
Diplomarbeit im Fach Informatik

Optimizing Energy-Consumption by
Event-Driven Frequency Scaling

Betriebssystemmechanismen zur Energieeinsparung
durch dynamische Anpassung der

Prozessortaktfrequenz

Andreas Mull

* 1977–12–14, Nürnberg

Dezember 2001 – Mai 2002

Angefertigt am

Institut für Informatik
Lehrstuhl für Verteilte Systeme und Betriebssysteme
Friedrich-Alexander-Universität Erlangen-Nürnberg

Prof. Dr. F. Hofmann

Betreuer:

Dr. F. Bellosa, Universität Erlangen, Informatik 4

Abstract

This diploma thesis shows that an operating system aware of detailed infor-
mation about the processes it serves is able to save energy by means of per-
formance monitoring counters and dynamic frequency scaling. A model for
controlling dynamic frequency scaling based on performance monitoring infor-
mation called Process Cruise Control is presented. For its implementation the
Cyclone IQ 80310 development-board was selected as the target platform. To-
gether with an XScale architecture CPU, the Intel 80200 processor performance
monitoring counters, as well as frequency scaling, are available.

Contents

1 Introduction 6

2 Technical Setup 8
2.1 Target System . 8
2.2 Measurement of Power and Energy 10
2.3 Data Acquisition . 11

3 A Model for Saving Energy 13
3.1 Performance and Power Characteristics 13
3.2 Energy Saving Strategy . 15

3.2.1 Authentic Tests . 16
3.2.2 Throttle Control . 18

3.3 Frequency Domains . 19
3.3.1 Performance Monitors . 19
3.3.2 Selection of Events . 20
3.3.3 Multiple Dimensions . 21
3.3.4 Creation of the Model . 24
3.3.5 Application of the Model 30
3.3.6 Divergent Ideal Speed . 30

3.4 Related Work . 32

4 Implementation 34
4.1 Frequency Scaling . 35
4.2 Energy Performance Counters . 36
4.3 Process Cruise Control . 37
4.4 Event-Driven Frequency Scaling Policy 39

5 Validation 42
5.1 Overhead . 42
5.2 Energy Savings . 43

5.2.1 Homogenous Applications 43
5.2.2 The Inhomogeneous Application 44

5.3 Effective and Predicted Ideal Speed 46
5.4 Shortcomings of the Implementation 48

6 Conclusions 50
6.1 Aims of this Work . 50
6.2 Future Work and Improvements 51

3

7 Kurzzusammenfassung 53

List of Tables 55

List of Figures 56

Bibliography 57

Product names mentioned in this document are trademarks of their respective
manufacturers and are used here only for identification purposes.

4

Ich versichere, dass ich diese Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe, und dass diese Arbeit
in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als
solche gekennzeichnet.

Nürnberg, 2002–05–16

5

1 Introduction

Increasing acceptance of mobile embedded systems as well as black-outs affect-
ing data centers and server-farms caused by the energy crisis in many parts
of the United States show need for broad introduction of power-aware sys-
tems. Manufacturers of hardware already provide many power-managed de-
vices. With these devices a tradeoff between saving energy and available per-
formance is introduced. Consequently, power-sensitive systems need to handle
energy as a first-class resource. The resource manager has to control power-
states of components in such systems.

To predict and control power consumption a multitasking operating system
needs to have detailed information about the processes it serves. Resource usage
needs to be monitored per process. This accounting has to apply dynamically
as resource usage patterns of tasks may change with input data and time.

Current operating systems only have limited knowledge of resource usage.
Items like system load, CPU usage, activation of I/O devices and current re-
ported by smart batteries only give few hints for resource usage in a system.
Although, many approaches for energy-aware scheduling have already been pre-
sented yet. Some of these are dependent on cooperating with underlying appli-
cations. This means that tasks would have to become energy-aware for usage
with these approaches. In addition, figures like CPU load or general I/O acti-
vation only provide a very narrow view of the tasks and their resource usage
limiting the prognosis of such approaches.

Information about memory access frequency, execution stalls, activation of
specific functional units within the CPU and chip-set like FPU, ALU, branch
prediction logic, MMU and cache utilization is desirable for a more profound
prognosis of power consumption [Bel01a]. Yet, not all of these aspects are
covered by performance monitoring counters implemented in state-of-the-art
processor platforms. Therefore, the value of dedicated energy monitoring coun-
ters becomes evident. Such units would refine accounting energy consumption
through an elaborate view on detailed resource usage of the system.

As energy monitoring counters are not available yet, the approach presented
in this work relies on performance monitoring counters to predict the resource
usage of tasks. No cooperation or preliminary information from applications is
needed for this approach. Power-states controlled in the target system are dif-
ferent main processor clock speeds. The policy presented in this work throttles
applications by dynamic frequency scaling to save as much energy as possible
while keeping a limit on the decrease of performance. Because of the similar-
ity to a car cruise control we have called our scheduling policy Process Cruise
Control. Driven by performance monitoring events to scale processor frequency

6

Event-Driven Frequency Scaling closes the loop to a controlled system.
The opportunity to save energy by scaling frequency grounds on differing

energy consumption for accessing main memory at various CPU speeds on the
target system. The target system itself and measuring setup is introduced in
chapter 2.

Chapter 3 pictures the opportunities to save energy on the specific target
system, first. Further, I describe the steps on our way to Process Cruise Con-
trol. Aspects are the selection of performance monitoring events and creating
a prognosis model relying on performance monitoring counters. An algorithm
for generating an energy-saving policy from micro-benchmark sample data is
visualized, finally.

Succeedingly, chapter 4 presents our implementation for Process Cruise Con-
trol in the Linux kernel. Modules for per-process-performance monitoring, fre-
quency scaling and policy management are explained. Finally, our approach on
Process Cruise Control is related to other research.

Chapter 5 discusses actual measurement results on the Process Cruise Con-
trol system. Efficiency, dynamic aspects, resulting energy-savings and perfor-
mance loss of the implementation are debated.

In chapter 6 I conclude and propose further architectural innovations that
originate in Process Cruise Control.

A short summary of this work in German is given in chapter 7.

7

2 Technical Setup

2.1 Target System

Currently several microprocessor architectures support dynamic frequency scal-
ing and performance monitoring. Some offer a wide variety of selectable
speeds as for example the Athlon 4 PowerNow! [AMD02b] and the Alchemy
Au1100 [AMD02a] from AMD. Others like Intel’s Speedstep-M [Int00b] at the
time just distinguish slow and fast modes.

As we wanted to explore the possibilities of saving energy in the field of
embedded systems we selected the Intel 80200 processor [Int00a]. Its power
consumption only rates up to 500 mW and it provides both capabilities for
frequency scaling as well as performance monitoring which are crucial tasks for
our approach on Process Cruise Control.

The 80200 processor is available with the Intel IQ 80310 evaluation plat-
form [Int01], which is a PCI board. This modular form, in contrast to closed
systems like laptops or notebooks, makes power-measurement possible. The
evaluation platform mainly consists of the 80310 I/O processor chip-set includ-
ing the 80200 processor and the 80312 I/O companion chip controlling a 32 MB
SD-RAM memory, 8 MB FLASH, a Fast-Ethernet and two RS-232 interfaces.

The IQ 80310 evaluation-board can be mounted on a separate backplane
or into a state of the art Personal Computer. We chose the latter method
as it eases resetting the target system via network. Likewise, reprogramming
contents of the on-board flash memory became possible.

Intel’s 80200 processor is based on the XScale micro-architecture [Int00c]
supporting the ARM V5TE instruction set. Its 32 KB data and instruction
caches are 32-way set associative and have a line size of 32 bytes. The data cache
policy is configured to be write-back and write-allocate. Data and instruction
MMU both implement a 32 entry full associative TLB.

A programmable clock multiplier (PLL) generates the internal CPU clock
which can be adjusted from 200 up to 733 MHz in steps of about 66 MHz.
With the development-board speeds are only available from 333 MHz. The
lower bound results from a constraint to the memory bus speed which is fixed
at 66 MHz: The bus speed has to be significantly less than a third of the
CPU clock speed. This would yield a minimum speed of 266 MHz, but as our
experiences showed running the system at slower CPU speeds than 333 MHz
caused immediate halts. Changing the clock frequency is done by writing a
multiplication factor dependent value to a configuration register as shown in
table 2.1.

Although the 80200 processor supports variable core voltages depending

8

Clock Multiplication Register

frequency: factor: value:

(n/a) 200 MHz 3 1
(n/a) 266 MHz 4 2

333 MHz 5 3
400 MHz 6 4
466 MHz 7 5
533 MHz 8 6
600 MHz 9 7
666 MHz 10 8
733 MHz 11 9

Table 2.1: CPU Frequency Scaling

ID: Definition: repeat:

0x0 Instruction cache miss.
0x1 Instruction cache or TLB miss. Ö

0x2 Stall due to data dependency. Ö

0x3 Instruction TLB miss.
0x4 Data TLB miss.
0x5 Branch instruction executed.
0x6 Branch mispredicted.
0x7 Instruction executed.
0x8 Stall due to full data cache buffers. Ö

0x9 Stall due to full data cache buffers.
0xA Data cache access.
0xB Data cache miss.
0xC Data cache write-back.
0x10 BCU received memory-request.
0x11 BCU request queue full. Ö

0x12 BCU queue drained.

Table 2.2: Performance Monitoring Events

Mode: PLL: Registers: Wakeup:

Idle on retained 10 cycles ≈ 20 ns
Drowsy off retained ≈ 2000 cycles 3.1 µs
Sleep off have to be saved (code dependent) � 3.1 µs

Table 2.3: Power Saving Modes

9

on the selected frequency, dynamic voltage scaling could not be used as the
development-board lacks features to adjust CPU core voltage.

Furthermore, the processor has facilities for performance monitoring. A
time stamp counter (TSC) displays the number of cycles the processor has been
active at. Two performance monitoring counters (PMC) may be configured to
count processor specific events. The events can be selected from the set shown
in table 2.2 which contains the relevant events for this work. Events marked
with repeat are encountered for every clock cycle they are active at. Other
events are counted once each sequence of cycles in which they occur. Some
events correspond to common activities and appear twice in the table, differing
in the presence of the repeat attribute.

In addition, the 80200 provides several power saving levels displayed in
table 2.3. Having the shortest wakeup time idle mode was configured for the
system idle thread of our target system.

BlueCat Linux 3.1 from LynuxWorks, which is supplied together with the
IQ 80310 evaluation platform, was selected as the target operating system. By
using Linux as the target platform, we were able to modify the operating system
kernel which is a substantial task for implementing Process Cruise Control. The
Linux kernel version used here is 2.2.12.

2.2 Measurement of Power and Energy

The IQ 80310 development-board has no features like test points for tracking
its overall or its components’ power consumption that is drawn from the PCI
bus. Using a PCI raiser card with such test points would be a desirable way
to deduce the power consumption of the board. But the tested raiser cards
interfered with the PCI initialization procedure of the development system.

Despite these facts we found a way to track the power consumption of the
development-board. The 5 V and 3.3 V power lines from the ATX power supply
to the host PC main-board were equipped with measurement shunts as shown
in figure 2.1. As the development system is the only PCI card connected to the
host PC main-board the power lines will only reflect the power consumption of
these two units. By keeping the host PC idle, its power consumption is enforced
to be nearly constant. This constant level of idle power can easily be subtracted
from the actual power values measured while executing the tests.

The development-board only uses 3.3 V power [Int01]. Setting supply volt-
age to Ub,1 = 3.3 V, sample voltage to U1 and constant idle power to P0,1, the
actual development-board power P1 is calculated as follows:

P1 =
U1

R1
Ub,1 − P0,1

However, P2 would be calculated analogously although of little interest as
the development-board does not use 5 V power. Anyway, the 5 V shunt was
useful to assure a constant power level of the host PC.

10

Target System:
XScale IQ 80310

Development Board

Host System:
PC Motherboard ATX Power Supply

others

GND

+ 3.3 V

+ 5 V R2

R1

PCI Bus

Data Acquisition System:
Host PC with Differential

A/D Converter

U2 U1

Figure 2.1: Electrical Measurement Setup

2.3 Data Acquisition

The analogous voltages U1 and U2 are sampled by two differential A/D convert-
ers. A Meilhaus ME 2600 [Mei01] and a special purpose low-cost A/D converter
are used to acquire sample data. Both boards are controlled by dedicated Linux
device driver modules [Mei02], [Win02]. Special purpose utilities for reading,
filtering and synchronization are used to process the measured data.

The synchronizing of start and end of micro-benchmarks is done directly
on the read-out data. Ethernet communication is not available for this task as
the experimental enabling of data caches corrupted DMA transfers used for the
network interface. Serial console activity for communication causes interfering
power consumption.

Thus, the synchronization filter is supplied with a complete block of sampled
data. As shown in figure 2.2 this block may contain the power progress of several
micro-benchmarks, for example seven here. It can start anytime before the first
micro-benchmark and end anytime after the last one. As a consequence block
synchronization can be done by very simple means, even, if necessary, by hand.
With our standard test utility the micro-benchmarks are separated each by
short delays of 100 ms. During these delays the target system is idle. This
results in gaps in the overall power progress that can be recognized by the
synchronization filter.

11

0,0 2,5 5,0 7,5 10,0 12,5
t / s

6,00

6,25

6,50

6,75

7,00

7,25

7,50

Po
w

er
 C

on
su

m
pt

io
n

 P
 /

W

Figure 2.2: Typical Synchronization Filter Input

The software implemented filter acts as a conditional integrator controlled
by a trigger with hysteresis: Each slice with a power consumption above a
fixed threshold is separately integrated and averaged revealing energy and mean
power consumption of the belonging micro-benchmark. Together with the du-
ration of the slice these values represent the filter output. When the power
value falls short of a second lower threshold the end of a slice is recognized. At
the beginning of the supplied block the average idle power is computed. This
idle power is subtracted from any samples before integrating or averaging.

12

3 A Model for Saving Energy

3.1 Performance and Power Characteristics

To discover possibilities for saving energy we needed to know how much the
various components contribute to the total power consumption of the target
system.

We created some micro-benchmarks that involve different units of the
CPU: An arithmetic test (add reg) exercises the arithmetic unit and registers.
goto label makes strong use of branches, call sub uses the stack to pass pa-
rameters mixing register operations, cache references and branches. Some cache
tests only read (read cache) or read and write (rw cache) the first-level cache
of the CPU.

During all tests the processor was constantly busy and operated at 733 MHz.
Without involving the main memory and caches power consumption of the
80200 processor is nearly constant at about 600 mW. As can be seen in figure 3.1
the evaluation-board mean power consumption increases to about 800 mW when
caches and MMU are utilized by tests read cache and rw cache.

ad
d_

re
g

go
to

_l
ab

el
ca

ll_
su

b
re

ad
_c

ac
he

rw
_c

ac
he

re
ad

_m
em

rw
_m

em

0

200

400

600

800

1000

1200

1400

Po
w

er
 C

on
su

m
pt

io
n

 P
 /

m
W

Figure 3.1: Basic Benchmarks Power Breakdown

Further tests also involve the SD-RAM module and memory controller by
reading from (read mem) or reading from and writing to (rw mem) the main mem-
ory. Most strikingly the mean power consumption now rises up to 1220 mW.
We believe that this effect results from activating the memory controller and
the memory module and using the memory-processor bus. Lacking test points

13

on the evaluation-board we cannot prove this thesis.
Running the same benchmarks with different processor speeds reveals sim-

ilar results. As shown in figure 3.2, power scales proportionally to the CPU
clock frequency. Interestingly, this constraint also holds for tests involving the
main memory.

333 400 466 533 600 666 733
Execution Speed f / MHz

0

200

400

600

800

1000

1200

1400

Po
w

er
 C

on
su

m
pt

io
n

 P
 /

m
W

add_reg
goto_label
call_sub
read_cache
rw_cache
read_mem
rw_mem

Figure 3.2: Frequency Scaled Power Breakdown

Up to this point, only the mean power consumed while running the bench-
marks was considered. To get the amount of energy needed to execute a bench-
mark, the duration of which has to be heeded as well. Combining mean power
consumption and completion time leads to energy consumption. Before focus-
ing on energy consumption one should have a closer look at execution time.
When scaling the frequency each test takes another time to complete. Normal-
ized to minimum or maximum execution time’s reciprocal will be called relative
application performance.

Figure 3.3 shows the relative application performances of the benchmarks.
These have been normalized to the minimum individual application perfor-
mance of each test measured at minimum CPU speed.

This figure displays one important fact: while CPU intensive tests scale
performance proportionally to clock speed, tests involving the main memory do
not significantly increase their application performance when CPU is sped up.

Of course, this fact results from the constant memory access rate. The
memory-processor bus is clocked at a fixed frequency of 66 MHz. Memory
accesses — for example caused by cache-misses (read mem) — are first passed

14

333 400 466 533 600 660 733
Execution Speed f / MHz

1

1,2

1,4

1,6

1,8

2

2,2

2,4

R
el

at
iv

e
A

pp
lic

at
io

n
Pe

rf
or

m
an

ce
add_reg
goto_label
call_sub
read_cache
rw_cache
read_mem
rw_mem

Figure 3.3: Relative Application Performance vs. CPU Speed

to the fill buffer of the 82000 processor. The fill buffer can handle up to four
outstanding 32-byte read-requests. When this level is reached by agglomerating
memory accesses, the CPU stalls [Int00a].

The other memory intensive test rw mem, which reads and writes memory
brings write buffer and cache policies into effect: The write buffer holds up
to eight 16-byte write requests. This micro-benchmark stalls for each new
allocated cache line as a dirty cache line has to be rewritten to memory before
a new one can be stored into cache. These effects explain the worse application
performance of the rw mem test.

As power consumption shows, the processor is not powered down during
these stalls: While waiting for the memory request to become satisfied the
CPU remains in a busy mode.

3.2 Energy Saving Strategy

A comparison of figures 3.2 and 3.3 shows that the application performance
for memory intensive applications does not significantly grow parallel to the
processor speed while power consumption does. This fact leads to an important
basis providing a possibility to save energy:

The amount of additional energy which is consumed by fast running mem-
ory intensive applications compared to energy needed by the same applications
executed at slower speed can be considered as overhead. Vice versa, energy
consumption can be decreased for memory intensive applications without sig-
nificantly impacting their performance by slowing down the CPU.

15

The energy statistics of micro-benchmarks in figure 3.4 show the amount
of energy saved by selectively throttling the CPU speed. In this figure, energy
values for a specific test are relative to its energy consumption at maximum
speed, that is 733 MHz.

333 400 466 533 600 660 733
Execution Speed f / MHz

0,75

0,80

0,85

0,90

0,95

1,00

1,05

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

add_mem
goto_label
call_sub
read_cache
rw_cache
read_mem
rw_mem

Figure 3.4: Relative Energy vs. CPU Speed

3.2.1 Authentic Tests

Of course, these benchmarks are not representative as they purely exercise spe-
cific functionalities of the processor. Consequently, some real-world applications
were used as additional tests to prove the memory-related approach for saving
energy.

The diagrams from figure 3.5 show the application performance loss and
energy saving achieved by throttling CPU clock frequency. Performance loss l
and energy saving s of a test are calculated from its execution time t and the
energy W needed to run the test. As t0 and W0 are t and W at maximum
processor speed (733 MHz), the corresponding values of l and s would equal
zero in the diagrams and therefore are not shown.

l =
t

t0
− 1 s = 1− W

W0

The top-left diagram shows statistics from the find/grep test. Searching
the RAM disk for specific data, this test is very memory intensive. Obviously,
energy savings outweigh performance loss. The top-right diagram contains the
data from the gzip test which makes moderate usage of memory while com-
pressing a file using Lempel-Ziv coding (LZ77). In both tests performance loss

16

33
3

40
0

46
6

53
3

60
0

66
6

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

find / grep

33
3

40
0

46
6

53
3

60
0

66
6

Performance Lost
Energy Saved

gzip
33

3

40
0

46
6

53
3

60
0

66
6

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

djpeg

33
3

40
0

46
6

53
3

60
0

66
6

factor

Figure 3.5: Power and Performance Profiles

17

grows slower than frequency decreases: for example at 333 MHz less than 25 %
performance is lost while frequency was decreased more than 50 %. Perfor-
mance loss and saved energy remain in a similar range: It would be desirable
to slow down the processor by a certain degree in order to save energy.

Both lower diagrams show statistics of tests that don’t rely much on memory
accesses. While djpeg decompresses a JPEG encoded picture the other test
factor factorizes a number. Following consequences arise: On the one hand,
energy savings are lower than in both upper diagrams; on the other hand,
performance loss has significantly increased in contrast to the upper diagrams.
Throttling CPU would result in an undesirably strong decrease in application
performance while saving only little energy.

A view back to the micro-benchmarks from section 3.2 shows the following
scenario: While CPU intensive benchmarks (add mem, goto label, call sub,
read cache and rw cache) scale in performance and energy consumption com-
parable to djpeg and factor, memory intensive benchmarks like rw mem hardly
lose any performance when throttling CPU speed, that is less than 5 %.

3.2.2 Throttle Control

Throttling applications with high access rates for main memory improves energy
efficiency. This happens as the processor is stalled less often while being slowed
down.

However, throttling a task also decreases its performance. Consequently,
saving energy is always connected to performance loss. From a software ap-
proach it is nearly impossible, at least uneconomic, however, to slow down the
processor only for memory requests. Determining each single memory access
cannot be done without heavy overhead. Thus, granularity for adjusting speed
by a kernel extension refers to a process or thread. Of course, when slowing
down a complete process or thread, instructions that are not accessing memory
become throttled as well as the memory intensive code which surrounds them.

A tradeoff between saved energy and available performance becomes evident.
Constant maximum throttling of the CPU would be the best solution if only
focusing on saving energy. But after all, performance is an important factor
as well. To put it bluntly, saving a bit of energy while halving performance
doesn’t make sense in most embedded systems.

To keep decreasing performance in a sensible range we orient our model to
save as much energy as possible at a fixed maximum performance loss. Re-
stricting performance loss locks one of the two variables of the tradeoff. On
this base the model can make a prognosis for a maximum throttle still holding
the constraint for performance loss. The central task for the model is to satisfy
the performance constraint while increasing energy efficiency as far as possible.

This means that the model is dependent on the parameter of an upper limit
for performance loss. Although, by changing the performance loss restriction
our model may easily be adapted to other circumstances for which the saving
of more or less energy is appropriate.

For this approach we set the limit to an exemplary of 10 %. This value
seems to be a reconcilable throttling for most applications. Of course, justifiable

18

performance impact is dependent on the usage pattern of an embedded system
and real world installations could need other policies. The following reflections
will rely implicitly on a maximum performance loss of 10 %; we also use the
term policy for it.

3.3 Frequency Domains

The previous section showed that throttling CPU for memory intensive appli-
cations makes sense. By restricting performance loss to a certain percentage
a so-called ideal speed for each application can be derived. This ideal speed
is the CPU clock frequency at which the application loses just less than for
example 10 % of its maximum performance. The ideal speeds for the test appli-
cations from section 3.2.1 for a performance loss restriction to 10 % are shown
in table 3.1. They may be easily derived from figure 3.5.

Test: find/grep gzip djpeg factor
Ideal Speed: 400 MHz 533 MHz 600 MHz 600 MHz

Table 3.1: Ideal Speeds for the Authentic Tests

Our next point of interest is to find means that may be used to forecast the
ideal speed of an application without having initial information about it. As
applications should not need to cooperate with the model — that is they do
not need to be energy-aware — our basic idea is to figure out relations between
rates of processor internal events and possible throttling of a task which, in
turn, means saving energy. This approach is designed for a system with two
performance events measurable at the same time.

3.3.1 Performance Monitors

If the policy had knowledge of the times it takes to execute an application at
different CPU speeds it would be easy to tell the ideal execution speed for the
policy. A simple attempt would be collecting ideal speeds for any application
that are supposed to run on the target system. With a table of ideal speeds for
all these applications a system could automatically adjust the CPU speed for
each application. The problems with this simple solution are self-evident: On
the one hand you have to exercise any new application for ideal speed before
using it; on the other hand the table would never be complete, continously
grow, and sometime even become quite bulky.

Notwithstanding these facts, there are applications which change their mem-
ory access rate with time and input. To adjust such applications to an ideal
speed, the approach needs to get information about the process and its memory
access rate during the execution of the process, that is the model has to act
dynamically.

Characteristics for resource usage of processes can be obtained by per-
formance monitoring counters. For example, energy-consumption may

19

be predicted from these characteristics, as already shown in other
works [Bel01a], [JM01]. However, this approach tries to directly derivate
ideal speed from performance event rates without taking a detour via power-
consumption.

Purely obtaining information about the application from performance mon-
itoring counters brings in the two main advantages of this approach: First,
no predating knowledge about the application is needed. Second, applications
do not need to be energy aware, that is there is no communication between
application and scheduler.

Previous work has already explored usage of other kernel level information
and application support for latency based cruise control [MGG01]. Likewise,
such approaches are less platform dependent while not concentrating on first
hand information from performance monitoring counters.

Most modern processors supply performance monitoring units counting spe-
cific events that occur in the CPU like cache misses or executed instructions.
The 80200 processor offers several events for performance monitoring. It is able
to count two of these events simultaneously. A selection of available events is
displayed by table 2.2 [Int00a].

3.3.2 Selection of Events

To monitor the rate of a specific event for a single test its occurrence is counted
using one of the two available performance monitoring counters. This value is
divided by the number of clock cycles that happened while executing monitored
by the time stamp counter (TSC). The resulting probability ranges from 0 to
1 and is called event percentage.

p =
pmc

tsc

New micro-benchmarks were introduced to figure out those events whose
percentages may be, most suitably, related to ideal speeds. The additional
micro-benchmarks mix memory accesses with processor internal tasks. Thus,
they better cover the spectra for resource usage and ideal speed.

Events basically related to process cruise control are listed in table 2.2.
The main task for this approach is to tell how often a process accesses main
memory, which is connected to the processor core via a so-called Bus Control
Unit (BCU). Likely, percentages of memory-requests that arrived at the BCU
and the times its request queue was full will be of primary interest. As external
memory is accessed via data caches we expect miss and write-back percentages
to reflect such accesses. Moreover, the instruction execution rate will diminish
when stalling the processor by intensively accessing main memory. Along, we
guess that stalls caused by data dependencies may indicate memory accesses.

Some events better correlate to ideal speed after normalization with execu-
tion speed. They do not depend on processor internal timing. Thus, multiply-
ing their percentages with the processor clock speed eliminates the influence of
differing TSC values as they reflect internal timing.

20

We call this figure event factor — as we will do with other normalized event
rates as well.

p∗ =
pmc

tsc
· fexec

Multiple events yield differing percentage and factor ranges. Percentage for
executed instructions nearly covers the full available range from 0 to 1 while,
for example, memory request percentage only ranges up to 0.2. For considering
multiple event rates in the same diagram an equalization of the different ranges
becomes desirable. In consequence, event percentages and factors in figure 3.6
are normalized so that the maximum mean rate for each event equals to one.
The resulting value is called event factor, again. This equalization shouldn’t be
confused with predating normalization with execution speed.

Figure 3.6 shows how pure and normalized relative event percentages cor-
relate with ideal speed. The coloured bars display the mean percentages of the
above discussed events. Error bars denote the dispersion of a specific event
percentage to its minimum and maximum. The horizontal position of the bar
group gives the ideal speed of the micro-benchmarks whose event percentages
were accumulated to that group.

The effect of execution speed normalization shows up if you compare both
diagrams of figure 3.6. Normalization causes less variance for most event per-
centages. Although, normalization has nearly no effect: Value ranges of per-
centages for the same event still overlap for different ideal speeds. Precision
of processor internal event percentages — like that for data dependencies —
would even suffer from normalization. Thus, we will postpone execution speed
normalization for now.

Memory request percentage has least dispersion for the whole spectrum of
ideal frequencies. Along, mean values scale very well with ideal speed. Conse-
quently, memory request percentage will be the main candidate for ideal speed
prognosis. Other events have undesirably high variances, BCU queue full per-
centage being the worst example.

Apart from percentage dispersion executed instructions could be a good
means for prognosis, as well. Being the only percentage directly proportional to
ideal speed executed instructions percentage has the widest value spectrum for
different ideal speeds. Executed instructions show a crease at 600 MHz both for
normalized and pure event factors. Although not resulting from measurement
error — as repeated test runs showed — this effect could currently not be
explained. However, this error is not too significant and the event percentage
is used for the model furthermore.

3.3.3 Multiple Dimensions

Just taking a single event into consideration for ideal speed prognosis will not
lead to satisfactory results. The main problem remains in the percentage dis-
persion of the single events: For example, percentage range for a certain ideal
speed mostly overlaps with that for another speed. The correct ideal speed can
not be distinguished just upon knowledge of a single event percentage.

21

0,0

1,0

2,0

3,0

4,0

E
ve

nt
 F

ac
to

r

Data Dependency
Instructions Executed
Data Cache Miss
Data Cache Write-Back
BCU Memory Request
BCU Queue Full

333 400 466 533 600 666
Ideal Speed f / MHz

0,0

1,0

2,0

3,0

E
ve

nt
 F

ac
to

r

Pure Event Factors

Event Factors Multiplied by Execution Speed

Figure 3.6: Singular Event Factors vs. Ideal Speeds

22

To cope with this problem a two-dimensional approach is necessary for build-
ing a model. Instead of watching a single event percentage two will be used for
ideal speed prognosis. Lying at hand, both above mentioned top candidates will
be selected for prognosis: executed instruction and memory request percentage.

Combining these percentages yields diagram 3.7. It shows one point for
each possible execution speed of each micro-benchmark. Thus, there are seven
points in the diagram for one micro-benchmark. All points display the ideal
execution speed of the belonging test by their shape and colour. Coordinates of
the points are determined by the two above mentioned event percentages and
— for the y-coordinate — execution speed of the micro-benchmark:

x =
pmc0

tsc
y =

pmc1

tsc
· fexec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
or

m
al

is
ed

 M
em

or
y

R
eq

ue
st

 F
ac

to
r

(E
ve

nt
 0

x1
0,

 B
as

e
S

pe
ed

)

�

Instruction Execution Percentage (Event 0x7)

Policy: 10% max.
Performance Loss

No Base Speed
Discrimination

Destination
Speeds:

MHz:
333
400
466
533
600
666

Figure 3.7: Ideal Speed Diagram for all Speeds

Different memory request percentage ranges were joined by execution speed
normalization producing a memory request factor. However, this diagram still
does not distinguish ideal speeds exactly enough. Sets of differently coloured
points intermix especially in the upper right quarter of the diagram. Only few
areas may be clearly zoned for identical ideal speed.

Browsing through data shows that points of different ideal speed can be
better distinguished when looking at the samples for a single execution speed
at one time only. This means either introducing a third dimension or splitting
up the diagram into seven diagrams of their own, one for each execution speed.
Then, of course, execution speed normalization may be neglected as points of
different execution speed are separated to different diagrams or plains anyway.

23

As this approach is presented on a two-dimensional medium and as occurring
execution speeds are discontinuous the diagram is splitted into seven diagrams
of their own. However, the following considerations may be exercised on a
three-dimensional cubicle as well.

Figure 3.8 shows just the allocation of the sample points for an execution
speed of 400 MHz exemplarily. Of course, this is only one of the seven dia-
grams sampled from executing micro-benchmarks. With constellations like in
figure 3.8 we are able to separate points with different ideal speeds easily. Ge-
ometrical partitions of identical ideal speed may be built as being explained in
the next section. Again, these diagrams all relate to the event percentages for
executed instructions and memory requests.

When receiving a new — uncoloured — point by observing an unknown
application its ideal speed can be forecasted. First, one of the seven diagrams
is selected by looking at the actual execution speed of the application. Then,
the point is associated to one of the ideal speed partitions giving the prognosis.

To take a short digression I want to have a look at other event percentages
than executed instructions and memory requests: Different combinations for
such diagrams resulted in graphs with worse parting for ideal speed zones like
shown in figure 3.9. Event percentages displayed here are data cache accesses
versus misses. Again, this diagram is just one of the seven diagrams for that
two events. Separation for execution speed was done just like in figure 3.8.
However, coherent zones of equal ideal speeds are hard to find in this diagram.
Points with completely different ideal speeds nearly combine. Obviously, such
diagrams are insufficient for a usable model.

3.3.4 Creation of the Model

Having decided which events to use for the model each micro-benchmark is
attributed with the following data:

� its ideal execution speed

� seven pairs of performance event percentages, one pair for each execution
speed

To generate the model which will consist of seven model graphs the data
is split up for geometrical inspection. Percentage pairs with equal execution
speed form points in one of the seven diagrams both percentages of one pair
giving the coordinate for one point:

x =
pmc0

tsc
y =

pmc1

tsc

Points are attributed according to their ideal execution speed fpoint ∈
{333, 400, 466, 533, 600, 666, 733}. The following method for balancing border
lines is applied to each diagram separately.

24

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
em

or
y

R
eq

ue
st

 P
er

ce
nt

ag
e

(E
ve

nt
 0

x1
0)

Instruction Execution Percentage (Event 0x7)

Policy: 10% max.
Performance Loss

Base Speed:
400 MHz

Destination
Speeds:

MHz:
333
400
466
533
600
666

Figure 3.8: Useful Ideal Speed Diagram with Micro-Benchmarks at 400 MHz

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

D
at

a
C

ac
he

 M
is

s
P

er
ce

nt
ag

e
(E

ve
nt

 0
xB

)

�

Data Cache Access Percentage (Event 0xA)

Policy: 10% max.
Performance Loss

Base Speed:
400 MHz

Destination
Speeds:

MHz:
333
400
466
533
600
666

Figure 3.9: Unusable Ideal Speed Diagram with Micro-Benchmarks at 400 MHz

25

Space in the model graph is partitioned into seven zones with six border
lines. Each partition consists of the space between two lines or one line and
the graph boundaries. Each line is attributed with a border speed fline ∈
{400, 466, 533, 600, 666, 733}. The points which set below this line are to be of
that ideal speed. More precisely, the partition above a border line is to contain
all sample points with fpoint = pred(fline), whereas the partition below the line
is to hold all sample points with fpoint = fline.

For each possible border line points are classified into four misplacement
sets as shown in table 3.2. Consequently, these sets change with varying lines
being considered. Points setting not into any of these sets are defined to be
placed correctly. The geometrical aspect of this classification is shown using
exemplary points in figure 3.10. An optimization method is used to balance the
border lines in between the points. This method has to provide constraints for
the sets and the position of the line.

Set: Position: Constraint: Misplacement:

A above line fpoint > fline total
B below line fpoint < pred(fline)
C above line fpoint = fline uncritical
D below line fpoint = pred(fline)

Table 3.2: Classification of Points into Sets

y

x

correct placement:
fpoint=666=fline,
below line

fline=666

uncritical misplacement (set D):
fpoint=600=pred(fline), below line

total misplacement (set B):
fpoint=533<pred(fline), below line

total misplacement (set A):
fpoint=733>fline, above line

uncritical misplacement (set C):
fpoint=666=fline, above line

Figure 3.10: Geometrical Aspect of Classification Sets

26

The following weighting method was found appropriate for finding good
border lines. It consists of four rules which have decreasing priority. A rule of
higher priority has to be satisfied before selecting lines according to subsequent
rules begins. That means, a found minimum for |A ∪B| has to be kept while
searching for lines that make |C| < |D|, for example. The rules are applied to
each of the six border lines separately.

1. Minimize |A ∪B|.

2. Minimize |C ∪D|.

3. Keep |C| < |D| if possible.

4. Maximize the distance to the nearest point placed correctly.

To exclude applications seldom accessing main memory for computation
from throttling the border line with fline = 733 was fixed to a memory access
rate of 0.1 %. This value was found experimentally.

The algorithm places six border lines into one model diagram. It is applied
to each of the seven model graphs. Figures 3.11 and 3.12 show a selection of
two out of the seven graphs from the model used for this work. They contain
points of the micro-benchmarks as well as the resulting border lines.

The current implementation for finding border lines uses a brute-force al-
gorithm to find the best matches out of a set of eight million preassumed lines
per diagram. By using a weighting function the best matching line is reported.
Of course, this method is not the optimal solution as it takes some time to
generate a model. For example a geometrical approach would be more elegant.
But as the model is generated only once for a target system the usage of a slow
brute-force algorithm is acceptable while easing the implementation.

To simplify weighting the four rules were put together into a one-dimensional
function where factor n is a number bigger than the count of sample points in
the diagram. Making use of the fact that the distance d to the nearest correctly
placed point is always less than or equal to

√
2 four dimensions from the rule-set

may be simply collapsed into different value ranges:

n > |C ∪D| > 0.5 >

√
2

10

The best match is found by maximizing the weighting function:

w = − n · |A ∪B| − |C ∪D| + k +
d

10

where k =

{
0.5 : |C| < |D|
0 : else

Border lines produced by the model generator are stored as axis intercepts
and gradients. Execution speed (identifying a graph) and predicted ideal speed
(also called destination speed) build indices to a table with all 7 Ö 6 border
line entries. One group of six table entries refers to exactly one model diagram.
The table may be loaded by the corresponding kernel module that implements
the model policy. Table 3.3 represents the stored form of the model data.

27

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
em

or
y

R
eq

ue
st

 P
er

ce
nt

ag
e

(E
ve

nt
 0

x1
0)

Instruction Execution Percentage (Event 0x7)

Policy: 10% max.
Performance Loss

Base Speed:
333 MHz

Destination
Speeds:

MHz:
333
400
466
533
600
666
733

333/400
400/466
466/533
533/600
600/666
666/733

Figure 3.11: Model Diagram with Micro-Benchmarks at 333 MHz

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
em

or
y

R
eq

ue
st

 P
er

ce
nt

ag
e

(E
ve

nt
 0

x1
0)

Instruction Execution Percentage (Event 0x7)

Policy: 10% max.
Performance Loss

Base Speed:
733 MHz

Destination
Speeds:

MHz:
333
400
466
533
600
666
733

333/400
400/466
466/533
533/600
600/666
666/733

Figure 3.12: Model Diagram with Micro-Benchmarks at 733 MHz

28

Execution Destination Gradient: Axis

Speed: Speed: Intercept:

333 400 +0.000000 +0.011799
333 466 +0.000393 +0.009879
333 533 +0.000000 +0.009055
333 600 +0.001571 +0.007028
333 666 +0.005498 +0.003219
333 733 +0.000000 +0.001000
400 400 +0.001571 +0.009785
400 466 +0.001178 +0.008901
400 533 +0.000393 +0.008404
400 600 +0.002749 +0.006217
400 666 +0.005498 +0.002859
400 733 +0.000000 +0.001000
466 400 +0.001571 +0.008445
466 466 +0.002356 +0.007668
466 533 +0.001571 +0.007232
466 600 +0.003142 +0.005661
466 666 +0.005498 +0.002723
466 733 +0.000000 +0.001000
533 400 +0.001571 +0.007360
533 466 +0.001571 +0.007187
533 533 +0.002356 +0.006422
533 600 +0.003142 +0.005457
533 666 +0.005891 +0.002487
533 733 +0.000000 +0.001000
600 400 +0.000393 +0.007012
600 466 +0.001571 +0.006488
600 533 +0.002356 +0.005740
600 600 +0.003534 +0.004853
600 666 +0.005891 +0.002379
600 733 +0.000000 +0.001000
666 400 +0.000393 +0.006298
666 466 +0.001963 +0.005691
666 533 +0.002749 +0.005250
666 600 +0.003142 +0.004611
666 666 +0.005891 +0.002276
666 733 +0.000000 +0.001000
733 400 +0.001178 +0.005524
733 466 +0.001571 +0.005309
733 533 +0.001963 +0.004995
733 600 +0.003142 +0.004334
733 666 +0.005891 +0.002196
733 733 +0.000000 +0.001000

Table 3.3: Model Data in Tabular Form

29

3.3.5 Application of the Model

For analyzing the following steps by means of figures 3.11 and 3.12 these di-
agrams have to be considered without points, as if they contained only the
border lines.

Querying the model for an ideal speed prognosis works as follows: The two
performance event percentages yield the coordinates of a point for a certain
graph. The graph is selected according to the execution speed of the application
when the percentages were measured.

The diagram will be queried for the ideal speed prognosis, next. Therefore,
a line suitable for the point has to be found. Beginning with the line which
is attributed with the fastest speed, searching is done towards the slowest one.
The first line above the point is considered as a match. The speed attribute of
that line is the ideal speed prognosis of the model. If the point is not below
any line ideal speed prognosis defaults to 333 MHz.

Figure 3.13 shows a hypothetical model diagram and how application points
would be colourized according to it. Each point in the diagram displays the de-
dicated ideal speed for its surrounding area. In contrast to figures 3.11 and 3.12,
figure 3.13 contains points which are coloured according to the model prognosis
already. The border lines in this hypothetical diagram intersect strongly to
demonstrate the special mode for querying the model.

I am going to exercise some steps of querying the hypothetical diagram from
figure 3.13. Exemplarily, the diagram will be coloured completely, catching any
pitfall of possible application points. Numbers and ranges denote areas in the
graph. At first, the blue line is considered colouring both areas (1–2) below it
blue. The intersection of the cyan line does not matter here. The cyan line is
focused next. It fills any area below itself and above its blue predecessor line to
be cyan (3–7). Again, intersections from subsequent lines do not play any role
yet. Continuing with the green line areas 8 through 10 become green. Areas
below predecessor lines (1–5) are not considered any more. Exactly the same
method is applied to the remaining lines. When the red line is finished, the last
area yet uncoloured (11) is filled magenta according to the default speed.

The data flow pictured in figure 3.14 shows the relation of the Process Cruise
Control model to a car cruise control or any other controlled system. Sampled
event percentages along with corresponding execution speed run into the model
policy. An ideal speed prognosis is made and applied to the application. Again,
the new CPU speed is fed to the model along with newly measured event per-
centages closing the loop of control.

3.3.6 Divergent Ideal Speed

While most applications are scheduled for a definitive ideal speed the pure
geometrical approach for partitioning the model diagrams introduces a problem:
Some applications (and even micro-benchmarks) spawn points that are not
destined to one constant ideal speed by the model. That means the sample point
for an application which lies just above a certain border line in one diagram sets
just below the corresponding border line in another diagram. Such applications

30

y

x

333
400
466
533
600
666
733

333/400
400/466
466/533
533/600
600/666
666/733

MHz

1 2

3

4

5

6

7

8

9

10

11

Figure 3.13: Geometrical Aspect of Model Diagram and Application Points

Model PolicyApplication

Event
Percentages

CPU Speed
During Measure

New CPU
Speed

Figure 3.14: Process Cruise Control Loop

31

become scheduled with two different ideal speeds, rotatively. We say they have
divergent ideal speed. This is a lack of the model, that is an uncertainty in
the neighbourhood of border lines. Consequently, divergent ideal speed always
covers only two speeds between which scheduling oscillates.

The effect may already be shown from sample points of micro-benchmarks
and the generated model. A cyclic test examines each micro-benchmark whether
it becomes scheduled to a definitive ideal speed or cycles between different
speeds. The cyclic test relies just on the model data and the sample points.
Therefore, no further measurement is needed to indicate the existence of appli-
cations with divergent ideal speed.

For example, out of 212 micro-benchmarks used for this approach only
four become associated to divergent ideal speeds. Table 3.4 displays the con-
tradictory destination speeds for ideal speed prognosis on these four micro-
benchmarks. Participant speeds of each cycle are typeset bold.

Execution Speed:

Destination Speed: 333 400 466 533 600 666 733
fimul21 533 533 533 466 466 533 466

Micro- memmix1-9 400 333 400 333 400 333 400
Benchmark: mul3 400 333 333 333 333 333 333

mul7 600 600 600 600 533 533 466

Table 3.4: Micro-Benchmarks Scheduled to Conflicting Destination Speeds

For example, when considering benchmark mul7 starting at an initial speed
of 733 MHz it first becomes scheduled to 466 MHz. From there it is directed to
600 MHz entering the divergence loop. From now on, the benchmark will be
scheduled rotatively with 533 and 600 MHz.

In systems with considerable delay for switching CPU speed overhead may
become a problem. Frequent adjustments of CPU speed for divergent ideal
speed could slow down execution. The amount of overhead is dependent on
how much time passes by between two subsequent prognoses. To minimize
such overhead a scheduling threshold may be implemented enlarging intervals
between subsequent CPU speed adjustments.

3.4 Related Work

This project grounds on considerations for indirectly accounting energy in run-
time presented by Joseph and Martonosi [JM01] and by Bellosa [Bel01a]. Meth-
ods to correlate energy consumption with performance counters were adopted
to the Process Cruise Control model. Concepts for dynamic frequency and
voltage scaling and corresponding strategies for speed regulation were already
presented by Morrey et al. [MGG01] and Pouwelse et al. [PLS00]. Policies
presented in these papers regard application-level and scheduler information to
control frequency scaling. Performance monitoring counters are not considered
to identify applications for throttling.

32

Further work details discussion of energy-efficiency in context of dynamic
frequency and voltage scaling [MLH+01]. It is shown that points of lower perfor-
mance could well be less energy efficient than points with higher performance.
While originating from the view of a complete system, these considerations
share direction with results of some work focusing on memory dependent pos-
sibilities for saving energy. Likewise, this project was initially inspired by the
work of Vollrath et al. [VHS98] concentrating on SD-RAM power consumption
for varying memory access patterns. Nevertheless, we could not show signifi-
cance on the discussed memory related effects in our system.

As implementation and validation will outline more elaborate concepts for
data acquisition and collection like resource containers [BDM99] may improve
accurateness of the Process Cruise Control system.

33

4 Implementation

The implementation of the Process Cruise Control model has to fulfill three
central tasks:

1. Measuring event percentages of associated tasks.

2. Considering an ideal speed for these applications.

3. Controlling the speed of processes under cruise control.

To obtain utilization characteristics for different CPU units the micro-
benchmarks have to be monitored using the performance counters contained
in the 80200 CPU. Accessing and accumulating such performance monitoring
counters has already been implemented by several packages designed for PC
and similar architectures. We chose the Perfctr-Package [Pet01] which is also
used by PAPI [BDG+00], [Muc01], a common interface for programming per-
formance counters. An extended version of the Perfctr-Package represents the
first of four modules in the implementation which is shown in figure 4.1.

Linux Scheduler

evntscale
Power Cruise Control

evntscale_policy

Virtual and Energy
Performance

Counters

Global
Performance

Counters

Static
Frequency

Scaling

Virtual
Frequency

Scaling

Hardware

s
c
a
l
e

p
e
r
f
c
t
r

Figure 4.1: Kernel Module Structure

Controlling the overall data flow and considering an ideal speed is split into
two further modules. The central module evntscale manages the cooperation
of the modules. The policy module (evntscale policy) predicts ideal speeds
and administrates the model data table.

34

Separating the policy into a module of its own brings in better replace-ability
for cruise control strategy: New models could easily be implemented and used
with the existing three modules replacing just the current policy module.

A fourth module is responsible for frequency scaling. Although its initial
implementation had been taken from the LART project [BM02], [PLS00] the
module was majorly rewritten to support virtual frequency scaling.

4.1 Frequency Scaling

For executing micro-benchmarks and other tests at different speeds a basic fre-
quency scaling interface is necessary. This static interface allows to change the
overall clock speed of the system affecting all processes. Per-process-frequency
scaling (also known as virtual frequency scaling) is based on top of static fre-
quency scaling. Both static and virtual frequency scaling are implemented with
the module scale.

For the virtual part each process becomes attributed with its individual
speed. However, the scheduler had to be extended for a callback-stub. This
stub enables the module to adjust the CPU speed just after changing processes.
The attribute may also indicate that the process has no individual speed at all;
it is scheduled with the global speed, then. All processes have void individual
speed by default. Thus, they are scaled with the global frequency when the
module comes up. As the individual speed attribute of a process is stored with
its thread struct, child processes inherit the setting of their parent.

Actual change of the core clock is realized by storing the new speed value to
the CCLKCFG configuration register of the 80200 processor. This register may
also be read to get the current speed, but after starting up the module keeps
its own copy of that value for easier access. The value stored to and read from
the CPU register is not the frequency in MHz, but rather a 4 bit speed value.
The relation between speed values and frequencies is shown in table 2.1.

Along with changing the core clock the loop for short delays in the kernel
needs to be adjusted. As calibration of the BogoMIPS value loops per sec
takes some time it is done for each available CPU speed during module initial-
ization. The resulting values are stored for later use, allowing fast adaption of
the delay loop.

Interfaces

The module scale has two control interfaces: One for the global speed and
another for the individual process speeds. A process may write or read the
overall clock speed as a register value as a decimal on a single line to or from
/proc/scale.

The interface for per process frequency scaling is implemented similarly.
When being read, it gives a list of processes currently under control of dynamic
frequency scaling. The list maps process ids (PID) to the individual speed
setting.

Writing is line oriented and associates a certain process with an individual
speed. Using zero for individual-speed releases the process from control through

35

virtual frequency scaling, making it disappear from the list mentioned above.
The format of the control file /proc/vscale is as follows:

<pid> <individual-speed>

For use with the cooperating modules two interfaces are provided. Both set
the virtual speed of a process, whereas the latter one does not apply the actual
core clock setting directly. Instead, frequency is scaled first when processes are
switched.

void set thread speed (struct thread struct *thread, u32 speed)
void set thread speed lazy (struct thread struct *thread, u32 speed)

4.2 Energy Performance Counters

The Perfctr-Package [Pet01] supports global and virtual performance counters.
Virtual counters are used to obtain per process information about resource
usage while global counters proved helpful to obtain utilization characteristics
for different CPU units when executing micro-benchmarks. Of course, some low
level routines which access the actual hardware registers had to be adapted for
the 80200 processor. Additionally, in conjunction with Process Cruise Control
some extensions to pure virtual performance counters were necessary.

Basic virtual performance monitoring behaves like shown in figure 4.2 (a):
Forking a new process inherits the current virtual performance counter con-
figuration to the child process. When the child exits, its counter values are
accumulated to its parent if the child did not modify its inherited performance
counter configuration. Thus, counters of the parent become debited for actions
of the child.

For Process Cruise Control each process is considered for its own. Accumu-
lating counter values of children would interfere with resource usage observation
for the parent process.

For example, consider a memory intensive parent process that forks a child
process which makes massive usage of arithmetics. Both processes are under
Process Cruise Control. The parent process — as accessing memory very often
— is scheduled to a slow speed, according to the policy of the model. The child
process will be scheduled to a fast speed — it uses the CPU only.

What would happen if the counter values of the child were accumulated to
its parent? As counter values reflect the resource usage pattern for Process
Cruise Control it looks as if the parent process were CPU intensive. Thus, the
model would react by scaling the parent process to a faster frequency.

To circumvent such wrong decisions the accumulation of child counter values
was disabled for energy virtual performance counters. These counters represent
an extension to normal virtual counters; their behavior is shown in figure 4.2 (b).
Virtual counters are transformed to energy performance counters by a special
function call in kernel space:

int vperfctr energy control (struct thread struct *thread,
struct perfctr control control)

36

Parent Child Parent Child

copy copy

accumulate
child vperfctr

no
accumulation

Virtual performance counter: Energy performance counter:

(a) (b)

Figure 4.2: Virtual vs. Energy Performance Counters

Activating a virtual performance counter through this call sets the energy
mode for it. This energy mode will be canceled when the counter is disabled
through the same call. These semantics still make using virtual performance
counters for processes which are not under Process Cruise Control possible.
Beyond that, performance counters are protected against user space accesses
when brought into the energy mode by the special function call.

4.3 Process Cruise Control

The Process Cruise Control kernel module (evntscale.o) is the central instance
which controls the cooperation of the other modules and the kernel:

� It hooks itself into the context switch and timer queue of the kernel to
get called whenever necessary.

� It makes use of energy performance counters to obtain information about
the processes put under its control.

� It delegates the decision for a new per-process CPU speed to the policy
module explained in section 4.4.

� Finally, it sets a new per-process CPU speed using virtual frequency scal-
ing.

The implementation consists of two parts: A small callback stub is bound
into the kernel whereas the major part of the system is contained in the kernel

37

module. The callback stub becomes activated just before processes are switched
by switch to. If the module has registered its control function with the stub,
the function is called and is passed the old thread as a parameter.

Initialization

When loading the module, it hooks the Process Cruise Control function
(evntscale adjust thread) into the callback stub which resides in the ker-
nel. To control processes which exhaust their time slice between context
switches, the module registers its control function with the timer interrupt
as well. Thus, the control function becomes called periodically and can rescale
the execution speed of the process.

Control Interface

The module creates an entry in the proc-file-system (/proc/evntscale) which
is used to control the set of tasks which are put under Process Cruise Control.
The list maps process ids (PID) to a value which can be evaluated by the pol-
icy: A non-zero value means Process Cruise Control is active for the identified
process. Writing a value of zero into the proc-file deactivates control of event-
driven frequency scaling for a certain process and purges its entry from the
list. Children of tasks under Process Cruise Control inherit the energy-saving
setting of their parents.

The format of the file is line oriented; a line consists of a PID to value
mapping and is built as follows:

<pid> <value>

Control Function

The control function (evntscale adjust thread) is activated before pro-
cesses are switched or when the timer has ticked. It manages the event-driven
frequency scaling.

At first, the virtual energy performance counters are accumulated. The
values of the counters are, together with the thread struct, passed to the Process
Cruise Control policy. The policy is queried whether the speed for the current
process has to be altered.

If the speed has to be altered, the virtual frequency scaling mechanism is
used to do the job: During a timer interrupt the speed has to be adjusted
instantaneously using set thread speed. When called by the scheduler the
new speed is stored in the thread struct only by set thread speed lazy. The
CPU is not adjusted to the new speed as processes will switch immediately,
anyway. When reactivating the current process the new speed setting will take
effect as it is interpreted by the virtual frequency scaling.

38

4.4 Event-Driven Frequency Scaling Policy

The decision policy for Process Cruise Control implementation is divided into
a separate module easing exchange of policies for future models.

Currently, only one policy exists to implement the model discussed in this
thesis (evntscale policy.o). The policy maintains a dynamic lookup table
with the frequency scaling directives. Each directive is represented by a border
line from the model stored as gradient and axis intercept. The table consists
of 7× 6 border line entries. This corresponds to seven model diagrams, one for
each base speed.

In addition, seven threshold values are stored, again one for each base speed.
Being heuristic figures threshold values do not appear in the model diagrams.
They tell how old a performance counter sample has to be to consider it mean-
ingful. A threshold value expresses the elapse in clock cycles. Scheduling thresh-
old values is considered for three reasons:

1. Minimizing overhead caused by divergent ideal speeds.

2. Preventing points from the bottom left corner of a diagram from influ-
encing cruise control decisions.

3. Obviating overhead caused by logging debug messages.

Fortunately, our implementation does not suffer from significant overhead
when switching CPU speeds. As already explained in section 3.3.6 the first point
becomes negligible, therefore. The actual switching overhead will be discussed
in section 5.1.

During debugging, the threshold value should range from about 5 ms to
10 ms. Smaller values would result in non-negligible overhead from logging
each policy decision. For normal use the threshold values are preset to 500 µs.

Policy Interface

The policy module creates its own proc-file-system entry
/proc/evntscale policy through which policy and thresholds can be
written to and read from the module. Reading the file shows the whole table
including the thresholds. Writing to the file is line oriented, there are two
different sorts of lines:

<source-speed> <destination-speed> <gradient> <axis-intercept>

fills one entry in the lookup table. The entry is determined by source-speed
and destination-speed. The entry itself being a border line is formed by its
gradient (m) and axis-intercept (t).

<source-speed> <threshold>

sets the threshold value for a certain source-speed. The value is given in
clock cycles.

39

Query of the Policy

The policy is queried by the Process Cruise Control using the function
evntscale policy calculate speed and gets the thread struct of the pro-
cess to be considered. The query returns a new speed for that process or zero
if the speed does not change. The following variables are used to decide on a
new speed:

� Time stamp counter (TSC)

� Both performance counters (PMC), which currently are number of in-
structions executed and memory requests (event ids 0x7 and 0x10 in ta-
ble 2.2)

� Current speed of the process

The procedure that controls the cruise of processes does not rely on an ag-
ing strategy or anything similar. Old samples are neither stored nor used for
prognosis. Instead, sample values are accumulated until they are considered old
enough. Age and event count values are first reset when using them for prog-
nosis. Before having convenient age the values are not touched, no prognosis is
made and per process speed will not be changed, consequently.

The actual query of the policy works as follows: At first, the age of the
sample is checked. If TSC is less than the threshold corresponding to the
current speed no decision is made. Zero is returned keeping the current speed.
Otherwise the sample is converted to a point for a diagram by calculating its
coordinates:

x =
pmc0

tsc
y =

pmc1

tsc

Afterwards, the sample values of the virtual performance counters are reset.
One of the seven table sets is selected according to the current (source) speed.
Beginning with the fastest destination speed it is checked if the point sets below
a corresponding border line (y < m ·x+t). The first matching line is picked and
its destination speed is returned. As there are only six border lines but seven
speeds the slowest speed being the default speed is selected if the point does
not set below any line. This method corresponds to the proposed application
of the model from section 3.3.5.

While coordinates, gradient and axis intercept are expressed here and in
the policy interface file using real numbers, the actual internal arithmetics are
simulated using integer numbers. From outside they look like fixed point arith-
metics with six decimals. This is because floating point arithmetic is banned
from kernel space.

40

Control File Format Summary

proc-File: Format: Function:

scale <speed> Global Speed
vscale <pid> <speed> Per-Process Speed
evntscale <pid> <flag> Enable/Disable Cruise

Control for a Process
evntscale policy <src> <dst> <m> <t> Policy Rule

src: Source Speed
dst : Destination Speed
m: Line Gradient
t : Axis Intercept

<speed> <threshold> TSC Minimum
Age for speed

Table 4.1: Control File Format Summary

41

5 Validation

5.1 Overhead

Before going on to energy and performance statistics, focus will be set on over-
head caused by using Process Cruise Control. Reading performance counters,
querying the model and adjusting CPU speed all take some time to complete.
As these steps are taken whenever switching tasks which are under Process
Cruise Control it has to be considered if the overhead introduced by these ac-
tions is still reasonable.

Table 5.1 shows durations measured from the Linux scheduler and the exten-
sions that were made to it for event-driven frequency scaling. Elapses, respec-
tively overheads, in this table are displayed both in CPU cycles and equivalent
time. As processor frequency may be altered from 333 MHz up to 733 MHz
constant amounts of cycles correspond to ranges in time. Vice versa, constant
time values correspond to ranges in cycles.

Task, Overhead/Elapse

Sub-Task: Cycles: Time:

Scheduler overall < 140 000 < 420 µs
Task switch > 26 000 > 35 µs
Event-scaling 6 000 – 18 000 8 – 54 µs

Read PMCs 184 250 – 550 ns
Adjust speed 1 000 – 2 300 3.1 µs

Table 5.1: Overhead Factors

Scheduler overall values outline the size of the procedure that was extended
for Process Cruise Control. As we positioned our expansion to the Linux kernel
before and after the task switch, which is only one part of the whole scheduling
routine, its timings are given here for comparison. Whenever tasks are switched
service routines for event-driven frequency scaling are called.

Event-scaling routines consist of several sub-tasks, namely querying the
model which involves some amount of calculations, reading performance coun-
ters and adjusting processor frequency. Both latter tasks are denoted separately,
policy calculations take the rest of the time used for event-scaling.

Reading performance monitoring counters needs a fixed count of cycles while
adjusting speed takes a fixed amount of time for recalibrating the PLL which is
used to multiply the input clock of the processor. Fortunately, both mentioned
hardware dependent actions don’t generate too much overhead. Consequently,

42

calculation for the policy of Process Cruise Control surpasses hardware factors.
Comparing elapses for task switch and event-scaling it is obvious that both

values range in the same dimension. We can say that the task switch is elongated
less than 70 % of its pristine duration. When comparing the elongation caused
by Process Cruise Control to the overall scheduler times it shows that overhead
introduced by the extensions rates below 15 %.

5.2 Energy Savings

In this section I am going to discuss actual energy savings resulting from Process
Cruise Control along with corresponding performance loss caused by slowing
down the target system.

First, the authentic tests from section 3.2.1 are revisited. These are consid-
ered as homogenous applications as their behavior on accessing main memory
should be mostly constant over the whole execution time. Later, an inhomoge-
neous test application will be analyzed. Its access rates for main memory vary
strongly between single phases of the execution.

To prove our approach on Process Cruise Control test applications are ana-
lyzed on execution time, energy and mean power consumption. All three values
are measured both with and without Process Cruise Control. In the latter case
applications run with a constant speed of 733 MHz.

Each value from application of Process Cruise Control was normalized to
the corresponding value without event-driven frequency control. Savings, re-
spectively leakages, are displayed as percentages in figures 5.1 and 5.2.

5.2.1 Homogenous Applications

To prove our approach for homogenous main memory access rates the initial
test applications find/grep, gzip, djpeg and factor from section 3.2.1 are
revisited. One additional test application, namely rjpeg, is introduced anew
for discussion about weaknesses of the model.

As expected, performance loss ranges below or about 10 % for all four orig-
inal test applications. With mean power reduction always ranging above corre-
sponding performance loss, energy is saved for each test.

Along, about 10 % of energy was saved for memory intensive applications
as find/grep and gzip. Less energy was saved for tests more concentrating on
CPU like djpeg and factor. These savings solely result from throttling CPU
speed.

Test rjpeg shows how the model fails in limiting performance loss if the
application strongly uses the Linux pipe mechanism. Accounting main memory
accesses caused by pipe operations of the connected applications does not work
cleanly. More memory transactions than accounted are actually performed. In
consequence, Process Cruise Control throttles exaggeratedly.

While both tests find/grep and rjpeg make use of pipes, why is the first
one not affected by missing pipe accounting? To find out their command lines
have to be regarded. . .

43

11,2

8,1

3,3
2,5

9,2

17,5

14,9

10,9
11,5

21,4

7,7 8,0
8,6

10,2

14,8

find/grep gzip djpeg factor rjpeg
0%

5%

10%

15%

20%

25%

Energy Saved
Mean Power Reduction
Performance Lost

Figure 5.1: Savings/Leakages of Homogenous Applications

find/grep: find <dir-list> -type f | grep <string>
rjpeg: djpeg <file> | cjpeg

Computation of the first test is concentrated to grep in our test constella-
tion. Only a relatively small list of files is passed through the pipe of find/grep.
Copy actions of the kernel don’t carry weight here. In contrast, rjpeg balances
execution to decompression and recompression. Considerable amount of data
— the uncompressed image — has to be passed through the pipe causing more
copy actions in the kernel.

A more elaborate accounting of kernel activities is desirable. Mechanisms
like resource containers and performance counters with distinction between ker-
nel and user space could assist further approaches.

5.2.2 The Inhomogeneous Application

To prove the real usability of our approach an inhomogeneous test application
was designed. Limitations of the target system denied using existing bench-
marks etc., which have distinguishable phases of execution with varying main
memory access rates. As a matter of fact we were not able to allocate enough
space in RAM-disk for storing these tests and appendant runtime environments.

The inhomogeneous test used here involves several subtasks which are de-
scribed in table 5.2. The split up savings and leakages of the individual tasks
along with the totals are shown in figure 5.2.

As expected, very memory intensive tasks like free db and memcpy gain
energy-efficiency from Process Cruise Control without losing measurable per-
formance. Average memory access rates from fill string and file rw result

44

Sub-test: Description:

loop Simple for-Loop
fact1 Multiplication Loop
primes Eratosthenes’ Sieve
fact2 Conditional Multiplication Loop
file rw Write Data to a File and Verify
fact3 Recursive Multiplication Loop
read db Read Word Database into Memory
sort db Quick Sort
search db Full Text Search in Database
fill string Dump Word Database Using strcat
free db Release Memory
memcpy Swap Blocks of Memory

Table 5.2: Sub-Tasks of the Inhomogeneous Application

lo
op

fa
ct1

pr
im

es
fa

ct2
fil

e r
w

fa
ct3

re
ad

 db
so

rt
db

se
ar

ch
 db

fil
l s

tri
ng

fre
e d

b
m

em
cp

y
to

tal

0%

5%

10%

15%

20%

Energy Saved
Mean Power Reduction
Performance Lost

Figure 5.2: Savings/Leakages of the Inhomogeneous Application

45

in energy saving with considerable but limited impact on performance.
Tests with low memory access rates as read db, sort db and search db

become slowed down considerably. However, constraints for maximum perfor-
mance loss are satisfied. Depending strongly on CPU speed, the performance
of these sub-tasks suffers most, compared to other tests. At least, little energy
is saved while performance decreases considerably.

Sub-tasks with very low memory access rate fall below the heuristic border
line attributed with 733 MHz (see section 3.3.4). Accordingly, loop, fact1–
fact3 and primes are not slowed down making performance loss disappear.
Energy leakages of these tests result from logging overhead. The overhead was
caused by additional memory accesses of klogd. Logging with klogd had to be
introduced to monitor schedule progress detailed below.

Rightmost bars in diagram 5.2 display overall values of the inhomogeneous
test. As it concentrates on alternating resource usage between sub-tests and
has many sub-tasks, which are not very memory intensive, overall savings rate
relatively low.

Figure 5.3 displays trends during execution of the inhomogeneous test: Red
graphs represent values measured at a constant execution speed of 733 MHz
while green graphs show results from activated Process Cruise Control. The
upper diagram denotes power consumption while schedule progress indicating
CPU speed for the current point of execution and durations of the subtasks are
displayed in the lower part.

5.3 Effective and Predicted Ideal Speed

The model generation algorithm has to find border lines that best match test
points gathered from micro-benchmarks. This step is correspondent to a quan-
tization of the ideal speed distribution in the prediction diagram. Consequently
not every micro-benchmark point falls into the zone with matching ideal speed.

Furthermore, points collected from tests or applications which, of course,
were not used for the generation of the model may have another effective ideal
speed than the model predicts. The effective ideal speed is the speed at which
the test ran most energy-efficiently. The predicted ideal speed is that speed the
test would be scheduled under Process Cruise Control. Figure 5.4 displays the
position of the test points from the homogenous applications at an execution
speed of 333 MHz. The measured ideal speed of a test is shown by its colour
and shape. The predicted ideal speed of the same point is given by its position
according to the query method explained in section 3.3.5.

While tests find/grep, djpeg, factor and gzip have equal predicted and
effective ideal speeds the latter test is near a model border already. The test
rjpeg is scheduled with incorrect ideal speed. Its predicted ideal speed is higher
than the effective one. Although, prediction error in scheduled speed resulting
from different predicted and effective ideal speed is ranging, relatively low, at
about 10 %.

46

60

62

64

66

68

70

72

74

76
Po

w
er

 C
on

su
m

pt
io

n
 P

/m
W

733 MHz Fixed Speed
Process Cruise Control

0 5 10 15 20
t/s

333

400

466

533

600

666

733

Sc
he

du
le

d
Sp

ee
d

 f
/M

H
z

Su
b-

T
es

t
D

ur
at

io
ns

Figure 5.3: Power and Scheduling Trend of the Inhomogeneous Application

47

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
em

or
y

R
eq

ue
st

 P
er

ce
nt

ag
e

(E
ve

nt
 0

x1
0)

Instruction Execution Percentage (Event 0x7)

Policy: 10% max.
Performance Loss

Base Speed:
333 MHz

Destination
Speeds:

gzip

find/grep

factor

djpeg

rjpeg

MHz:
400
466
600

333/400
400/466
466/533
533/600
600/666
666/733

Figure 5.4: Ideal Speeds of Homogenous Applications

5.4 Shortcomings of the Implementation

Of course, the current implementation of Event-Driven Frequency Scaling is an
experimental platform. While creating, debugging and using this implementa-
tion some weak details showed up.

Code Locality

The current implementation of Process Cruise Control consists of four separate
kernel modules. As each module becomes allocated into its own memory page
TLB misses are generated for every call between the four modules. Resulting
overhead could be decreased by merging participant code into one single kernel
module.

Further, module code is called back from the scheduler referring in additional
overhead. Instead, this code should be integrated into the scheduler itself thus
moving it into the kernel. The activation of this code may be controlled by
semaphores when loading and unloading the module. Time consuming callbacks
can be avoided then.

Policy Query

Querying the policy currently needs time-expensive calculations to consider an
ideal speed for the given query values using a table with gradients and axis
intercepts presented as decimal values. Workarounds for missing floating point
operations in the kernel not only take much time for calculation but are tricky

48

to implement as we have observed from practical reimplementation in student
assignments [FS02]. In addition, the current model is only capable of linear
borders between partitions of equal destination speeds. As is thinkable, other
platforms could yield model diagrams with borders that could be approximated
with polynomial functions only.

Section 5.3 deals with the difference between effective and predicted ideal
speed. This leak in the model results from design: On the one hand, the border
generation quantizes the initially fine-spread ideal speed distribution; on the
other hand, knowledge of ideal speed zones for prognosis is limited due to a
limited number of micro-benchmarks influencing model creation.

Weak Accounting

As mentioned in section 5.2.1 current Process Cruise Control has problems with
the pipe mechanism in the Linux kernel. This lack appears due to missing poli-
cies for kernel handlers and interrupts. For example, a user process that caused
or participated in causing some kernel transactions or background activities:
The energy for executing these operations is not accounted correctly to origina-
tor processes, that is it is not charged for the involved processes. The current
implementation lacks mechanisms to accumulate information on activities re-
lated only indirectly to inducing processes. Such accounting would be achieved
with multiple policies for different code sections, for example.

Despite that, means for data acquisition are weak. Performance monitoring
counters were initially created as a mechanism for accounting events correspond-
ing to system efficiency, data throughput and performance profiling. Abusing
these counters for energy or ideal speed prognosis has limited success as a conse-
quence of the very beginning of this approach. Currently, no other means than
performance monitoring units are available for collecting resource usage infor-
mation. Gathering such information directly from similar counters dedicated to
energy accounting is not possible as such units have not been implemented yet.
Additionally, performance monitoring counters used in this system do not pro-
vide any distinction between kernel and user space. Using separate accounting
policies for both processor modes would be inefficient as underlying software
could not be supported or accelerated by hardware.

Like other processors, the Intel 80200 just contains one time stamp and two
performance monitoring counters. Along with that, the current implementa-
tion of the model makes no use of counter multiplexing for gaining statistics
about more than two events. For considering only singular effects of energy
consumption, simultaneous sampling of two events may be sufficient. To ob-
tain information on the energy state of a complete system considering only two
events would not serve the purpose.

49

6 Conclusions

6.1 Aims of this Work

The approach introduced in this thesis achieves the saving of energy by Event-
Driven Frequency Scaling. The method for saving energy by these means was
called Process Cruise Control.

Before finding any methods a target system had to be selected upon require-
ments for this approach: The system had to provide performance monitoring
capabilities as well as functions to scale processor core clock. Consequently,
Intel’s 80200 processor was used as target system. While measuring power con-
sumption and performance loss of the system for several test applications and
benchmarks at different processor speeds scenarios were found when throttling
CPU by frequency scaling saves energy while only slightly impacting perfor-
mance. These usage patterns were identified with accumulated memory ac-
cesses.

In the next step, values collected from the performance monitoring unit of
the processor were investigated for indicating accumulated memory accesses.
Thus, by relating event rates from performance counters to possible energy
savings while limiting maximum performance impact a model for speed prog-
nosis was found: This policy predicts an ideal speed for an application from
the event rates that are created. The ideal speed is selected with respect to a
limited performance decrease of the controlled application.

The model found appropriate for this approach was related to other work
that directs to the same intention: systems that are energy-aware, controlling
their power state on their own, thus adapting automatically to the current need
and urgency of computation. As well, concepts were illuminated that would be
helpful for solving weaknesses of the approach which are discussed later.

Subsequently, the Linux kernel was modified and extended to support fre-
quency scaling, performance monitoring and — basing upon these — Process
Cruise Control. The actual implementation showed the conceptual feasibility
of Event-Driven Frequency Scaling: Energy can be saved by watching resource
usage and throttling applications which would waste energy otherwise. A con-
trol loop is built to regulate execution speed of tasks to save energy. Resulting
performance impact is limited by the policy of Process Cruise Control.

This approach works without support from the application. Programs to be
used in a system with Process Cruise Control do not need to be energy-aware.
Thus, any application may be used as is; neither recompilation nor modification
are required.

The policy does not need any preliminary information of the applications

50

that are supposed to run under its control. The only data to be gathered in
advance are attributes of the target platform. These characteristics are used to
generate model data which in turn are the working set for the Process Cruise
Control policy. Although sampling platform data with micro-benchmarks and
automatically generating the model are time consuming jobs, they have to be
done only once for each platform.

Finally, the implementation was examined for energy efficiency. It was
shown that the current approach satisfies its design goals, mostly: while limiting
performance impact a considerable amount of energy was saved. Furthermore,
shortcomings of the current model and implementation were discussed. Conse-
quences to solve those problems will be displayed next.

6.2 Future Work and Improvements

Matrix Model

Introducing a matrix oriented model eliminates all of the problems related to
overhead and inflexibility while querying the policy. Ideal speeds would then
be predicted by just looking up a cell of the matrix. The lookup position
directly corresponds to event percentages. As unsigned integer values are used
to indicate the matrix arithmetics for calculating event percentages may be
done with unsigned integer operations as well. Implementation would be eased
by this concept. Further, borders of ranges with equal ideal speeds may run in
any form over the whole graph. It is only resolution, which limits the accuracy
of the prognosis diagram.

y

x

333

400

466

533

600

666

733

MHz

Figure 6.1: Hypothetical Matrix Diagram

51

Figure 6.1 illustrates what such a matrix model could look like. This ideal
speed prognosis diagram is purely hypothetical and just meant to demonstrate
the independence from linear borders.

In a first attempt a matrix model could be obtained from the line oriented
model. More straightforward, the matrix model would be generated directly
from the micro-benchmark results. When only having test points distributed
unevenly, a model generation algorithm for averaging points with different ideal
speeds in same or neighbouring matrix cells is still needed.

Even more sophisticatedly, test points of micro-benchmarks may be posi-
tioned directly with matrix cells. Such approaches base on accurate knowl-
edge of the target system and require a generator for micro-benchmarks with a
specified event rate [JBM01]. As the coordinates of test points result directly
from measured event rate equidistant test points could be placed in the model
diagrams, then. In this case, a model generation algorithm would become su-
perfluous.

Refined Accounting

Resource containers [BDM99] are a fundamental concept that would help join-
ing statistics accumulated from this approach with other strategies for energy
aware housing with resources which are provided by the kernel. As well, in-
terrupts and other background kernel activities may be accounted directly to
processes via resource containers.

Along with elaborating accounting means of data acquisition may be im-
proved. More detailed statistics about resource usage would yield a better basis
for spotting energy sinks and help to assign energy consumption to single pro-
cesses. Such improvements include larger sets of counters for simultaneously
sampling events. Along with that, events available for energy monitoring coun-
ters should have close reference to different energy sinks in the system. Further,
still existing performance monitoring could be used to concentrate on limiting
performance impact of the system. Consequently, more complex and accurate
models for energy consumption and ideal speed prognosis would be possible.

To observe such actions more precisely multiple sets of energy monitoring
counters would be helpful. Based on these, kernel and user space actions could
be monitored separately. Likewise, other sets of counters could be used for
handlers in the kernel and its interrupt routines. Distinguishing counters on
level of task privileges — for example kernel and user mode — would not blow
up time critical interrupt handling routines or the system call mechanism while
supporting differentiated accounting of energy. However, before introducing
new hardware these improvements can be evaluated in advance by software
support emulating multiple sets of counters. Moreover, software approaches
could multiplex performance monitoring counters widening the sight of the
model while not yet having more performance counters in current processors.

52

7 Kurzzusammenfassung

Die vorliegende Diplomarbeit schildert ein Verfahren zur Energieeinsparung
durch eine dynamische Anpassung der Prozessortaktfrequenz. Indizien für
eine mögliche Drosselung von Prozessen werden dabei mittels Ereigniszählern
des Prozessors gesammelt. Die Arbeit baut auf bereits vorgestellte Metho-
den [Bel01a], [JM01] zur Energievorhersage durch Ereigniszähler auf. Das Sys-
tem hat kein Vorwissen über die Applikationen und kommt ohne deren Mithilfe
aus, wie sie zum Teil in anderen Implementierungen [MGG01] nötig ist. Dafür
ist das vorliegende Modell abhängig von der eingesetzten Plattform. Betracht-
ungen aus dieser Arbeit können jedoch auf andere Plattformen angewandt wer-
den. Von der Konzeption bis zur Implementierung wird wie folgt vorgegangen:

Zunächst erfolgt die Beschreibung des technischen Aufbaus der Experimen-
tierumgebung. Zum Einsatz kommt die IQ 80310-Entwicklungsumgebung mit
dem 80200-Prozessor von Intel, da dieser sowohl Ereigniszähler als auch dy-
namische Geschwindigkeitsanpassung unterstützt. Weiterhin lässt sich rela-
tiv einfach die Leistungsaufnahme des Systems überwachen. Aufgrund seiner
Veränderbarkeit und Flexibilität wird Linux als Betriebssystem eingesetzt.

Vor dem Entwurf einer Vorschrift zum Energiesparen muss nach Effek-
ten im System gesucht werden, die Möglichkeiten zur Reduktion der Leis-
tungsaufnahme bei vergleichbarer Anwendungsleistung bieten. Situationen
mit gehäuften Speicherzugriffen bieten dabei eine solche Möglichkeit, die für
das Modell Verwendung findet: Ohnehin ausgebremst durch den Speicher-
bus kann der Prozessor in seiner Arbeitsgeschwindigkeit während solchen Zu-
griffshäufungen gedrosselt werden, ohne dass nennenswerte Verzögerungen ein-
treten. Die Leistungsaufnahme des Systems wird dabei gesenkt.

Bei realen Prozessen können Speicherzugriffe nicht vollständig isoliert wer-
den, eine Drosselung geht immer mit einer Reduktion der Anwendungsleistung
einher. Um dennoch Vorhersagen für eine Drosselung machen zu können, wird
der maximale Verlust an Anwendungsleistung beschränkt. Zusammenhänge
der Ereigniszählerwerte mit Speicherzugriffsverhalten und möglicher Drossel-
barkeit von eigens dafür entwickelten Tests werden als Nächstes gesammelt. Wie
sich zeigt, können im vorhandenen System die Häufigkeiten zweier zählbarer
Ereignisse — ausgeführte Instruktionen und Bus-Anfragen — zu einer vertret-
baren Vorhersage für eine ideale Geschwindigkeit des Prozessors verwendet wer-
den. Bei der idealen Geschwindigkeit wird bei den Applikationen möglichst viel
Energie gespart und dennoch das Limit für den Abfall der Anwendungsleistung
eingehalten. Ein entsprechendes Vorhersagemodell wird aufgestellt; es basiert
auf diesen Häufigkeiten und auf der linearen Auftrennung des Messwertraumes
in verschiedene Zonen idealer Geschwindigkeit. Das Verfahren wird in Bezug

53

zu anderen Arbeiten gesetzt und verglichen.
Eine Implementierung des Vorhersagemodells und der unterliegenden Regel-

und Messmethoden zeigt die Praktikabilität des erläuterten Process Cruise
Control-Verfahrens. Messungen am fertigen System dienen einer Diskussion von
tatsächlicher Energieersparnis und Reduktion der Anwendungsleistung. Der
Anteil von zusätzlichem Aufwand für die Messung, Bewertung und Steuerung
wird betrachtet. Weiterhin werden auch Schwächen des Modells und der Im-
plementierung aufgezeigt: Die Aufnahme der Ereignishäufigkeiten erfolgt nicht
lückenlos, die Bewertung der Messwerte ist zu aufwändig und die nutzbaren
Ereignisse lassen zu wenig direkten Aufschluss über tatsächliche energierele-
vante Aktivitäten.

Entsprechende Verbesserungsvorschläge werden nach einer Zusammenfas-
sung der Arbeit vorgestellt und umfassen zunächst eine Vereinfachung und Ver-
allgemeinerung des Modells, die Verwendung weiterführender Konzepte für die
Akquisition und eine Verwaltung der Messwerte, wie zum Beispiel Resource
Container [BDM99]. Ein Vorschlag von zentraler Bedeutung ist die Einführung
von speziellen energiebezogenen Ereigniszählern, um genaueres Wissen über En-
ergiever(sch)wendung im System zu bekommen. Damit schließt diese Arbeit.

54

List of Tables

2.1 CPU Frequency Scaling . 9
2.2 Performance Monitoring Events 9
2.3 Power Saving Modes . 9

3.1 Ideal Speeds for the Authentic Tests 19
3.2 Classification of Points into Sets 26
3.3 Model Data in Tabular Form . 29
3.4 Micro-Benchmarks Scheduled to Conflicting Destination Speeds . 32

4.1 Control File Format Summary 41

5.1 Overhead Factors . 42
5.2 Sub-Tasks of the Inhomogeneous Application 45

55

List of Figures

2.1 Electrical Measurement Setup . 11
2.2 Typical Synchronization Filter Input 12

3.1 Basic Benchmarks Power Breakdown 13
3.2 Frequency Scaled Power Breakdown 14
3.3 Relative Application Performance vs. CPU Speed 15
3.4 Relative Energy vs. CPU Speed 16
3.5 Power and Performance Profiles 17
3.6 Singular Event Factors vs. Ideal Speeds 22
3.7 Ideal Speed Diagram for all Speeds 23
3.8 Useful Ideal Speed Diagram with Micro-Benchmarks at 400 MHz 25
3.9 Unusable Ideal Speed Diagram with Micro-Benchmarks at 400 MHz 25
3.10 Geometrical Aspect of Classification Sets 26
3.11 Model Diagram with Micro-Benchmarks at 333 MHz 28
3.12 Model Diagram with Micro-Benchmarks at 733 MHz 28
3.13 Geometrical Aspect of Model Diagram and Application Points . 31
3.14 Process Cruise Control Loop . 31

4.1 Kernel Module Structure . 34
4.2 Virtual vs. Energy Performance Counters 37

5.1 Savings/Leakages of Homogenous Applications 44
5.2 Savings/Leakages of the Inhomogeneous Application 45
5.3 Power and Scheduling Trend of the Inhomogeneous Application . 47
5.4 Ideal Speeds of Homogenous Applications 48

6.1 Hypothetical Matrix Diagram . 51

56

Bibliography

[AMD02a] AMD: The Alchemy Au1100 from AMD, Internet Edge Processor
Data Book, Apr 2002
http://www.alchemysemi.com/

[AMD02b] AMD: Athlon Processor Model 4 Data Sheet, Apr 2002
http://www.amd.com/

[BDG+00] S. Browne, J. Dongarra, N. Garner, K. London, P. Mucci: A
Scalable Cross-Platform Infrastructure for Application Performance
Tuning Using Hardware Counters. In Proceedings of the Conference
on Supercomputing SC2000. Nov 2000

[BDM99] Gaurav Banga, Peter Druschel, Jeffrey C. Mogul: Resource Contain-
ers: A New Facility for Resource Management in Server Systems.
In Operating Systems Design and Implementation, 45–58. 1999

[Bel01a] F. Bellosa: The Case for Event-Driven Energy Accounting. Tech-
nical Report TR-I4-01-07, University of Erlangen, Department of
Computer Science, Jun 2001

[Bel01b] F. Bellosa: Process Cruise Control: Event-Driven Clock Scaling
for Dynamic Power Management. Technical Report TR-I4-01-11,
University of Erlangen, Department of Computer Science, Nov 2001

[BM02] J.D. Bakker, J.A.K. Mouw: Linux Embedded Radio Terminal de-
sign page, Nov 2002
http://www.ict.its.tudelft.nl/~erik/open-source/LART/

[FS02] Matthias Färber, Holger Scherl: AKBP/ES II: Team 4, Cruise
Control, Feb 2002
http://www4.informatik.uni-erlangen.de/Lehre/WS01/V_
AKBPES2/Skript/team4_cruise.pdf

[Int00a] Intel: Intel 80200 Processor based on Intel XScale Microarchitecture
Developer’s Manual, Nov 2000

[Int00b] Intel: Intel SpeedStep Technology, Jan 2000

[Int00c] Intel: Intel XScale Microarchitecture Technical Summary, Jul 2000

[Int01] Intel: Intel IQ80310 Evaluation Platform Board Manual, Jul 2001

57

[JBM01] Russ Joseph, David Brooks, M. Martonosi: Live, Runtime Power
Measurements as a Foundation for Evaluating Power/Performance
Tradeoffs. In Workshop on Complexity Effectice Design WCED,
held in conjunction with ISCA-28. Jun 2001

[JM01] Russ Joseph, M. Martonosi: Run-time Power Estimation in High-
Performance Microprocessors. In The International Symposium on
Low Power Electronics and Design ISLPED’01. Aug 2001

[Mei01] Meilhaus Electronic GmbH: Handbuch ME-2000/2600 PCI/cPCI,
Revsion 1.8D, Sep 2001

[Mei02] Meilhaus Electronic GmbH: ME-2000/2600 Linux Driver, Apr 2002
http://www.meilhaus.de/download/me-boards/linux/me2600.
tar.gz

[MGG01] Charles B. Morrey III, Marco Gruteser, Dirk Grunwald: Simple
Mechanisms For Dynamic Voltage Scaling In General Purpose Oper-
ating Systems. Technical report, Department of Computer Science,
University of Colorado, Boulder, Nov 2001

[MLH+01] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Ra-
jamony, Raj Rajkumar: Critical Power Slope: Understanding the
Runtime Effects of Frequency Scaling. Technical report, Real-Time
and Multimedia Systems Lab, Department of Electrical and Com-
puter Engineering, Carnegie Mellon University; Austin Research
Laboratory, IBM, Nov 2001

[Muc01] Philip Mucci: The Performance API PAPI. White Paper of the
University of Tennessee, Mar 2001
http://icl.cs.utk.edu/projects/papi/

[Pet01] Mikael Pettersson: Linux x86 Performance-Monitoring Counters
Driver, Nov 2001
http://www.docs.uu.se/~mikpe/linux/perfctr/

[PLS00] J. Pouwelse, K. Langendoen, H. Sips: Dynamic Voltage Scaling on
a Low-Power Microprocessor. In Proceedings of the International
Symposium on Mobile Multimedia Systems & Applications MMSA
2000. Nov 2000

[VHS98] Jörg Vollrath, Markus Hübl, Ernst Stahl: Power Analysis of
DRAMs. In Proceedings of the Seventh Asian Test Symposium. 1998

[Win02] Christian Winter: Design and Implementation of a Power Measure-
ment System. Pre-master thesis, University of Erlangen, Depart-
ment of Computer Science, 2002

58

