4 } ;
5

6 s t r u c t r c _ l i m i t s {
7 u64 max_ef fec t ive ;
8 u64 max[ RES_TIME_SLICES ] ;
9 u64 las t_used [ RES_TIME_SLICES ] ;

10 u64 avg_usage [ RES_TIME_SLICES ] ;
11

12 u64 l i m i t [ RES_TIME_SLICES ] ;
13 u8 l i m i t _ s c a l e [ RES_TIME_SLICES ] ;
14 } ;
15

16 s t r u c t rc_resource {
17 u64 overheadEnergy ;
18 s t r u c t r c _ s t a t e s s t a t e [RES_STATE_COUNT + 1 ] ;
19 s t r u c t r c _ l i m i t s l i m i t s [RES_CNT_COUNT ] ;
20 } ;

Listing 4.2: New resource structure

4.2.2 Hard disk

Accounting the (energy) usage of the disk is done by counting all bytes read from
and written to disk. The problem thereby was that write accesses are done asyn-
chronous, and therefore the RC-binding has to be saved with every write access.
The automatic power management of the hard disk is disabled. This implementa-
tion uses standby as only power management mode available. The user sets the
timeout after which the disk is put into standby. The resource disk has an internal
timer which also counts the time since the last disk access and which switches the
state of the resource to standby after the set timeout because there is no notification
if the disk really switched to standby.

Another possibility would have been to periodically check the mode of the
disk and to set the state of the resource accordingly. But this check must not be
performed too often since it needs about 500 ns to get a response and possibly the
mode of the disk is changed due to this request.

4.2.3 Motors

Accounting the motors is done at two locations. The data is gathered and pro-
cessed by the microcontrollers which then send a message with the used energy
to the PC every 100 ms. At the PC the data is accounted to the respective RC.



4.2. Accounting 47

4.2.4 Battery

The current voltage of the battery is measured every 2.2 ms at one of the micro-
controllers. An average over 100 ms is calculated which is sent together with the
motor-data to the PC. At the PC the data is saved in the resource battery.

The resource battery is not within the resource container structure. It only ex-
ists once since everything else is only overhead. The resource also has another
structure than the other resources. It is only possible to ’account’ the actual volt-
age. It is also not possible to limit this resource.

The resource battery includes a history of the last voltages and a simple esti-
mation algorithm (described in 3.2.4.6) for the remaining runtime. The runtime
and the current voltage of the battery may be queried from the outside.

4.2.5 Idle-energy

Idle energy accounting is done by a function that gets called every timer inter-
rupt which is 1000 times a second with this kernel version. This function is also
responsible for CPU accounting.

The idle energy is accounted to a separate idle-resource-container.

4.2.6 State changes

Every time the power management mode of a device is changed by the system,
the resource container structure is informed and accounts the state change to the
currently active RC. This is done to a separate value (overheadEnergy) within the RC
to not taint the other accounted energy-data.



48 Chapter 4. Implementation

4.3 Limiting

Limiting the resources is done by temporarily stopping all processes that are out
of resources as introduced by [Wai03]

Additionally the resources may be limited by putting them into other power
management modes. This has to be done by the policies which set the modes
using a generic interface. The request is then distributed to the concerned resource
which changes the internal state and the mode of the device.

4.4 Refreshing

Refreshing the resources is done periodically as introduced in subsection 2.2.3.
A novelty is that the resources support a flag which determines if they should

be accounted only or if they may be limited. If they are for accounting only, no
limiting is possible, and refreshing the resources is not needed.

Additionally resources can be switched on and off dynamically. This is for
example possible for the WLAN interface which can be removed from the PC-
CARD slot. If a resource is offline no refreshing is necessary either.



Chapter 5

Measurement and Evaluation

All measurements were done on the Robertino-Robotsystem which was described
in section 2.1 using Linux with a modified kernel version 2.6.7.

5.1 Resources

First of all the resources had to be measured to get the energy profiles. For all
resources active and idle energy of all relevant states and the energy needed for
state changes were measured. The results are presented in this section.

5.1.1 CPU

The energy for the CPU is calculated using the equation

per fCtr0 ∗weight0 + per fCtr1 ∗weight1

where per fCtrx is the change of the performance counter x within the accounted
interval. Together with the CPU the mainboard and the memory are measured
since it is not possible to measure the CPU independently.

To determine the weights the energy is measured and the performance coun-
ters are monitored. To simulate many different operations on the CPU the bench-
marks of the MiBench suite [Gut] except the telecom benchmark (which did not
run on Robertino) were used.

For the values of one run the equation is solved and the minimal error for the
weights is searched. This was done using a simple brute force algorithm that tests
all possible solutions.

Several passes with different combinations of performance counters were done
but finally the smallest error was achieved by simply using the TSC as one value.
This simple accounting method can be stated with the old Pentium III M used for
testing that is consuming an almost constant amount of energy no matter which
instructions it is processing. New processors disable parts that are not needed

49



50 Chapter 5. Measurement and Evaluation

for the current work. Therefore the power consumption varies depending on the
executed instructions. Determining the energy usage of these processors is only
possible using the performance counters. Since a performance counter only counts
the appearance of one event and the number of concurrently accountable perfor-
mance counters is limited not all events are monitored. This leads to not being
able to account the total consumed energy, because energy is used in parts of the
CPU which are not monitored. For this reason the average deviation when using
performance counters to account the energy usage of modern CPUs is higher than
it is using the TSC to account older CPUs.

benchmark measured TSC weight calculated deviation
automotive 203.848 J 8740174215 203.847 J -0.000573 %
consumer 101.486 J 4378626555 102.123 J 0.626933 %
network 53.540 J 2284627950 23.323 * 10−9 53.284 J -0.477379 %
office 180.376 J 7786109460 181.595 J 0.676043 %
security 112.324 J 4735399315 110.444 J -1.674122 %

average absolute error 0.612803 %

Table 5.1: Measured energy, calculated energy (T SC ∗weight) and deviation

The detailed results of the calculations are shown in Table 5.1. These values
were confirmed running the same test again, and more important, running four
other tests scenarios:

• Image processing
The program convert was run successively three times while one more convert
was running in the background. A JPEG-image of 2.2 MB was processed
with the following options: -resize 400x400 -charcoal 30 -mosaic -flatten

• Robomon
Robomon is the sample application developed by members of the TU Munich
to demonstrate the functions of Robertino. It has a GUI which allows to dis-
play the values of the distance sensors graphically. Additionally it is possible
to control the motors and watch the images taken by the camera. This sce-
nario consists of opening all windows (sensors, camera, control panel) and
then let Robertino drive for some time.

• ’Real world’
This scenario consists of logging into Robertino using ssh, then doing some
normal work, like ls and cat, after that for some files the md5-sums are cal-
culated using md5sum. Thereafter the session is closed and after a new ssh-
login a file is edited using vim and then the session is closed again.



5.1. Resources 51

• Compiling a kernel
Finally a kernel was compiled using make -j3 all1.

Table 5.2 shows the results. The deviation2 is under 2 % which is a result that
confirmed the used weight.

scenario measured TSC weight calculated deviation
Image processing 6147.448 J 266684428220 6219.443 J -1.171 %
Robomon 429.732 J 4784311063 426.097 J 0.846 %
’Real world’ 1906.742 J 7435320646

23.323 * 10−9
209.959 J 0.383 %

Compiling a kernel 6040.884 J 254046770868 520.038 J 0.169 %

Table 5.2: Results of the scenarios to confirm the weight for calculating the CPU
energy

5.1.2 Hard disk

The energy consumption of the disk was measured for the various power manage-
ment modes and while reading and writing different amounts of data. The results
of the measurement are shown in Table 5.3 and Table 5.4.

Since it is not known how much data is transmitted because accounting is done
at a level where only one block (512 byte) at a time is transferred, an average was
calculated. For writing the energy consumption per byte is set to 559 µJ/B (averaged
out of transmitting 1, 10 and 100 blocks). For reading the average is 558 µJ/B.

During the final measurements it was figured out that using such a simple
method is not sufficient because obviously it is important to know the exact amount
of data transmitted to account the correct amount of energy. It may be an improve-
ment to account only once a second and account blocks, not bytes. Relocating the
accounting to a position where the amount of data that has to be transferred is
known is another alternative. However, this poses problems when accounting
since at this level it is not known whether the data is really transferred to or from
disk. It is not read if it is already in the memory. No writing takes place if, for
example the file the data should be saved to was deleted, the data was changed
again which renders the current data useless.

The other possibility is to use a similar strategy as it is proposed below for
WLAN.

1-j3 means that three make-processes are running concurrently. This is normally used for mul-
tiprocessor machines on which the kernel was normally compiled.

2The deviation is calculated using measured−calculated
measured ∗100

3The active consumption without idle consumption is calculated as follows:
consumptionactive = consumptiontotal−

consumptionidle
1s ∗duration



52 Chapter 5. Measurement and Evaluation

State change to
Energy Energy consumption Duration

consumption → standby → idle → standby → idle
idle 0.7006 J 4.487 J 3.59 s

standby 0.177 J 3.6222 J 1.58 s

Table 5.3: Energy consumption during idle periods and for state changes

Energy consumption
Blocks (512 b) Meanwhile per Byte

action transferred Duration total total diff. to idle3

idle 100 ms 0.07006 J
write 512 572.87 ms 1.17241 J 2289.8633 µJ 1505.9616 µJ
write 5120 585.08 ms 1.20517 J 235.3847 µJ 155.3244 µJ
write 51200 577.47 ms 1.19487 J 23.3367 µJ 15.4353 µJ
write 512000 631.50 ms 1.34264 J 2.6223 µJ 1.7582 µJ
read 512 560.07 ms 1.16115 J 2267.8711 µJ 1501.4926 µJ
read 5120 571.47 ms 1.19611 J 233.6152 µJ 155.4167 µJ
read 51200 566.07 ms 1.19641 J 23.3674 µJ 15.6215 µJ
read 512000 592.08 ms 1.28785 J 2.5153 µJ 1.7051 µJ

Table 5.4: Energy consumption during sending and receiving

5.1.3 WLAN

For WLAN the idle energy consumption in CAM, PSM and switching from one
mode to the other was measured. In PSM a beacon period of 100 ms is used. Ad-
ditionally in both modes sending and receiving different amounts of data was
quantified. The results are presented in Table 5.5, Table 5.6. The values shown in
the last two columns represent the amount of energy accounted for each transmit-
ted byte.

During the final tests of the infrastructure it turned out that it is not enough to
account the usage per byte. A better solution may be accounting a fixed amount
of energy at the beginning of a transfer and only a small amount for each byte.
The problem thereby is that it has to be determined when a transfer is started, and
when it is completed. Accounting a fixed amount of energy at the beginning of
a transfer can be represented as a state change. When a transfer is started the re-
source switches4 into a special activity mode. The transition energy for switching
is the fixed amount of energy that has to be accounted. Switching back to the cur-

4In this case switching causes no mode change of the device. It is only required to assure that a
fixed amount of energy (transition energy) is accounted.



5.1. Resources 53

rent state, this means ending a transfer, is done when no data is transmitted for a
given period of time.

State change to
Energy Energy consumption Duration

consumption → PSM → CAM → PSM → CAM
CAM 1.064 J 0.139 J 153 ms

PSM (100ms) 0.295 J 0.161 J 173 ms

Table 5.5: Energy consumption during idle periods and for state changes

Energy consumption
Bytes Meanwhile per Byte

action transferred Duration total diff. to idle
CAM PSM

idle CAM 10 ms 10.64 mJ
idle PSM 10 ms 2.95 mJ

send 10000 32.8 ms 45.95 mJ 1105 nJ 3626 nJ
send 100000 291 ms 422.30 mJ 1127 nJ 3364 nJ
send 1000000 2570 ms 3839.77 mJ 1105 nJ 3081 nJ

receive 10000 24.6 ms 32.53 mJ 635 nJ 2526 nJ
receive 100000 168 ms 231.77 mJ 530 nJ 1822 nJ
receive 1000000 1540 ms 2112.19 mJ 474 nJ 1657 nJ

Table 5.6: Energy consumption during sending and receiving

5.1.4 Camera

It was not possible to measure the energy usage of the camera separately. Mea-
surements had to be done while also sampling the CPU. For this reason the energy
had to be adjusted by removing the energy needed for the CPU. This is possible
without major problems since the CPU energy was accounted by the resource con-
tainer system.

Measuring the camera was done by taking images with a given framerate
(30 FPS or 3 FPS) and image-size (320x240), using a simple program that only
copies the image from the firewire kernel-modules and then deletes it. The en-
ergy usage was captured for each combination of framerate and image size for 30
seconds. Evaluating the data showed that the image size has no impact on the
energy usage, while the framerate has.

The data shown in Table 5.7 represents the average usage of a test, where for
each framerate images were taken for 500 seconds. The idle-energy which has to



54 Chapter 5. Measurement and Evaluation

be subtracted from the acquired data was measured, and verified using the CPU
energy accounting.

framerate measured idle diff. to idle diff. to idle per picture
idle 10.44307 J 0.0 J 0 µJ/pic

3 FPS 10.45651 J 0.01343 J 4479 µJ/pic
7 FPS 10.47091 J 10.44307 J 0.02784 J 3978 µJ/pic
15 FPS 10.50790 J 0.06483 J 4322 µJ/pic
30 FPS 10.57708 J 0.13400 J 4467 µJ/pic

Table 5.7: Results of the measurements of the camera

5.1.5 Motors

Since the three motors are similar, only one was measured. The energy consump-
tion at the different speeds is shown in Figure 5.1 and in Table 5.8.

By the time the motor is running faster than 300 ticks/second (≈ 2,89 cm
sec ) the

energy consumption decreases.
Apparently limiting the motors will not always yield to energy savings. This

is not given if the motor speed is reduced from v=600 to v=300 which represents
a speed reduction of 50 %. However, the energy usage will increase from 2.78J to
3.17J (approx. 14 %).

Speed Energy consumption
total without idle

0 0.7945 J 0 J
100 1.1616 J 0.3670 J
200 1.4297 J 0.6351 J
300 1.5749 J 0.7803 J
400 1.5007 J 0.7062 J
500 1.3406 J 0.5460 J
600 1.1796 J 0.3847 J
700 1.2012 J 0.4067 J

Table 5.8: Energy consumption of a motor



5.1. Resources 55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

v=0

v=10
0

v=20
0

v=30
0

v=40
0

v=50
0

v=60
0

v=70
0

active

idle

Speed in ticks

E
n

er
g

y
co

n
su

m
p

ti
o

n
in

W
at

t

Figure 5.1: Energy usage at the different speeds

5.1.6 Battery

The battery is measured during operation using a voltage divider to reduce the
voltage from max. 13 V (during charging, normally max. 12 V) to max. 5 V which
is the highest value that the ADCs support and sampling the voltage with one
of the ADCs. An ADC has a resolution of 10bit which allows a range from 0 to
1024. Some sample conversions are shown in Table 5.9. The ADC values may be
converted to voltages using Voltage = ADC ∗0.0148.

ADC- Voltage
value measured calculated deviation
882 13.06 V 13.05 V -6 mV
810 12.00 V 11.99 V -12 mV
708 10.50 V 10.49 V -21 mV
674 10.00 V 9.98 V -25 mV

Table 5.9: Sample values for ADC->Voltage conversion.



56 Chapter 5. Measurement and Evaluation

5.2 Accounting and Limiting

To evaluate the accuracy of accounting and limiting a couple of test were con-
ducted. Below the different test scenarios are introduced, followed by the results
and, if needed, proposals for improvements.

The hard disk was excluded from the measurements and an average consump-
tion of 0.72 J is assumed. This value is a bit higher than the energy consumption
during idle periods since the measurement data is written to disk periodically and
the power management of the disk is disabled. Excluding it was necessary because
accounting the energy consumption failed. This is because of an disadvantageous
implementation of the energy accounting. In contrary thereto accounting the us-
age is working properly.

In Table 5.10 the results of measuring the system for 289.11 seconds while it was
idle are shown. During this time the average battery voltage was 11.68 V . For
the disk an energy consumption of 208.16 J is assumed. The deviation of -536.40 J
(−10,4%) can be reduced by tuning the energy weights for accounting. This is
possible because until now for example the dissipation loss of the power supply
has not been considered. As mentioned before (subsection 3.1.7) its maximum
efficiency is 95 %. Since the energy consumed by the system is measured directly
at the batteries the dissipation loss has to be regarded. If 5 % loss is considered
the deviation is only -278.9 J. Due to the fact that the efficiency changes with the
load and 95 % is an optimistic value a higher dissipation loss can be assumed.
Therefore the accounting is correct, but missing the loss. Accounting this amount
of energy is done by adapting the weight for the resource global overhead.

Idle
CPU 2659.34 J

WLAN 319.36 J
Camera 1200.58 J
Motor 238.32 J

Accounted 4417.59 J
Disk 208.16 J
Total 4625.75 J

Measured 5162.15 J
Deviation -536.40 J

Table 5.10: Comparison between accounted and actual energy consumption



5.2. Accounting and Limiting 57

The next two tests were made to verify the limiting. Therefore the motors were
measured while running with a speed of 300 ticks/second and then they are mea-
sured again with a set usage limit of 50 % which means they are only allowed to
run at a speed of 150 ticks/second. Both test were executed for about 300 s with
an average voltage of 11.55 V . The results are presented in Table 5.11. The devi-
ation between measured (155.11 J ) and accounted (154.49 J ) is only 0.62 J which
is about 2 mJ/ s. This shows that throttling the motor usage yields to the desired
results.

v=300 v=150 difference
Motor 683.88 J 532.77 J 151.01 J

Measured 5923.87 J 5768.76 J 155.11 J

Table 5.11: Comparison between unlimited (v=300) and limited (v=150) energy
consumption

The validation of the accounting and limiting of the camera usage and energy
consumption was done using a program that displays the taken images in an win-
dow of the X Window System. The framerate of the application was set to 30 FPS
which was throttled to 3 FPS in the second test. Since the tests were performed
using an ssh connection the data has to be transferred to the remote computer and
displayed there (which is automatically done by ssh). This resulted in high CPU
load. Another test limited the CPU load by setting the energy limit of the CPU to
1.5 J while the camera was taking images at a rate of 30 FPS. As the other programs
these were executed for 300 s . The battery voltage was 11.60 V .

Differences
30 FPS 3 FPS CPU-limit 30 FPS⇔3 FPS 30 FPS⇔CPU-limit

CPU 3499.87 J 2888.19 J 3070.19 J 611.68 J 429.68 J
Camera 1200.96 J 1170.26 J 1201.57 J 30.7 J -0.61 J

Measured 6438.85 J 5673.44 J 5964.02 J 765.41 J 473.98 J

Table 5.12: Comparison between unlimited (30 FPS) and limited (3 FPS) camera
and limited CPU energy consumption (limited to 1.5 J)

Table 5.12 shows that limiting the energy consumption of the CPU to 1.5 J is
successful. The consumptions is in fact reduced to ≈ 1.43 W (= 429.68J

300s ). The sav-
ings of limiting the camera should be about 36.2 W within the 300 seconds (0.12 J).
These values are calculated using the beforehand (subsection 5.1.4) determined
energy consumption of the camera. The accounted value is below this theoretical
value. This is because it is not guaranteed that really 30 pictures per second are



58 Chapter 5. Measurement and Evaluation

taken one missing picture every six seconds5 has to be expected.

The evaluation of measurements shows, that it is possible to account and limit
the energy consumption of a system with the developed infrastructure. Although
improvements are needed for accounting the hard disk and WLAN. Addition-
ally the weights have to be fine tuned to enable a more accurate accounting. No
changes are needed for accounting the motors, the camera and the CPU.

It is also shown that accounting the energy consumption during idle periods is
possible and accurate.

56 J are 45 pictures; the program was executed for 300 s; 300
45 ≈ 6.667



Chapter 6

Future Work

Additionally to the beforehand mentioned improvements the following enhance-
ments should be investigated.

6.1 Multiple devices per resource

Having resources for all devices poses the problem, what to do if there is more
than one device per resource. Today it is not uncommon to have two disks, or,
for robots, it is possible to have two cameras, for example for stereoscopic vision,
or one holonomic camera for obstacle-detection and one that is versatile for track-
ing objects. In most cases the devices will not be identical (same disk size, same
buffer, same resolution for example). So the needed energy is not identical. For
that reason the energy characteristics for each device have to be stored and used
adequately. Multiple devices per resource yield to the problem where to store the
device characteristics. Should they be stored within the resource container struc-
ture, like now, or should they be put into the driver which calculates the energy
usage and calls the resource container structure for accounting? Another ques-
tion is, how to identify the different devices during runtime and how to assign
the appropriate energy values. This may, for example, be done by using device
pointer which are also used by the kernel internally, and therefore being able to
assign each usage to the right device. Using device pointers is rudimentarily im-
plemented in this work, because they were needed to enable setting the states for
the device. Adapting the resource containers to be able to handle more devices
per resource should not be of a problem for this reason.

59



60 Chapter 6. Future Work

6.2 Uniform configuration interface

Currently the energy profiles are implemented into the kernel. If a device is ex-
changed by another the kernel has to be modified, compiled and installed. This is
a lot of work which can be avoided by providing an interface that allows to set the
energy profiles dynamically.

A similar interface still exists for the configuration of the CPU-weights. A
drawback of the dynamic configurability is, that the profiles have to be saved and
restored when rebooting the computer. As accounting and limiting is currently
set up very early this may be a problem, since no access to disk or other storage
is possible. It is possible to set up accounting later but then the energy consumed
during start-up is not accounted.

Another problem is that there is a different number of energy values needed
for each resource.

6.3 Observe length of accesses and state changes

In this work activity and transition energy are accounted at once. This means,
whenever the state is changed or an activity occurs a defined amount of energy
is added to a resource container. In fact the activity/transition last for some time,
for this reason it should be investigated if a better limiting can be achieved by not
accounting the complete amount of energy, but to split it up and account it over
the same period of time the activity/transition lasts.



Chapter 7

Conclusion

This work introduces an infrastructure for accounting and limiting the total energy
consumption of for example a robot.

It is shown that the total energy consumption can be accounted to the resources
consuming it and therewith to the processes.

Thereby not only the energy usage during activity but also the consumption
during idle periods has to be taken into consideration. Different methods for ac-
counting the idle energy are discussed.

Limiting on the one hand is done by restricting the amount of energy available
for the different processes and resources. On the other hand advantage is taken
of the different power management modes which allow to not only reduce the
energy consumption in idle periods but also during activity.

When using the different power management modes it is crucial to account the
energy consumed during mode changes. Since accounting this amount of energy
differs from accounting energy consumed during activity or idle periods several
strategies are discussed that allot this amount of energy to processes in a fair way.

To allow fine grained limiting it is necessary to provide feedback of the effects
of set limits. This is done by not only accounting the energy consumed but by also
accounting the device usage.

Such a feedback can be used to adjust limits and to detect interdependencies.
These occur, when limiting one resource also influences the energy consumption
of another resource.

Using this infrastructure allows it to develop policies which are able to control
the system in such way that given tasks and goals are fulfilled although this would
not be possible under normal circumstances.

As proof of concept, the infrastructure has been implemented for Robertino, an
autonomous mobile robot. This robot is controlled by a computer using the Linux
operating system.

61



62 Chapter 7. Conclusion



List of Figures

2.1 Openrobertino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Definition of wheel motion vectors . . . . . . . . . . . . . . . . . . . 5

3.1 Resource definition according to M. Waitz . . . . . . . . . . . . . . . 14
3.2 Current resource definition . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Reception of packets for wireless network interfaces working in

Power Save mode, from [Com99] . . . . . . . . . . . . . . . . . . . . . 16
3.4 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Composition of the total energy usage of a device . . . . . . . . . . 20
3.6 Overview of interdependencies when limiting resources. . . . . . . 36

5.1 Energy usage at the different speeds . . . . . . . . . . . . . . . . . . 55

63



64 List of Figures



List of Tables

3.1 Power management modes of the disk . . . . . . . . . . . . . . . . . 15

5.1 Measured energy, calculated energy (T SC ∗weight) and deviation . 50
5.2 Results of the scenarios to confirm the weight for calculating the

CPU energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Energy consumption during idle periods and for state changes . . . 52
5.4 Energy consumption during sending and receiving . . . . . . . . . 52
5.5 Energy consumption during idle periods and for state changes . . . 53
5.6 Energy consumption during sending and receiving . . . . . . . . . 53
5.7 Results of the measurements of the camera . . . . . . . . . . . . . . 54
5.8 Energy consumption of a motor . . . . . . . . . . . . . . . . . . . . . 54
5.9 Sample values for ADC->Voltage conversion. . . . . . . . . . . . . . 55
5.10 Comparison between accounted and actual energy consumption . 56
5.11 Comparison between unlimited (v=300) and limited (v=150) energy

consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.12 Comparison between unlimited (30 FPS) and limited (3 FPS) camera

and limited CPU energy consumption (limited to 1.5 J) . . . . . . . 57

65



66 List of Tables



Bibliography

[ANF03] Manish Anand, Edmumd B. Nightingale, and Jason Flinn. Self-Tuning
Wireless Network Power Management. In Proceedings of the 9th Annual
International Conference on Mobile Computing and Networking (MOBICOM
’03), September 2003.

[BDM99] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource Con-
tainers: A New Facility for Resource Management in Server Systems.
In Proceedings of the Third Symposium on Operating System Design and Im-
plementation OSDI’99, pages 45–58, February 1999.

[Bos] Bosch. Controller Area Networks.

[Com99] IEEE Computer Society LAN MAN Standards Committee. IEEE 802.11:
Wireless LAN Medium Access Control and Physical Layer Specifications, Au-
gust 1999.

[CV01] Alois Knoll Christian Verbeek, Franz Murr. Das Robertino-
Robotersystem: Ein autonomer mobiler Roboter für Forschung und
Lehre. Technical report, Technische Universität München - Institut für
Informatik, 2004-10-01.

[FD98] D. Friel and R. Dunstan. Smart Battery Data Specification, December
1998.

[Gut] Matthew Guthaus. MiBench version 1.

[HLG05] Thomas Hirth, Nestor Lucas, and Javier Gutierrez. Akkuproblematik
am Robertino, 2005.

[Höl05] Kurt Höller. Energieversorgung und -optimierung von Roboterplattfor-
men, January 2005.

[Kel03] Simon Kellner. Event-driven temperature control in operating systems,
April 2003.

67



68 Bibliography

[NM01] Rolf Neugebauer and Derek McAuley. Energy Is Just Another Resource:
Energy Accounting and Energy Pricing in the Nemesis OS. In HOTOS
’01: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,
page 67, Washington, DC, USA, 2001. IEEE Computer Society.

[TM03] Tri-M. High Efficiency PC/104 Vehicle Power Supply. Tri-M, rev. 05/03
edition, 2003.

[url] OpenRobertino.org.

[Wai03] Martin Waitz. Accounting and Control of Power Consumption in
Energy-Aware Operating Systems, 01 2003.

[Wis04] Dipl.-Ing. Thomas Wisspeintner. AISVision - A Cost-effective Omnidi-
rectional Camera System, 2004.

[ZELV02] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Currentcy: Unifying Poli-
cies for Resource Management, 2002.

[ZFE+02] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and Amin Vahdat.
ECOSystem: Managing Energy as a First Class Operating System Re-
source. In Tenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS X), October 2002.



Entwicklung einer Infrastruktur für
Energiesparverfahren

Batteriebetriebenen Geräten fallen heutzutage immer komplexere Aufgaben zu,
deren Lösung viel Energie benötigt. Da der Mehrverbrauch trotz besserer Batteri-
en nicht erfüllt werden kann wurde neue Hardware entwickelt, die verschiedene
Arbeitsmodi unterstützt in denen unterschiedlich viel Energie verbraucht wird.
Allerdings verwalten die einzelnen Geräte diese Zustände selbst.

Mit einer übergeordneten Instanz, die das Energiemanagement des komplet-
ten Systems kennt und kontrollieren kann ist es möglich zusätzliche Energie ein-
zusparen. Gezieltes Limitieren des Energieverbrauchs einzelner Geräte ermöglicht
es, Aufgaben zu erledigen, deren Erfüllung sonst aufgrund mangelnder Energie
gescheitert wäre. Mit dem Wissen über den Energieverbrauch können Aufgaben
priorisiert werden, während andere verzögert werden.

Ein Beispiel für die Anpassung von Prioritäten ist der Transportroboter der er-
kennen kann, dass seine Energie nicht mehr ausreicht um weitere Güter zu trans-
portieren und deshalb umgehend zur Ladestation zurückkehrt. Sind die Batterien
wieder voll aufgeladen, kann er mit seiner normalen Arbeit fortfahren.

Um allerdings zu Wissen, wie lange die Energiereserven noch reichen, und wie
viel Energie gespart werden kann ist es nötig den Energieverbrauch des Systems
exakt zu kennen. Dies kann dadurch erreicht werden, dass der Verbrauch jeder
Komponente separat gemessen und von einer übergeordneten Instanz verwaltet
wird.

Zusätzlich zum Erfassen muss auch eine gezielte Limitierung des Energiever-
brauchs möglich sein. Mit dieser können Geräte und dadurch die Prozesse, die
diese Komponenten verwenden, verzögert werden. Durch das Verzögern von Pro-
zessen können andere Prozesse ihre Aufgaben unter Umständen schneller erledi-
gen, auf jeden Fall aber steht ihnen mehr Energie zur Verfügung. Damit ist es rea-
lisierbar, dass Aufgaben auf jeden Fall erledigt werden und bestimmte Ziele sicher
erreicht werden können, während andere weniger wichtige Aufgaben unerledigt
bleiben können.

69



Um die Kontrolle über den Energieverbrauch zu erlangen wird in dieser Arbeit
eine Infrastruktur entwickelt, mit der genaues Erfassen und feingranulare Steue-
rung des Energieverbrauchs möglich ist.

Dazu wird der Energieverbrauch aller Komponenten erfasst und an sogenann-
te "Policies" weitergeleitet. Diese Policies können aus diesen Daten die Limitie-
rungen für einzelne Komponenten berechnen, die dann mithilfe der Infrastruktur
gesetzt werden.

Es reicht nicht aus, den Energieverbrauch im aktiven Betrieb zu erfassen, da ein
nicht unerheblicher Teil der Energie im Leerlauf verbraucht wird. Zur Erfassung
dieses Verbrauchs werden in dieser Arbeit verschiedene Ansätze vorgestellt und
diskutiert.

Ein weiterer Posten des Energieverbrauchs sind die Zustandswechsel von ei-
nem Arbeitsmodus zu einem anderen. Auch für die Erfassung dieser Energie wer-
den verschiedene Verfahren vorgestellt.

Zum Limitieren wird nicht nur die Energiemenge, die einem Gerät zur Verfü-
gung steht beschränkt, sondern es werden auch die verschiedenen Arbeitsmodi
der Komponenten mit einbezogen. Nur mithilfe der diversen Arbeitsmodi ist es
möglich den Energieverbrauch im Leerlauf zu beeinflussen.

Die beschriebene Infrastruktur wurde für Robertino implementiert. Robertino
ist ein autonomer mobiler Roboter, der sich mithilfe dreier Motoren fortbewegt.
Zusätzlich verfügt er über mehrere Abstandssensoren und eine omnidirektiona-
le Kamera. Der Steuerrechner ist ein herkömmlicher Industrie-PC, der mit einem
Pentium III M, 128MB Speicher, WLAN, Firewire und einer 20 GB Festplatte be-
stückt ist.

In dieser Arbeit wird, anhand der Implementierung für Robertino, gezeigt,
dass die Infrastruktur das Erfassen des kompletten Energieverbrauchs des Robo-
ters und die gezielte Steuerung des Verbrauchs einzelner Komponenten ermög-
licht.

70


	Introduction
	Related Work and Background
	Robertino-Robotsystem
	Resource accounting and limitation
	Accounting
	Limiting
	Refreshing

	Further work about accounting and limiting
	ECOSystem
	Nemesis


	Gaining Control over the energy usage
	Resource Classification
	CPU
	Hard disk
	Network - especially WLAN
	Camera
	Motors and sensors
	Battery - A Special Resource
	Other possible resources

	Accounting
	Accounting activity
	Accounting state changes
	Accounting idle-energy
	Accounting the resources

	Limiting
	Limiting basics
	CPU
	Hard disk
	WLAN
	Camera
	Motors and sensors
	Interdependencies

	Controlling energy usage
	Required data
	Controlling resource usage
	Example policy


	Implementation
	Resources
	Accounting
	CPU
	Hard disk
	Motors
	Battery
	Idle-energy
	State changes

	Limiting
	Refreshing

	Measurement and Evaluation
	Resources
	CPU
	Hard disk
	WLAN
	Camera
	Motors
	Battery

	Accounting and Limiting

	Future Work
	Multiple devices per resource
	Uniform configuration interface
	Observe length of accesses and state changes

	Conclusion
	List of Figures
	List of Tables
	Bibliography

